18 research outputs found

    State of the Art and Development Trends of the Digital Radiography Systems for Cargo Inspection

    Get PDF
    Increasing requirements for technical parameters of inspection digital radiography systems are caused by increasing incidences of terrorism, drug trafficking and explosives via variety of transport. These requirements have determined research for new technical solutions that enable to ensure the safety of passengers and cargos in real-time. The main efforts in the analyzed method of testing are aimed at the creation of new and modernization of operated now systems of digital radiography as a whole and their main components and elements in particular. The number of these main components and elements includes sources of X-ray recording systems and transformation of radiometric information as well as algorithms and software that implements these algorithms for processing, visualization and results interpretation of inspection. Recent developments of X-ray units and betatrons used for inspection of small- and large-sized objects that are made from different materials are deserve special attention. The most effective X-ray detectors are a line and a radiometric detector matrix based on various scintillators. The most promising methods among the algorithms of material identification of testing objects are dual-energy methods. The article describes various models of digital radiography systems applied in Russia and abroad to inspection of baggage, containers, vehicles and large trucks

    Ordering of anisotropic nanoparticles in diblock copolymer lamellae : simulations with dissipative particle dynamics and a molecular theory

    Get PDF
    Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications

    Liquid-crystal ordering and microphase separation in the lamellar phase of rod-coil-rod triblock copolymers. Molecular theory and computer simulations

    Get PDF
    A molecular model of the orientationally ordered lamellar phase exhibited by asymmetric rod-coil-rod triblock copolymers has been developed using the density-functional approach and generalizing the molecular-statistical theory of rod-coil diblock copolymers. An approximate expression for the free energy of the lamellar phase has been obtained in terms of the direct correlation functions of the system, the Flory-Huggins parameter and the Maier-Saupe orientational interaction potential between rods. A detailed derivation of several rod-rod and rod-coil density-density correlation functions required to evaluate the free energy is presented. The orientational and translational order parameters of rod and coil segments depending on the temperature and triblock asymmetry have been calculated numerically by direct minimization of the free energy. Different structure and ordering of the lamellar phase at high and low values of the triblock asymmetry is revealed and analyzed in detail. Asymmetric rod-coil-rod triblock copolymers have been simulated using the method of dissipative particle dynamics in the broad range of the Flory-Huggins parameter and for several values of the triblock asymmetry. It has been found that the lamellar phase appears to be the most stable one at strong segregation. The density distribution of the coil segments and the segments of the two different rods have been determined for different values of the segregation strength. The simulations confirm the existence of a weakly ordered lamellar phase predicted by the density-functional theory, in which the short rods separate from the long ones and are characterized by weak positional ordering

    Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign 2019

    Get PDF
    Global climate change is one of the most important scientific, societal and economic contemporary challenges. Fundamental understanding of the major processes driving climate change is the key problem which is to be solved not only on a global but also on a regional scale. The accuracy of regional climate modelling depends on a number of factors. One of these factors is the adequate and comprehensive information on the anthropogenic impact which is highest in industrial regions and areas with dense population – modern megacities. Megacities are not only “heat islands”, but also significant sources of emissions of various substances into the atmosphere, including greenhouse and reactive gases. In 2019, the mobile experiment EMME (Emission Monitoring Mobile Experiment) was conducted within the St. Petersburg agglomeration (Russia) aiming to estimate the emission intensity of greenhouse (CO2_{2}, CH4_{4}) nd reactive (CO, NOx_{x}) gases for St. Petersburg, which is the largest northern megacity. St. Petersburg State University (Russia), Karlsruhe Institute of Technology (Germany) and the University of Bremen (Germany) jointly ran this experiment. The core instruments of the campaign were two portable Bruker EM27/SUN Fourier transform infrared (FTIR) spectrometers which were used for ground-based remote sensing measurements of the total column amount of CO2_{2}, CH4_{4} and CO at upwind and downwind locations on opposite sides of the city. The NO2_{2} tropospheric column amount was observed along a circular highway around the city by continuous mobile measurements of scattered solar visible radiation with an OceanOptics HR4000 spectrometer using the differential optical absorption spectroscopy (DOAS) technique. Simultaneously, air samples were collected in air bags for subsequent laboratory analysis. The air samples were taken at the locations of FTIR observations at the ground level and also at altitudes of about 100 m when air bags were lifted by a kite (in case of suitable landscape and favourable wind conditions). The entire campaign consisted of 11 mostly cloudless days of measurements in March–April 2019. Planning of measurements for each day included the determination of optimal location for FTIR spectrometers based on weather forecasts, combined with the numerical modelling of the pollution transport in the megacity area. The real-time corrections of the FTIR operation sites were performed depending on the actual evolution of the megacity NOx_{x} plume as detected by the mobile DOAS observations. The estimates of the St. Petersburg emission intensities for the considered greenhouse and reactive gases were obtained by coupling a box model and the results of the EMME observational campaign using the mass balance approach. The CO2_{2} emission flux for St. Petersburg as an area source was estimated to be 89 ± 28 ktkm2^{-2} yr 2^{-2} , which is 2 times higher than the corresponding value in the EDGAR database. The experiment revealed the CH4_{4} emission flux of 135 ± 68 tkm 2^{-2} yr 1^{-1}, which is about 1 order of magnitude greater than the value reported by the official inventories of St. Petersburg emissions (∼ 25 tkm2^{-2} yr 1^{-1} or 2017). At the same time, for the urban territory of St. Petersburg, both the EMME experiment and the official inventories for 2017 give similar results for the CO anthropogenic flux (251 ± 104 tkm 2^{-2} yr 1^{-1} s. 410 tkm 2^{-2} yr 1^{-1}) nd for the NOx_{x} anthropogenic flux (66 ± 28 tkm2^{-2} yr 1^{-1} vs. 69 tkm 2^{-2} yr 1^{-1})

