7 research outputs found
Spatial characterization of drought through CHIRPS and a station-based dataset in the Eastern Mediterranean
Drought is a natural hazard which occurs in all climatic zones and affects different sectors, such as irrigation, energy, water supply, and ecology. Monitoring and predicting drought are pressing challenges, as drought is becoming more common and severe owing to the impacts of climate change and increased climatic variability. However, in many areas of the globe, the temporal and spatial characterization of droughts and drought severities are hindered by a lack of reliable, locally-measured long-term data and unevenly distributed, erratic meteorological stations. In this situation, remote sensing datasets such as Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) can offer valuable insights into long-term developments and the spatial characteristics of droughts. Nonetheless, it is often uncertain to which extent data such as CHIRPS succeeds in representing local dynamics and how this varies between geographical regions and climate zones. In this analysis, we aim to evaluate spatial drought conditions over the Seyhan River basin in Turkey in the Eastern Mediterranean. Using the Standardized Precipitation Index (SPI) as a drought index, the applicability of CHIRPS as a long-term satellite precipitation product for drought monitoring is investigated. We compare two spatial representations of the SPI: one derived on a per-pixel basis from CHIRPS data since 1981, the other based on data from 19 meteorological stations scattered across the basin, which was spatialized using inverse distance weighted interpolation (IDW). Our results offer insights into the relative accuracy of CHIRPS data and avenues towards optimizing the quality of spatial drought characterization.</p
The IAHS Science for Solutions decade, with Hydrology Engaging Local People IN one Global world (HELPING)
The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions â whether it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes
Datasets for the assessment of changes in the incidence, extents, and spatial patterns of inundations in in the Cambodian Mekong Delta, based on a water level - flood link calculated from in-situ water levels, and Sentinel-derived inundation maps
This dataset contains in-situ water level data and remote sensing imagery used to construct and assess a water level - flood link in the Cambodian Mekong delta. The results included allow users to estimate the extents of annual monsoon floods in the Cambodian Mekong delta based on publicly available water level measurements.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
Input imagery, classifiers, and cloud computing : insights from multi-temporal LULC mapping in the Cambodian Mekong Delta
The increased open-access availability of radar and optical satellite imagery has engendered numerous land use and land cover (LULC) analyses combining these data sources. In parallel, cloud computing platforms have enabled a wider community to perform LULC classifications over long periods and large areas. However, an assessment of how the performance of classifiers available on these cloud platforms can be optimized for the use of multi-imagery data has been lacking for multi-temporal LULC approaches. This study provides such an assessment for the supervised classifiers available on the open-access Google Earth Engine platform: Naive Bayes (NB), Classification and Regression Trees (CART), Random Forest (RF), Gradient Tree Boosting (GTB), and Support Vector Machines (SVM). A multi-temporal LULC analysis using Sentinel-1 and 2 is implemented for a study area in the Mekong Delta. Classifier performance is compared for different combinations of input imagery, band sets, and training datasets. The results show that GTB and RF yield the highest overall accuracies, at 94% and 93%. Combining optical and radar imagery boosts classification accuracy for CART, RF, GTB, and SVM by 10-15 percentage points. Furthermore, it reduces the impact of limited training dataset quality for RF, GTB, and SVM
Impact of water stress on Mediterranean oak savanna grasslands productivity: Implications for on-farm grazing management
The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditionsâwhether it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes
The IAHS Science for Solutions decade, with Hydrology Engaging Local People IN a Global world (HELPING)
International audienceThe new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions - may it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes