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Controlling the relaxation of magnetization in magnetic nanostructures is key to optimizing magnetic storage

device performance. This relaxation is governed by both intrinsic and extrinsic relaxation mechanisms and with

the latter strongly dependent on the interactions between the nanostructures. In the present work we investigate

laser induced magnetization dynamics in a broadband optical resonance type experiment revealing the role of

interactions between nanostructures on the relaxation processes of granular magnetic structures. The results

are corroborated by constructing a temperature dependent numerical micromagnetic model of magnetization

dynamics based on the Landau-Lifshitz-Bloch equation. The model predicts a strong dependence of damping on

the key material properties of coupled granular nanostructures in good agreement with the experimental data. We

show that the intergranular, magnetostatic and exchange interactions provide a large extrinsic contribution to the

damping. Finally we show that the mechanism can be attributed to an increase in spin-wave degeneracy with the

ferromagnetic resonance mode as revealed by semianalytical spin-wave calculations.

DOI: 10.1103/PhysRevB.94.134431

I. INTRODUCTION

Over the past few decades the demand for information

storage has increased at unprecedented rates. This has driven

forward huge advances in the areal density of hard disk

drives (HDD) based on magnetic storage. These increases

have led to hard drive (granular) media containing much

smaller grains located in smaller areas. In an ideal scenario

the ability to control the magnetic orientation of individual

grains would be possible without the effects of interactions

between them. However, in structured magnetic materials at

the nanoscale this ideal can never be reached. In reality the

nanostructures are coupled. This coupling can arise from a

number of mechanisms: the long-ranged dipole-dipole field,

direct exchange between grains through magnetic impurities

across the interstitial region [1], or via superexchange via

oxides in the interstitial boundary layer. The role of inter-

actions in relaxation processes in magnetic materials has long

been studied [2–6], though it is often very difficult to determine

individual mechanisms by which the system relaxes.

The key measurable quantity that governs the relaxation

of the magnetization is the effective damping. This parameter

determines the dynamics of the magnetization after an external

stimulus and, importantly for granular magnetic media, it

governs the speed at which a bit can be reversed. A large value

of damping is desirable to speed up the writing process and

reduce transition noise in perpendicular magnetic recording

(PMR) and to reduce the dc noise arising from backswitching

during the heat assisted magnetic recording (HAMR) process.

Although its effect on recording performance is significant, the

*lja503@york.ac.uk
†thomas.ostler@ulg.ac.be

origin of damping is poorly understood. Mo et al. [6] carried

out a detailed analysis of FMR data on CoCrPt perpendicular

media, concluding that the intrinsic damping from magnon-

electron scattering was as low as 0.004, over an order of

magnitude smaller than the values usually obtained for the total

damping. Mo et al. ascribe the major contribution to the damp-

ing as arising from inhomogeneity line broadening and grain

boundary two-magnon scattering. However, another extrinsic

candidate contribution to damping arises from the effects of

intergranular interactions. In the present work we investigate

the effects of magnetostatic and exchange interactions on the

effective damping of perpendicular media. It is shown that

the interactions give rise to an increase in damping which is

due to the presence of long-ranged dipole-dipole spin wave

modes. The introduction of exchange interaction results in a

stiffening of the magnetization and a consequent reduction in

damping, demonstrated experimentally for a series of CoCrPt

granular media, and verified by micromagnetic modeling. We

furthermore use a simplified model of spin waves [2] to show

that the interplay between the magnetostatic interactions and

intergranular exchange determines the number of spin-wave

modes with finite k vectors that share the k = 0 (ferromagnetic

resonance) frequency (the degeneracy), which is well known

to affect the damping [2].

