210 research outputs found

    Contribution of dust inputs to dissolved organic carbon and water transparency in Mediterranean reservoirs

    Get PDF
    The Mediterranean reservoirs receive frequent atmospheric Saharan dust inputs with soil-derived organic components mostly during the stratification periods, when run-off inputs are particularly limited. Here, we quantified and optically characterized the water-soluble organic carbon (WSOC) of the (dry and wet) atmospheric deposition in collectors placed near three reservoirs from the western Mediterranean Basin. In addition, we determined the WSOC contribution to the pool of dissolved organic carbon (DOC) in the reservoirs and the influence of dust-derived chromophoric organic components on the water transparency during their stratification periods. We found synchronous dynamics in the WSOC atmospheric inputs among the three collectors and in the DOC concentrations among the three reservoirs. The DOC concentrations and the WSOC atmospheric inputs were positive and significantly correlated in the most oligotrophic reservoir (Quéntar) and in the reservoir with the highest ratio of surface area to mixing water depth (Cubillas). Despite these correlations, WSOC atmospheric inputs represented less than 10% of the total DOC pool, suggesting that indirect effects of dust inputs on reservoir DOC may also promote these synchronous patterns observed in the reservoirs. Chromophoric components from dust inputs can significantly reduce the water transparency to the ultraviolet radiation (UVR). The depths where UVR at λ = 320 nm was reduced to ten percent of surface intensity (Z10%) decreased 27 cm in Béznar, 49 cm in Cubillas, and 69 cm in Quéntar due to the dust inputs. Therefore, the increasing dust export to the atmosphere may have consequences for the water transparency of aquatic ecosystems located under the influence of the global dust belt.This work was funded by the Spanish Ministry of Science and Technology (DISPAR, CGL2005-00076 to IR and CGL2008-06101/BOS to IdV) and by the Spanish Ministry of Education and Science (CICYT grant REN2003-03038 to RM-B)

    Main drivers of transparent exopolymer particle distribution across the surface Atlantic Ocean

    Get PDF
    Transparent exopolymer particles (TEPs) are a class of gel particles, produced mainly by microorganisms, which play important roles in biogeochemical processes such as carbon cycling and export. TEPs (a) are colonized by carbon-consuming microbes; (b) mediate aggregation and sinking of organic matter and organisms, thereby contributing to the biological carbon pump; and (c) accumulate in the surface microlayer (SML) and affect air–sea gas exchange. The first step to evaluate the global influence of TEPs in these processes is the prediction of TEP occurrence in the ocean. Yet, little is known about the physical and biological variables that drive their abundance, particularly in the open ocean. Here we describe the horizontal TEP distribution, along with physical and biological variables, in surface waters along a north–south transect in the Atlantic Ocean during October–November 2014. Two main regions were separated due to remarkable differences: the open Atlantic Ocean (OAO, n=30), and the Southwestern Atlantic Shelf (SWAS, n=10). TEP concentration in the entire transect ranged 18.3–446.8&thinsp;µg&thinsp;XG&thinsp;eq&thinsp;L−1 and averaged 117.1±119.8&thinsp;µg&thinsp;XG&thinsp;eq&thinsp;L−1, with the maximum concentrations in the SWAS and in a station located at the edge of the Canary Coastal Upwelling (CU), and the highest TEP to chlorophyll a (TEP:Chl a) ratios in the OAO (183±56) and CU (1760). TEPs were significantly and positively related to Chl a and phytoplankton biomass, expressed in terms of C, along the entire transect. In the OAO, TEPs were positively related to some phytoplankton groups, mainly Synechococcus. They were negatively related to the previous 24&thinsp;h averaged solar irradiance, suggesting that sunlight, particularly UV radiation, is more a sink than a source for TEP. Multiple regression analyses showed the combined positive effect of phytoplankton and heterotrophic prokaryotes (HPs) on TEP distribution in the OAO. In the SWAS, TEPs were positively related to high nucleic acid-containing prokaryotic cells and total phytoplankton biomass, but not to any particular phytoplankton group. Estimated TEP–carbon constituted an important portion of the particulate organic carbon pool in the entire transect (28&thinsp;%–110&thinsp;%), generally higher than the phytoplankton and HP carbon shares, which highlights the importance of TEPs in the cycling of organic matter in the ocean.</p

    Significance of atmospheric deposition to freshwater ecosystems in the southern Iberian Peninsula

    Get PDF
    The Iberian Peninsula is close to the Saharan Desert, which is the biggest source of atmospheric aerosols of the World. Currently, it is recognized that atmospheric deposition of aerosols over ecosystems is a significant source not only of elements with gaseous phases but also of rock-derived ones. In the last years we have been quantifying the atmospheric flux of elements and substances of biogeochemical interest on the aquatic ecosystems of the South Iberian Peninsula, and their impact on their functioning and structure. The results we are obtaining indicate that atmospheric contribution of P and Ca are essential to explain the functioning of high mountain lakes, and that atmospheric input of organic matter partially supports the pelagic food web of these ecosystems. In this article we offer a summary of some of the results obtained to date.La Península Ibérica está próxima al Desierto del Sahara que es la mayor fuente de aerosoles atmosféricos del Planeta. Actualmente, se reconoce que la deposición de aerosoles sobre los ecosistemas es una entrada significativa no sólo de elementos con fases gaseosas sino, también, de elementos derivados de rocas. En los últimos años hemos estado cuantificado el flujo atmosférico de elementos y sustancias de interés biogeoquímico sobre los ecosistemas acuáticos del sur de la Península Ibérica y el impacto sobre su funcionamiento y estructura. Los resultados que estamos obteniendo indican que los aportes atmosféricos de P y Ca son esenciales para explicar el funcionamiento de los lagos de alta montaña y que las entradas atmosféricas de materia orgánica sostienen parcialmente las redes tróficas pelágicas de estos ecosistemas. En este artículo ofrecemos un resumen de algunos de los resultados obtenidos hasta ahora

    Clases de tamaño, grupos quimiotaxonómicos y propiedades bio-ópticas del fitoplancton a lo largo de un transecto desde el mar Mediterráneo al SO del océano Atlántico

    Get PDF
    The relationships between the structure of the phytoplankton community and the bio-optical properties of surface waters were studied during the TransPEGASO cruise along a transect across the Atlantic Ocean that covered seven biogeographical provinces, from the Alborán Sea (SW Mediterranean) to the Patagonian Shelf. We characterized the composition of the phytoplankton community by means of high-performance liquid chromatography and CHEMTAX pigment analyses applied to whole water and two filtration size classes ( 0.5 mg m-3) with a single Mediterranean (MEDI) sample and those from the southwestern Atlantic Shelf (SWAS). According to CHEMTAX, the most important taxa in the tropical and subtropical Atlantic were Prochlorococcus, haptophytes and Synechoccoccus, while the MEDI and SWAS were dominated by diatoms and haptophytes. Both the VU and HI algorithms, which are based on pigment composition or Chl a concentration, predicted for SWAS a high proportion of nano- and microphytoplankton, while the SFF indicated dominance of the 0.5 mg m-3) con una sola muestra mediterránea (MEDI) y las de la plataforma patagónica, en el sudoeste del Atlántico (SWAS). Según CHEMTAX, los taxones más importantes en el Atlántico tropical y subtropical fueron Prochlorococcus, haptofitos y Synechoccoccus, mientras que las provincias MEDI y SWAS estuvieron dominadas por diatomeas y haptofitos. Tanto los algoritmos VU como los HI, que se basan en la composición de pigmentos o en la concentración de Chl a, predijeron para SWAS una alta proporción de nano y microfitoplancton, mientras que la SFF indicó un dominio de la clase de tamaño < 3 μm. Por otra parte, los resultados de CHEMTAX indicaron que, en promedio, la contribución de las diatomeas era importante en esta provincia. Sin embargo, en varias estaciones de SWAS para las que CHEMTAX estimaba una elevada contribución de diatomeas, las observaciones microscópicas encontraron solamente escasas concentraciones de células de diatomeas de tamaño nano- o microplanctónico. Esta discrepancia parece deberse a la presencia, confirmada por microscopía electrónica de barrido, de pequeñas células (< 3 μm) de la diatomea Minidiscus sp. y de Parmales (un grupo que comparte la composición pigmentaria con las diatomeas). Estos hallazgos advierten contra una asignación rutinaria de los pigmentos de las diatomeas a la clase de tamaño de microplancton. La absorción total (sin contar la propia del agua) en la columna de agua estuvo dominada por CDOM. En promedio, la contribución de la absorción de fitoplancton para las diferentes provincias osciló de 19.3% en MEDI a 45.7% en SWAS y 47% en la provincia del Atlántico Tropical Occidental (WTRA). La absorción del fitoplancton por unidad de Chl a [aph*(443), m2 mg-1] fue menor en MEDI y SWAS que en las provincias oligotróficas. aph*(443) se correlacionó negativamente con el primer componente derivado de un análisis de los componentes principales basado en la concentración de los pigmentos más importantes y no se correlacionó con indicadores de la estructura de tamaños de la comunidad fitoplanctónica tales como la proporción de Chl a en la clase < 3 μm o un índice de tamaño (SI) derivado de la distribución de clases de tamaño obtenida mediante el algoritmo VU. Estas observaciones indican que la variabilidad observada en aph*(443) se relacionaba principalmente con diferencias en la composición pigmentaria y posiblemente también con procesos de fotoaclimatación del fitoplancton, y que cualquier efecto de empaquetamiento debido al tamaño de las células quedaba probablemente enmascarado por otros factores. Este último resultado puede estar relacionado con una influencia relativamente pequeña del tamaño dentro del estrecho rango de concentraciones de Chl a considerado en nuestro estudio (todas eran ≤2.4 mg m-3)

    Uncoupled seasonal variability of transparent exopolymer and Coomassie stainable particles in coastal Mediterranean waters: Insights into sources and driving mechanisms

    Get PDF
    Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are gel-like particles, ubiquitous in the ocean, that affect important biogeochemical processes including organic carbon cycling by planktonic food webs. Despite much research on both groups of particles (especially TEP) over many years, whether they exist as distinctly stainable fractions of the same particles or as independent particles, each with different driving factors, remains unclear. To address this question, we examined the temporal dynamics of TEP and CSP over 2 complete seasonal cycles at 2 coastal sites in the Northwestern Mediterranean Sea, the Blanes Bay Microbial Observatory (BBMO) and the L’Estartit Oceanographic Station (EOS), as well as their spatial distribution along a coast-to-offshore transect. Biological, chemical, and physical variables were measured in parallel. Surface concentrations (mean + standard deviation [SD]) of TEP were 36.7 + 21.5 µg Xanthan Gum (XG) eq L–1 at BBMO and 36.6 + 28.3 µg XG eq L–1 at EOS; for CSP, they were 11.9 + 6.1 µg BSA eq L–1 at BBMO and 13.0 + 5.9 µg BSA eq L–1 at EOS. Seasonal variability was more evident at EOS, where surface TEP and CSP concentrations peaked in summer and spring, respectively, and less predictable at the shore-most station, BBMO. Vertical distributions between surface and 80 m, monitored at EOS, showed highest TEP concentrations within the surface mixed layer during the stratification period, whereas CSP concentrations were highest before the onset of summer stratification. Phytoplankton were the main drivers of TEP and CSP distributions, although nutrient limitation and saturating irradiance also appeared to play important roles. The dynamics and distribution of TEP and CSP were uncoupled both in the coastal sites and along the transect, suggesting that they are different types of particles produced and consumed differently in response to environmental variability

    Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate

    Get PDF
    Pseudomonas aeruginosa is an ubiquitous pathogen able to infect humans, animals, and plants. Chemotaxis was found to be associated with the virulence of this and other pathogens. Although established as a model for chemotaxis research, the majority of the 26 P. aeruginosa chemoreceptors remain functionally un-annotated. We report here the identification of PA5072 (named McpK) as chemoreceptor for α-ketoglutarate (αKG). High-throughput thermal shift assays and isothermal titration calorimetry studies (ITC) of the recombinant McpK ligand binding domain (LBD) showed that it recognizes exclusively α-ketoglutarate. The ITC analysis indicated that the ligand bound with positive cooperativity (Kd1 = 301 μM, Kd2 = 81 μM). McpK is predicted to possess a helical bimodular (HBM) type of LBD and this and other studies suggest that this domain type may be associated with the recognition of organic acids. Analytical ultracentrifugation (AUC) studies revealed that McpK-LBD is present in monomer-dimer equilibrium. Alpha-KG binding stabilized the dimer and dimer self-dissociation constants of 55 μM and 5.9 μM were derived for ligand-free and αKG-bound forms of McpK-LBD, respectively. Ligand-induced LBD dimer stabilization has been observed for other HBM domain containing receptors and may correspond to a general mechanism of this protein family. Quantitative capillary chemotaxis assays demonstrated that P. aeruginosa showed chemotaxis to a broad range of αKG concentrations with maximal responses at 500 μM. Deletion of the mcpK gene reduced chemotaxis over the entire concentration range to close to background levels and wild type like chemotaxis was recovered following complementation. Real-time PCR studies indicated that the presence of αKG does not modulate mcpK expression. Since αKG is present in plant root exudates it was investigated whether the deletion of mcpK altered maize root colonization. However, no significant changes with respect to the wild type strain were observed. The existence of a chemoreceptor specific for αKG may be due to its central metabolic role as well as to its function as signaling molecule. This work expands the range of known chemoreceptor types and underlines the important physiological role of chemotaxis toward tricarboxylic acid cycle intermediates. [EN]FEDER funds and Fondo Social Europeo through grants from the Junta de Andalucía (grant CVI-7335) and the Spanish Ministry for Economy and Competitiveness (grant BIO2013-42297). MM was supported by the Spanish Ministry of Economy and Competitiveness Postdoctoral Research Program, Juan de la Cierva (JCI-2012-11815).Peer reviewe

    Horizontal and Vertical Distributions of Transparent Exopolymer Particles (TEP) in the NW Mediterranean Sea Are Linked to Chlorophyll a and O2 Variability

    Get PDF
    12 pages, 6 figures, 3 tables, supplementary material http://journal.frontiersin.org/article/10.3389/fmicb.2016.02159/full#supplementary-materialTransparent Exopolymer Particles (TEP) are relevant in particle and carbon fluxes in the ocean, and have economic impact in the desalination industry affecting reverse osmosis membrane fouling. However, general models of their occurrence and dynamics are not yet possible because of the poorly known co-variations with other physical and biological variables. Here, we describe TEP distributions in the NW Mediterranean Sea during late spring 2012, along perpendicular and parallel transects to the Catalan coast. The stations in the parallel transect were sampled at the surface, while the stations in the perpendicular transect were sampled from the surface to the bathypelagic, including the bottom nepheloid layers. We also followed the short-term TEP dynamics along a 2-day cycle in offshore waters. TEP concentrations in the area ranged from 4.9 to 122.8 and averaged 31.4 ± 12.0 μg XG eq L−1. The distribution of TEP measured in transects parallel to the Catalan Coast correlated those of chlorophyll a (Chla) in May but not in June, when higher TEP-values with respect to Chla were observed. TEP horizontal variability in epipelagic waters from the coast to the open sea also correlated to that of Chla, O2 (that we interpret as a proxy of primary production) and bacterial production (BP). In contrast, the TEP vertical distributions in epipelagic waters were uncoupled from those of Chla, as TEP maxima were located above the deep chlorophyll maxima. The vertical distribution of TEP in the epipelagic zone was correlated with O2 and BP, suggesting combined phytoplankton (through primary production) and bacterial (through carbon reprocessing) TEP sources. However, no clear temporal patterns arose during the 2-day cycle. In meso- and bathypelagic waters, where phytoplanktonic sources are minor, TEP concentrations (10.1 ± 4.3 μg XG eq l−1) were half those in the epipelagic, but we observed relative TEP increments coinciding with the presence of nepheloid layers. These TEP increases were not paralleled by increases in particulate organic carbon, indicating that TEP are likely to act as aggregating agents of the mostly inorganic particles present in these bottom nepheloid layersThis work was funded by projects funded by the Spanish Ministry of Science STORM (CTM2009-09352/MAR), SUMMER (CTM2008-03309/MAR), DOREMI (CTM2012-34294), REMEI (CTM2015-70340-R), ANIMA (CTM2015-65720-R), PEGASO (CTM2012-37615), and Grup consolidat de Recerca de la Generalitat de Catalunya (2014SGR/1179)Peer Reviewe

