961 research outputs found

    XMM-Newton observations of Nova Sgr 1998

    Full text link
    We report on X-ray observations of Nova Sagittarius 1998 (V4633 Sgr), performed with XMM-Newton at three different epochs, 934, 1083 and 1265 days after discovery. The nova was detected with the EPIC cameras at all three epochs, with emission spanning the whole energy range from 0.2 to 10 keV. The X-ray spectra do not change significantly at the different epochs, and are well fitted for the first and third observations with a multi-temperature optically thin thermal plasma, while lower statistics in the second observations lead to a poorer fit. The thermal plasma emission is most probably originated in the shock heated ejecta, with chemical composition similar to that of a CO nova. However, we can not completely rule out reestablished accretion as the origin of the emission. We also obtain upper limits for the temperature and luminosity of a potential white dwarf atmospheric component, and conclude that hydrogen burning had already turned-off by the time of our observations.Comment: 18 pages, 3 figures. Accepted in Astrophysical Journa

    Mechanisms in endocrinology: Metabolic syndrome through the female life cycle

    Get PDF
    The normal function of the female reproductive system is closely linked to energy homeostasis with the ultimate scope of fertility and human race perpetuation through the centuries. During a woman's lifetime there are normal events such as puberty, pregnancy and menopause which are related to alterations in energy homeostasis and gonadal steroids levels followed by increase of body fat and insulin resistance, important components of metabolic syndrome (MetS). Pathological conditions such as premature adrenarche, polycystic ovary syndrome and gestational diabetes also present with shifts in gonadal steroid levels and reduced insulin sensitivity. The aim of this review is to discuss these conditions, both normal and pathological, analyzing the changes or abnormalities in ovarian function that coexist with metabolic abnormalities which resemble MetS in relationship with environmental, genetic and epigenetic factors

    The supersoft X-ray source in V5116 Sgr I. The high resolution spectra

    Full text link
    Classical novae occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. V5116 Sgr was observed as a bright and variable supersoft X-ray source by XMM-Newton 610~days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km/s, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova.Comment: 12 pages, 15 figures, 4 tables; accepted for publication in Astronomy and Astrophysic

    Measurements and optimization of the light yield of a TeO2_2 crystal

    Full text link
    Bolometers have proven to be good instruments to search for rare processes because of their excellent energy resolution and their extremely low intrinsic background. In this kind of detectors, the capability of discriminating alpha particles from electrons represents an important aspect for the background reduction. One possibility for obtaining such a discrimination is provided by the detection of the Cherenkov light which, at the low energies of the natural radioactivity, is only emitted by electrons. This paper describes the method developed to evaluate the amount of light produced by a crystal of TeO2_2 when hit by a 511 keV photon. The experimental measurements and the results of a detailed simulation of the crystal and the readout system are shown and compared. A light yield of about 52 Cherenkov photons per deposited MeV was measured. The effect of wrapping the crystal with a PTFE layer, with the aim of maximizing the light collection, is also presented

    X-ray and UV emission from the recurrent nova RS Ophiuchi in quiescence: Signatures of accretion and shocked gas

    Full text link
    RS Ophiuchi is a recurrent nova system that experiences outbursts every ~20 years, implying accretion at a high rate onto a massive white dwarf. However, previous X-ray observations of the system in quiescence have detected only faint emission that is difficult to reconcile with the high accretion rate predicted by nova theory for such frequent outbursts. Here, we use new Chandra and XMM-Newton observations obtained 537 and 744 days after the 2006 outburst to constrain both the accretion rate onto the white dwarf and the properties of the nova ejecta at these times. We detect low level UV variability with the XMM-Newton Optical Monitor on day 744 that is consistent with accretion disk flickering, and use this to place a lower limit on the accretion rate. The X-ray spectra in both observations are well described by a two component thermal plasma model. The first component originates in the nova shell, which can emit X-rays for up to a decade after the outburst. The other component likely arises in the accretion disk boundary layer, and can be equally well fit by a single temperature plasma or a cooling flow model. Although the flux of the single temperature model implies an accretion rate that is 40 times lower than theoretical predictions for RS Oph, the best fit cooling flow model implies Mdot < 1.2x10^-8 M_sol/yr 537 days after the outburst, which is within a factor of 2 of the theoretical accretion rate required to power an outburst every 20 years. Furthermore, we place an upper limit on the accretion rate through an optically thick region of the boundary layer of 2.0x10^-8 M_sol/yr. Thus, the X-ray emission in quiescence is consistent with the accretion rate expectations of nova theory. Finally, we discuss the possible origins of the low temperature associated with the accretion component, which is a factor of 10 lower than in T CrB, an otherwise similar recurrent nova.Comment: 16 pages, 6 figures, accepted for publication in Ap

    Recent discoveries of supersoft X-ray sources in M 31

    Get PDF
    Classical novae (CNe) have recently been reported to represent the major class of supersoft X-ray sources (SSSs) in the central area of our neighbouring galaxy M 31. This paper presents a review of results from recent X-ray observations of M 31 with XMM-Newton and Chandra. We carried out a dedicated optical and X-ray monitoring program of CNe and SSSs in the central area of M 31. We discovered the first SSSs in M 31 globular clusters (GCs) and their connection to the very first discovered CN in a M 31 GC. This result may have an impact on the CN rate in GCs. Furthermore, in our optical and X-ray monitoring data we discovered the CN M31N 2007-11a, which shows a very short SSS phase of 29 - 52 days. Short SSS states (durations < 100 days) of CNe indicate massive white dwarfs (WDs) that are candidate progenitors of supernovae type Ia. In the case of M31N 2007-11a, the optical and X-ray light curves suggest a binary containing a WD with M_WD > 1.0 M_sun. Finally, we present the discovery of the SSS counterpart of the CN M31N 2006-04a. The X-ray light curve of M31N 2006-04a shows short-time variability, which might indicate an orbital period of about 2 hours.Comment: 4 pages, 1 figure; Proc. of workshop "Supersoft X-ray Sources - New Developments", ESAC, May 2009; accepted for publication in Astronomische Nachrichte

    TeO2_2 bolometers with Cherenkov signal tagging: towards next-generation neutrinoless double beta decay experiments

    Get PDF
    CUORE, an array of 988 TeO2_2 bolometers, is about to be one of the most sensitive experiments searching for neutrinoless double-beta decay. Its sensitivity could be further improved by removing the background from α\alpha radioactivity. A few years ago it has been pointed out that the signal from β\betas can be tagged by detecting the emitted Cherenkov light, which is not produced by α\alphas. In this paper we confirm this possibility. For the first time we measured the Cherenkov light emitted by a CUORE crystal, and found it to be 100 eV at the QQ-value of the decay. To completely reject the α\alpha background, we compute that one needs light detectors with baseline noise below 20 eV RMS, a value which is 3-4 times smaller than the average noise of the bolometric light detectors we are using. We point out that an improved light detector technology must be developed to obtain TeO2_2 bolometric experiments able to probe the inverted hierarchy of neutrino masses.Comment: 5 pages, 4 figures. Added referee correction

    New experimental limits on the alpha decays of lead isotopes

    Full text link
    For the first time a PbWO4 crystal was grown using ancient Roman lead and it was run as a cryogenic detector. Thanks to the simultaneous and independent read-out of heat and scintillation light, the detector was able to discriminate beta/gamma interactions with respect to alpha particles down to low energies. New more stringent limits on the alpha decays of the lead isotopes are presented. In particular a limit of T_{1/2} > 1.4*10^20 y at a 90% C.L. was evaluated for the alpha decay of 204Pb to 200Hg
    • …
    corecore