II. EXPERIMENTAL RESULTS

To determine the damping from the numerical model and

experimentally we use an optical ferromagnetic resonance

(FMR) method. In an optical FMR experiment, a magnetic

field is used to force the magnetic moments away from

their equilibrium. An optical pulse is applied, heating the

sample, and thus leading to a new equilibrium position for the

magnetization. The initial/new equilibrium configuration

2469-9950/2016/94(13)/134431(8) 134431-1 ©2016 American Physical Society
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FIG. 1. Hysteresis loops for the series of CoPt with variable

exchange. Increasing exchange leads to increasingly square loops

as expected.

arises due to the minimization of the competing anisotropy,

exchange, demagnetizing and Zeeman energies at the start-

ing/final temperature. The rapid increase in temperature caused

by the laser induces precession of those moments around a

new position due to thermally induced changes in the energy

contributions. The resulting dynamics can then be analyzed

to determine effective parameters governing the relaxation

process. This technique has been applied to a wide range of

materials and structures [7–10]. In particular optical FMR is

the preferred method for measuring the damping and resonance

frequencies in materials with a strong magnetocrystalline

anisotropy [11], due to the high fields required to drive the

system to resonance in a typical ferromagnetic resonance

experiment [12]. Interestingly, the two methods were shown to

give the same values of the damping by Clinton and co-workers

in Ref. [7].

We have carried out measurements on a series of CoPt

perpendicular media in which the exchange coupling was

varied by changing the oxygen content in the intergranular

layers. The applied field is applied perpendicular to the sample

plane (in the z direction). The variation of the exchange

coupling is immediately apparent in the measured hysteresis

loops as shown in Fig. 1, where it can be seen that increasing

oxygen content gives rise to increasingly sheared loops as the

intergranular exchange is reduced, due to the distribution of

switching fields and the fact that the reduced exchange leads

to a less coherent reversal mechanism.

From the hysteresis properties we determine the exchange

field using N ∗ 4πMs − Hint, where N is a demagnetizing

factor, usually anywhere between 0.75 and 0.85 [13], and Hint

is the mean interaction field measured using FORC [14].

We have carried out measurements of the effective damping

constant using the optically pumped FMR technique [15] in

order to investigate the dependence of the effective damping

constant on the exchange. The magnetic moments are forced

away from the equilibrium position using a 0.8 kOe field at a

45◦ angle from the out of plane anisotropy axis. A 10.8 mW

laser is used to heat the media and excite the magnetization into
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FIG. 2. Example of a time resolved magnetization trace deter-

mined experimentally. Also shown in the inset is an example of the

fit to data that was used to extract the damping, where the raw data is

shown as points and fitted function is shown as a line.

precession. An example of the time resolved magnetization

data obtained is given in Fig. 2 which includes an example

(inset) of the fit to the data that was used to determine the

damping of the system.

The results are shown in Fig. 3, which shows the de-

pendence of the measured Gilbert damping constant on the

exchange field. The values of the damping are calculated by

fitting the transverse magnetization components to a decaying

oscillating function, my(t) = A cos(ωt) exp(−t/τ ), where the

fitting parameters are A, the amplitude, ω, the resonance

frequency, and τ , the relaxation rate. The damping is then

α = 1/τω.

A nonmonotonic dependence of α on Hex is clear. In

order to interpret the experiments in terms of the intergranular

interactions we have also measured the zero field cluster size
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FIG. 3. Dependence of the measured Gilbert damping constant on

the exchange field. A nonmonotonic dependence of α on Hex is clear.

(Inset) Variation of the cluster size with exchange field determined

using the method given in Ref. [13] and described in the text.
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using the method of Nemoto et al. [13]. The results are given

in the inset of Fig. 3. Importantly, it is found that for the sample

with the highest exchange coupling there is a large increase in

the correlation length. This is consistent with the form of the

hysteresis loop shown in Fig. 1, where the sample exhibits a

very square loop consistent with magnetization by nucleation

and propagation of quasidomains.

III. NUMERICAL MODEL

To corroborate the effects of increasing intergranular

exchange we have constructed a dynamic numerical model

of granular media using the Landau-Lifshitz-Bloch (LLB)

equation [16] combined with a Voronoi construction of the

grains typical for magnetic recording media. The interactions

between the grains are calculated based on the interaction

distances and lengths between the grains and included into the

LLB model, both of which we describe in the following.

A. Landau-Lifshitz-Bloch model

The LLB equation of motion describes the time evolution of

a magnetic macrospin. The equation allows for longitudinal re-

laxation of the magnetization, and was derived by Garanin [16]

within a mean field approximation from the classical Fokker-

Planck equation for atomic spins interacting with a heat bath.

Models based on the resulting expressions have been shown to

be consistent with atomistic spin dynamics simulations [17],

as well as comparisons with experimental observations, for

example, in laser induced demagnetization [18] and domain

wall mobility measurements in yttrium iron garnet crystals

close to the Curie point [19] (Tc). The equation is similar

to the Landau-Lifshitz-Gilbert (LLG) equation [20], with

precessional and relaxation terms, but with an extra term that

deals with changes in the magnitude of the magnetization:

ṁi = −γ
[

mi × Heff
i

]

+
γα‖

m2
i

(

mi · Heff
i

)

mi

−
γα⊥

m2
i

[

mi ×
[

mi × Heff
i

]]

, (1)

where mi is a spin polarization. The spin polarization tends

towards equilibrium, me, which is a temperature dependent

input parameter (discussed below). α‖ and α⊥ are dimen-

sionless longitudinal and transverse damping parameters. γ

is the gyromagnetic ratio taken to be the free electron value.

The LLB equation is valid for finite temperatures and even

above Tc, though the damping parameters and effective fields

are different below and above Tc. For the transverse damping

parameter,

α⊥ =

{

λ
(

1 − T
3Tc

)

, T < Tc,

λ 2T
3Tc

, T � Tc,
(2)

and, for the longitudinal,

α‖ = λ
2T

3Tc

for all T . (3)

For a single macrospin free energy density f is given by

fi = −Ms(0)B · mi +
Ms(0)

2χ̃⊥

(

m2
i,x + m2

i,y

)

+
Ms(0)

8χ̃i,‖m
2
i,e

(

m2
i − m2

i,e

)2 − Ms(0)2
∑

j,i �=j

ViVj

×
3(mi · eij )(mj · eij ) − mi · mj

r3
ij

, (4)

and the effective fields, Heff
i = − 1

M0
s

δf

δmi
are given by [16]:

Heff
i = B + HA,i +

1

2χ̃i,‖

(

1 −
m2

i

m2
i,e

)

mi + He,i + Hdip,i,

(5)

where B represents an external magnetic field, Hdip,i is the

dipolar field, and HA,i = −(mx
i ex

i + m
y

i e
y

i )/χ̃⊥ an anisotropy

field. Ms(0) is the saturation magnetization (magnetization

at 0 K); Vi represents the volume of grain i. Here, the

susceptibilities χ̃l are defined by χ̃l = ∂ml/∂Hl . He is the

(intergranular) exchange field, which we assume is based on

the contact area between the grains, arising from the Voronoi

construction, as discussed below. In these equations, λ is a

microscopic parameter which characterizes the coupling of

the individual, atomistic spins with the heat bath (the intrinsic

damping). We choose the value of λ to be 0.05 for this work. It

is worth pointing out that we expect the results and conclusions

presented here to be qualitatively the same for all values of the

damping. The calculation of the dipolar field is truncated at

eight grain diameters to reduce the N2 calculation over all

pairwise interactions. The long-ranged contribution is then

treated within a mean-field approximation.

For application of the LLB equation one has to know the

spontaneous equilibrium magnetization me(T ), the perpendic-

ular [χ̃⊥(T )], and parallel [χ̃‖(T )] susceptibilities beforehand.

In this work, the input functions are based on that of Ref. [17]

for FePt and scaled to give the correct Curie temperature. For

the transverse susceptibility (that determines the anisotropy)

the function is scaled to give an anisotropy constant of

13.5 × 106 erg/cc. The functions are scaled in the same

manner as that of Ref. [21]:

Ms(T ) =
Ms(0)

MFePt
s (0)

MFePt
s

(

T FePt
C

TC

T

)

, (6)

χ‖(T ) =
Ms(0)

MFePt
s (0)

χFePt
‖

(

T FePt
C

TC

T

)

, (7)

χ⊥(T ) =
Ms(0)

2K(0)
χFePt

⊥

(

T FePt
C

TC

T

)

. (8)

B. Granular model

The model of the magnetic nanostructures is based on a

Voronoi construction which creates structures and grain size

dispersions similar to those produced in magnetic hard disk

drives (see Fig. 4). The seed points for the Voronoi algorithm

are based on a 2D hexagonal structure with the points moved

by a random value, linearly, to generate structural disorder.