    Turnover time of fluorescent dissolved organic matter in the dark global ocean

    Get PDF
    Research articleMarine dissolved organic matter (DOM) is one of the largest reservoirs of reduced carbon on Earth. In the dark ocean (4200 m), most of this carbon is refractory DOM. This refractory DOM, largely produced during microbial mineralization of organic matter, includes humic-like substances generated in situ and detectable by fluorescence spectroscopy. Here we show two ubiquitous humic-like fluorophores with turnover times of 435±41 and 610±55 years, which persist significantly longer than the B350 years that the dark global ocean takes to renew. In parallel, decay of a tyrosine-like fluorophore with a turnover time of 379±103 years is also detected. We propose the use of DOM fluorescence to study the cycling of resistant DOM that is preserved at centennial timescales and could represent a mechanism of carbon sequestration (humic-like fraction) and the decaying DOM injected into the dark global ocean, where it decreases at centennial timescales (tyrosine-like fraction).Versión del editor10,015

    Turnover time of fluorescent dissolved organic matter in the dark global ocean

    Get PDF
    Research articleMarine dissolved organic matter (DOM) is one of the largest reservoirs of reduced carbon on Earth. In the dark ocean (4200 m), most of this carbon is refractory DOM. This refractory DOM, largely produced during microbial mineralization of organic matter, includes humic-like substances generated in situ and detectable by fluorescence spectroscopy. Here we show two ubiquitous humic-like fluorophores with turnover times of 435±41 and 610±55 years, which persist significantly longer than the B350 years that the dark global ocean takes to renew. In parallel, decay of a tyrosine-like fluorophore with a turnover time of 379±103 years is also detected. We propose the use of DOM fluorescence to study the cycling of resistant DOM that is preserved at centennial timescales and could represent a mechanism of carbon sequestration (humic-like fraction) and the decaying DOM injected into the dark global ocean, where it decreases at centennial timescales (tyrosine-like fraction).Versión del editor10,015

    Water mass age and ageing driving chromophoric dissolved organic matter in the dark global ocean

    Get PDF
    Research articleThe omnipresence of chromophoric dissolved organic matter (CDOM) in the open ocean enables its use as a tracer for biochemical processes throughout the global overturning circulation. We made an inventory of CDOM optical properties, ideal water age (τ), and apparent oxygen utilization (AOU) along the Atlantic, Indian, and Pacific Ocean waters sampled during the Malaspina 2010 expedition. A water mass analysis was applied to obtain intrinsic, hereinafter archetypal, values of τ, AOU, oxygen utilization rate (OUR), and CDOM absorption coefficients, spectral slopes and quantum yield for each one of the 22 water types intercepted during this circumnavigation. Archetypal values of AOU and OUR have been used to trace the differential influence of water mass aging and aging rates, respectively, on CDOM variables. Whereas the absorption coefficient at 325nm (a325) and the fluorescence quantum yield at 340nm (Φ340) increased, the spectral slope over the wavelength range 275–295nm (S275–295) and the ratio of spectral slopes over the ranges 275–295nm and 350–400nm (SR) decreased significantly with water mass aging (AOU). Combination of the slope of the linear regression between archetypal AOU and a325 with the estimated global OUR allowed us to obtain a CDOM turnover time of 634 ± 120 years, which exceeds the flushing time of the dark ocean (>200 m) by 46%. This positive relationship supports the assumption of in situ production and accumulation of CDOM as a by-product of microbial metabolism as water masses turn older. Furthermore, our data evidence that global-scale CDOM quantity (a325) is more dependent on aging (AOU), whereas CDOM quality (S275–295, SR, Φ340) is more dependent on aging rate (OUR).Versión del editor4,785
    corecore