    The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

    Get PDF
    International audienceForest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (aGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. aGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. all plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities

    THE DEVELOPMENT OF METHODS OF THE DETERMINATION OF ACOUSTIC FIELDS AND UNSTATIONARY AERODYNAMIC LOADS IN THE CHANNELS, GRIDS AND BLADE RINGS OF THE AVIATION POWER UNITS AND ENERGY MACHINES

    No full text
    The object of investigation: the acoustic fields and unstationary aerodynamic loads in the elements of the aviation power units and energy machines. The purpose of the work: the development of methods and new approaches to the solutions of the problems of the unstationary aerodynamics and aeroacoustics as applied to the indicated objects. Developed have been the new approaches and methods for the solution of the problems of the linear and unlinear spreading of the acoustic disturbances in the unhomogeneous fluxes of gas in the channels, radiation of the waves from the channel open and to be flown over by the flux, the design of the unstationary aerodynamic characteristics of the turbomachines grids. The developed design methods can be used in the practical investigations on the struggle against aviation and industry noise, flutter of turbomachines and ensurance of its vibration reliability. The design programs have been introduced in the CIAM in the complex on the ensurance of the strength design on the resonance oscillations and flutter of blades of the axialcompressors and propeller fans of the GTE in aviation. The field of application: the unstationary aerodynamics and aeroacoustics of channels and grids of the turbomachinesAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    INVESTIGATION OF MEASUREMENT PRECISION OF LATENT VARIABLES IN EDUCATION

    No full text
    The objective of the study is to investigate the measurement accuracy of latent variables depending on a number of dichotomous test items and variation range.Methods: Investigation is based on the simulation experiments.Results: The authors make recommendations for selecting a number of dichotomous test items and variation range depending on the required measurement precision of latent variables.Scientific novelty: The research demonstrates statistical correlation between the measurement precision of latent variables and a number of test items and variation range.Importance for practice: The research results can be used while developing the questionnaires and tests for measuring the latent variables

    Mathematical Modeling of Multi-Element Antenna Arrays with Chiral Metamaterials Substrates Using Singular Integral Equations

    Get PDF
    In this paper, a physical model of the multi-element antenna arrays (MEAA) has been considered and a self-consistent numerical method for solving the problem of current distribution on the MEAA surface with chiral metamaterials substrate has been proposed. The algorithm of the input admittance matrix elements for chiral layer based on the conductive left and right-handed helices has been developed and elements of the matrix surface impedances for investigated structures have been found. A set of singular integral equations with a Cauchy kernel for calculating the current density on the surface of the MEAA has been derived. A numerical solution of the set is a well-posed in the sense of Hadamard. Calculations of current distribution on the MEAA surface, impedance characteristics of a three-element antenna array and the dependence of the isolation levels between emitters on the chirality parameter have been performed and analysed. It has been shown that the use of chiral substrates can substantially increase the isolation between emitters

    Mathematical Modeling of Multi-Element Antenna Arrays with Chiral Metamaterials Substrates Using Singular Integral Equations

    No full text
    In this paper, a physical model of the multi-element antenna arrays (MEAA) has been considered and a self-consistent numerical method for solving the problem of current distribution on the MEAA surface with chiral metamaterials substrate has been proposed. The algorithm of the input admittance matrix elements for chiral layer based on the conductive left and right-handed helices has been developed and elements of the matrix surface impedances for investigated structures have been found. A set of singular integral equations with a Cauchy kernel for calculating the current density on the surface of the MEAA has been derived. A numerical solution of the set is a well-posed in the sense of Hadamard. Calculations of current distribution on the MEAA surface, impedance characteristics of a three-element antenna array and the dependence of the isolation levels between emitters on the chirality parameter have been performed and analysed. It has been shown that the use of chiral substrates can substantially increase the isolation between emitters
    corecore