134431-3
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FIG. 4. Schematic of the setup of the simulations. The anisotropy

is perpendicular to the plane with the applied field at an angle θ to

the plane. The magnetization equilibrates to M before the laser pulse

is applied. The laser pulse results in relaxation of the magnetization

by precession to the new orientation, M
′
.

This results in a log-normal distribution of grain volumes, Vi ,

as seen experimentally. The average grain diameter in our

numerical simulations is 8 nm with a thickness of 8 nm.

The standard deviation in the grain diameter is 2.63 nm. In

the present work we assume no dispersion in the anisotropy

easy axes of the grains and we numerically simulate a system

approximately 700 nm × 700 nm laterally, corresponding to

7558 grains. Furthermore, we do not assume a spatial variation

of the anisotropy strength per grain, though the Voronoi

construction gives a volume distribution giving rise to a

variation of energy barrier, KV . This means that to first order

the extrinsic contributions, from anisotropy, to the damping

are zero [2].

The IGE is formulated on the basis of the contact area

between grains as was implemented in Ref. [22]. Considering

neighboring grains k and l, the exchange energy between them

can be written

Ekl
exch = −NklJkl ŝk · ŝl, (9)

where Nkl is the number of atoms in the contact area between

(k,l). Assuming a film of uniform thickness t , Nkl = Lkl t/a
2,

where Lkl is the contact length between the grains and a is

the lattice constant. The exchange field on grain k due to l is

therefore

Hkl
e = −

∂Ekl
exch

∂µk

=
LklJkl

a2MsAk

ŝl . (10)

Ak is the area of the face of grain k in the plane of thin film and

Lkl is the contact length between grains k and l. In addition,

we allow for some dispersion in the Jkl by generating a normal

distribution with a given width. We now write Eq. (10) in

terms of reduced parameters (relative to the median values

Lm,Am,Jm)

Hkl
e = Hexch

(

Jkl

Jm

)(

Lkl

Lm

)(

Am

Ak

)

ŝl, (11)

where Hexch = JmLm/(a2MsAm). In practice Hexch is set by

the requirement that the average exchange at saturation has

a certain value H sat
exch, which is the more accessible value
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FIG. 5. Numerically calculated hysteresis curves for a range of

intergranular exchange constants in good qualitative agreement with

the experimental hysteresis loops (Fig. 1).

experimentally, that is

H sat
exch = N−1Hexch

∑

k

∑

l∈n.n

(

Jkl

Jm

)(

Lkl

Lm

)(

Am

Ak

)

. (12)

We have verified that the model gives consistent static

results by initially simulating hysteresis loops for a range of in-

tergranular exchange. Qualitatively Fig. 5 shows increasingly

square loops with increasing intergranular exchange.

There are some expected quantitative differences between

the experimental and numerically determined loops that

primarily arise from the fact that the Landau-Lifshitz-Bloch

equation is integrated numerically as a function of time;

however, the total simulation time is orders of magnitude

lower than those measured experimentally. Furthermore, the

numerical simulations do not take into account the detailed

variations in the experimental structure, saturation magneti-

zation, anisotropy, or grain size variations. Not taking these

specific aspects into account allows us to use the numerical

model to interpret the experimental results without these extra

degrees of freedom.

During the simulations of optically induced FMR we apply

a magnetic field in the x-z plane at an angle θ which we take to

be at 45◦ from the z axis of magnitude 10 kOe. The anisotropy

is assumed to be uniaxial and points out of the plane of the

sample. The large angle at which we apply the field gives

rise to large amplitude precession giving excellent fits to the

magnetization (discussed below). Even in the presence of the

field at 45◦, the large anisotropy ensures that the magnetization

lies strongly out of plane. In our optical FMR approach we

assume a square pulse in temperature rising from ambient to

600 K for 400 ps, returning to ambient after the pulse. In a

real optical FMR experiment on the picosecond time scale

the laser generates a hot electron distribution that can reach

temperatures of thousands of kelvin [23]. Subsequently, the

hot electrons reach a quasiequilibrium state with the phonons

at the same temperature. Depending on the relaxation time of

the magnetic system the spin system will reach equilibrium

with this quasiequilibrium at around 0.1–1 ps [24], though this

134431-4
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FIG. 6. Example of the transverse magnetization dynamics after

a heat pulse (points) with a fit to the dynamics (lines). (Inset) Example

of the longitudinal magnetization dynamics after a pulse.

can be considerably longer for pure rare earth metals [25].

For metallic ferromagnets, the changes in the magnitude of

the magnetization occur on a much faster time scale than

the resulting precession (see inset of Fig. 6); thus we probe the

dynamics at the temperature after the pulse. Experimentally the

long cooling time to the initial temperature occurs by transfer

of energy out of the magnetic material to the substrate and the

surroundings via phonon processes on the nanosecond time

scale.

Using the LLB model, we have investigated the effects of

varying the saturation magnetization and IGE on the damping

of our granular material after excitation with a heat pulse. As

discussed above, the change in temperature alters the equilib-

rium position, which causes the magnetization to precess back

the initial state. An example of the resulting dynamics within

the LLB model is shown in Fig. 6 (points). On the picosecond

time scale the magnetization is quickly reduced, in agreement

with experimental [26–28] and numerical results [28–30] so

that the quenching and recovery of the anisotropy field is much

faster than the time scale of the precessional dynamics.

Using the numerical model we first calculate the damping

as a function of the saturation magnetization, as presented in

Fig. 7, for a range of values of the IGE. The values for the

damping are calculated as with the experimental data.

Figure 7 shows a strong variation and a subtle combination

of contributions from magnetostatic and exchange interac-

tions. Consider first the case H sat
exch = 0. From Fig. 7 it can

be seen that there is a very strong dependence of effective

damping on Ms , specifically an increase of around a factor of

2.5 for Ms values around those of Co and Fe. For low values

of Ms the damping for all values of IGE converge to the value

of the input damping due to the very low contribution from the

demagnetizing fields.

The variation of damping with IGE, determined nu-

merically, is shown in Fig. 8 and is consistent with the

experimentally observed decrease (Fig. 3) in damping with

increasing intergranular exchange. For low values of the

saturation magnetization the value of the damping shows very

little variation and remains close to the value for the intrinsic
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FIG. 7. Damping as a function of saturation magnetization for a

range of values of the intergranular exchange, H sat
exch.

damping used for the calculations. For larger values of Ms

there is a much larger variation with IGE where there is a

strong interplay between the demagnetizing energy and the

IGE.

Overall, the numerical simulations are consistent with

the experimental data for small exchange fields, where the

effective damping is seen to decrease with Hex . However,

the model does not reproduce the increase in damping for

the sample with the largest exchange (see Fig. 3). This is

likely related to the dramatic increase in the measured cluster

size for this particular sample as shown in the inset of Fig. 3.

For this sample, the oxide concentration was reduced to zero,

and it is possible that the determined exchange field is an

underestimate. The large cluster size and the form of the

hysteresis loop for this sample is indicative of a change to a

nucleation/propagation mechanism, which is not observed in
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FIG. 8. Damping as a function of intergranular exchange for a

range of values of saturation magnetization. For low values of Ms

the value of the damping varies very little and remains around the

value of the input damping parameter. As Ms increases, the variation

with intergranular exchange becomes much greater as the interplay

between the demagnetizing fields and exchange becomes important.
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FIG. 9. Spin-wave degeneracy (shown schematically in the inset)

as a function of exchange stiffness for a range of values of saturation

magnetization. There is clearly a direct correlation between the

degeneracy and the damping shown in Fig. 3 and a similar trend

for fixed exchange stiffness and varying Ms .

the model calculations for values of Hex up to 5 kOe. For a very

strongly exchange coupled sample it is likely that additional

damping mechanisms will arise from interaction of the domain

walls with defects and impurities resulting in the increase in

Gilbert damping at large exchange fields.

IV. SEMIANALYTICAL SPIN-WAVE MODEL

So far we have presented numerical and experimental

results that show good agreement on the effects of interactions

on the damping in granular media; however, the underlying

mechanism remains somewhat ambiguous. In the following we

ascribe the reduction in damping due to increasing intergran-

ular exchange as arising from a reduction in the degeneracy of

finite k vectors with the frequency of the k = 0 (ferromagnetic

resonance) mode (see schematic inset of Fig. 9). In general,

the presence of defects, inhomogeneities, boundaries, etc.

can act as scattering centers leading to the energy transfer

from the uniform magnetization precession into degenerate

spin-wave modes. A reduction in this degeneracy reduces the

number of possible spin-wave modes that can be scattered

to or from. The process involves the annihilation of a

zero-wave-number magnon and the creation of a nonzero-

wave-number magnon. The consequence of this process is

that the magnetization precession undergoes rapid relaxation

(damping) [31]. Reducing this degeneracy will then result in

a reduced damping. We conclude that the reduction of two-

magnon scattering processes is dominating the reduction in

damping due to increased intergranular exchange. To elucidate

this we follow the method of McMichael [2,3,32]. In the

present work we only briefly outline the method of determining

the frequencies of the spin-wave modes. In Refs. [2,3,32] the

Landau-Lifshitz-Gilbert equation is linearized. The resulting

linearized components of the magnetization and fields are

written in Fourier space through

b(r) =
∫

dk

(2π )2
b(k) exp(ik · r), (13)

where b represents the magnetization or the fields. The effec-

tive field has contributions from the Zeeman, demagnetizing,

anisotropy, and exchange terms and is written in terms of a

sum over the magnetization multiplied with a kernel, G, and is

translationally invariant. Due to the r − r′ term, on-site terms

would be represented by delta functions multiplied by a scalar.

The Fourier components of the field are then written:

Heff(r) =
∫

dr′G(r − r′)m(r′), (14)

The Fourier component of this field are then, H(k) =
−hkm(k), where hk are the elements of the normalized

stiffness tensor:

hθθ,k = M0
s

−1
[Hi + Dk2 + M0

s (1 − Nk) sin2(θk)], (15a)

hφφ,k = M0
s

−1
[Hi + Dk2 + M0

s Nk cos2(φ)]

+M0
s (1 − Nk) sin2(φ) cos2(θk), (15b)

hθφ,k = M0
s

−1[

M0
s (1 − Nk) cos(θk) sin(θk) sin(φ)

]

, (15c)

hφθ,k = hθφ,k, (15d)

where Dk2 = (2A/µ0Ms)k
2 is the exchange field for a spin

wave with wave vector k, assuming that the wavelengths

of interest are much larger than the lattice spacing. A is

the exchange stiffness and Hi = B cos(φ − φH ) − (M0
s −

Hk) sin2(φ) is the “internal field” consisting of the component

of the following: the applied field B (at an angle φH to the

plane) parallel to the magnetization, which is at an angle, φ, to

the plane, the static part of the demagnetization field, and the

anisotropy field Hk . The k-dependent demagnetization factor

for a film of thickness d is given by

Nk =
1 − e−kd

kd
. (16)

The susceptibility tensor, χk(ω), can be obtained from the

linearized LLG equations of motion. For an applied field with

spatial frequency k and angular frequency ω, the transverse

susceptibility tensor is given by

χk(ω) =
1

Zk

[

hφφ,k + iαω
ωM

−hθφ,k + iαω
ωM

−hφθ,k − iαω
ωM

hθθ,k + iαω
ωM

]

, (17a)

Zk = hθθ,khφφ,k − hθφ,khφθ,k − (1 + α2)
( ω

ωM

)2

+ iα
( ω

ωM

)

(hθθ,k + hφφ,k), (17b)

where ωM = γM0
s . The dispersion relation is obtained by

noting that | Zk | is minimum and the susceptibility is in

resonance when

ω = ωk =
ωM√
1 + α2

[hθθ,khφφ,k − hθφ,khφθ,k]1/2. (18)

To make a consistent comparison between the LLB nu-

merical model and the spin-wave model we use the values

of Ms , anisotropy, thickness (d), applied field, and applied

field angle that are the same in both cases. Furthermore, the

angles of the magnetization (φ) from the film plane are taken

directly from the numerical simulations at equilibrium after

134431-6
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the pulse (from the end of the numerical simulation). Using

the physical parameters that enter into the LLB model we

have calculated the spin-wave properties of the numerically

simulated samples using Eqs. (15)–(18) and determined the

degeneracy of those modes with the k = 0 mode. This plays an

important role in the damping arising from inhomogeneities [2]

due to nonuniformities that are present in granular media. We

note that the value of the exchange stiffness that enters into

the equations is in the correct range [4] for granular media

but it is not trivial to relate the intergranular exchange field

in the LLB with the long-wavelength exchange, A, used in

the spin-wave model. We note here that the presented form of

the semianalytical spin-wave model does not take into account

inhomogeneous line broadening effects, and thus contains con-

tributions only from inhomogeneities which arise in the LLB

model from the distribution of the grain volumes. The results

of the semianalytical spin-wave model are shown in Fig. 9 and

show a decreasing trend with increasing exchange stiffness.

We can conclude that the two-magnon scattering process is

the leading term in our reduction in damping with intergranular

exchange and is strongly affected by the interactions due to

intergranular exchange and the demagnetizing fields. This is

supported by the fact that the LLB model does not include

any specific detail about the grain boundaries or dispersions

in the anisotropy axes or on-site magnitudes, though does take

into account different demagnetizing fields, size distribution,

etc., so there is inevitably a distribution in the cone angle of

the macrospins. Therefore, scattering with impurities cannot

occur. The role of grain-to-grain scattering due to slight

dispersions in the anisotropy axes is zero in our LLB model

as we assume perfectly aligned anisotropy axes. Similarly,

we assume that our grains are uniform single macrospins

and therefore grain-boundary scattering cannot contribute to

this two-magnon scattering process. In terms of a macrospin

picture, the decreased damping can be explained by a stiffening

of the system resulting in a more coherent precession so that

demagnetizing effects become less important and the system

as a whole acts more like a single macrospin.

V. CONCLUSION

In summary we have carried out an investigation of

the effects of intergranular interactions on the effective

damping constant of perpendicular media. Experiments show

a nonmonotonic variation of the damping with increasing

exchange strength. Contributions to the experimental damping

constant due to inhomogeneous line broadening cannot be

ruled out, however, these are expected to be consistent

between samples; the major effect of reducing the thickness

of the grain boundaries is the variation in the exchange

coupling as shown in the hysteresis behavior. We have

constructed a realistic model of granular media using the

Landau-Lifshitz-Bloch model. By simulating the optical FMR

technique to probe relaxation processes we have determined

how the damping is affected by the key parameters governing

the interactions (exchange and saturation magnetization).

The model calculations show a decrease of effective damping

with increasing exchange, consistent with the experimental

data for small exchange. It is argued that the increase in

damping for the largest exchange field, arising in a film without

exchange coupling, is due to the onset of a different reversal

mechanisms involving domain nucleation and propagation.

For practical perpendicular recording media, which are more

exchange decoupled, the decrease in damping with exchange

strength predicted by the model calculations is the most likely

scenario. Further investigations of the phenomenon using spin-

wave theory provide further insight and ascribe the reduction

in damping due to increasing intergranular exchange as arising

from a reduction in the degeneracy of finite k vectors with the

frequency of the k = 0 (ferromagnetic resonance) mode. These

calculations show a direct correlation between the degeneracy

and the damping shown by the numerical model with a

similar trend for fixed exchange stiffness and varying Ms . Our

numerical calculations do not include extrinsic contributions

to damping due to variations in on-site quantities, such as

anisotropy or saturation magnetization; thus we have shown

that it is possible to describe the decrease in damping with

intergranular exchange based on the effects of intergranular

exchange and demagnetizing fields; thus we conclude that

their contribution is large.
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Föhlisch, T. A. Ostler, J. Mentink, R. Evans, R. W. Chantrell,

A. Tsukamoto, A. Itoh, A. Kirilyuk, A. Kimel, and T. Rasing,

SPIN 05, 1550004 (2015).

[25] B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M.
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