452 research outputs found

    A review of rapid serial visual presentation-based brain-computer interfaces

    Get PDF
    International audienceRapid serial visual presentation (RSVP) combined with the detection of event related brain responses facilitates the selection of relevant information contained in a stream of images presented rapidly to a human. Event related potentials (ERPs) measured non-invasively with electroencephalography (EEG) can be associated with infrequent targets amongst a stream of images. Human-machine symbiosis may be augmented by enabling human interaction with a computer, without overt movement, and/or enable optimization of image/information sorting processes involving humans. Features of the human visual system impact on the success of the RSVP paradigm, but pre-attentive processing supports the identification of target information post presentation of the information by assessing the co-occurrence or time-locked EEG potentials. This paper presents a comprehensive review and evaluation of the limited but significant literature on research in RSVP-based brain-computer interfaces (BCIs). Applications that use RSVP-based BCIs are categorized based on display mode and protocol design, whilst a range of factors influencing ERP evocation and detection are analyzed. Guidelines for using the RSVP-based BCI paradigms are recommended, with a view to further standardizing methods and enhancing the inter-relatability of experimental design to support future research and the use of RSVP-based BCIs in practice

    Cache Hierarchy-Aware Query Mapping on Emerging Multicore Architectures

    Get PDF
    One of the important characteristics of emerging multicores/manycores is the existence of 'shared on-chip caches,' through which different threads/processes can share data (help each other) or displace each other's data (hurt each other). Most of current commercial multicore systems on the market have on-chip cache hierarchies with multiple layers (typically, in the form of L1, L2 and L3, the last two being either fully or partially shared). In the context of database workloads, exploiting full potential of these caches can be critical. Motivated by this observation, our main contribution in this work is to present and experimentally evaluate a cache hierarchy-aware query mapping scheme targeting workloads that consist of batch queries to be executed on emerging multicores. Our proposed scheme distributes a given batch of queries across the cores of a target multicore architecture based on the affinity relations among the queries. The primary goal behind this scheme is to maximize the utilization of the underlying on-chip cache hierarchy while keeping the load nearly balanced across domain affinities. Each domain affinity in this context corresponds to a cache structure bounded by a particular level of the cache hierarchy. A graph partitioning-based method is employed to distribute queries across cores, and an integer linear programming (ILP) formulation is used to address locality and load balancing concerns. We evaluate our scheme using the TPC-H benchmarks on an Intel Xeon based multicore. Our solution achieves up to 25 percent improvement in individual query execution times and 15-19 percent improvement in throughput over the default Linux-based process scheduler. © 1968-2012 IEEE

    LSGP-USFNet: Automated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain’s Primes on Ulam’s Spiral-Based Features with Electroencephalogram Signals

    Get PDF
    Anxiety, learning disabilities, and depression are the symptoms of attention deficit hyperactivity disorder (ADHD), an isogenous pattern of hyperactivity, impulsivity, and inattention. For the early diagnosis of ADHD, electroencephalogram (EEG) signals are widely used. However, the direct analysis of an EEG is highly challenging as it is time-consuming, nonlinear, and nonstationary in nature. Thus, in this paper, a novel approach (LSGP-USFNet) is developed based on the patterns obtained from Ulam’s spiral and Sophia Germain’s prime numbers. The EEG signals are initially filtered to remove the noise and segmented with a non-overlapping sliding window of a length of 512 samples. Then, a time–frequency analysis approach, namely continuous wavelet transform, is applied to each channel of the segmented EEG signal to interpret it in the time and frequency domain. The obtained time–frequency representation is saved as a time–frequency image, and a non-overlapping n × n sliding window is applied to this image for patch extraction. An n × n Ulam’s spiral is localized on each patch, and the gray levels are acquired from this patch as features where Sophie Germain’s primes are located in Ulam’s spiral. All gray tones from all patches are concatenated to construct the features for ADHD and normal classes. A gray tone selection algorithm, namely ReliefF, is employed on the representative features to acquire the final most important gray tones. The support vector machine classifier is used with a 10-fold cross-validation criteria. Our proposed approach, LSGP-USFNet, was developed using a publicly available dataset and obtained an accuracy of 97.46% in detecting ADHD automatically. Our generated model is ready to be validated using a bigger database and it can also be used to detect other children’s neurological disorders

    Retinal inner nuclear layer volume reflects inflammatory disease activity in multiple sclerosis;a longitudinal OCT study

    Get PDF
    Background: The association of peripapillary retinal nerve fibre layer (pRNFL) and ganglion cell-inner plexiform layer (GCIPL) thickness with neurodegeneration in multiple sclerosis (MS) is well established. The relationship of the adjoining inner nuclear layer (INL) with inflammatory disease activity is less well understood. Objective: The objective of this paper is to investigate the relationship of INL volume changes with inflammatory disease activity in MS. Methods In this longitudinal, multi-centre study, optical coherence tomography (OCT) and clinical data (disability status, relapses and MS optic neuritis (MSON)) were collected in 785 patients with MS (68.3% female) and 92 healthy controls (63.4% female) from 11 MS centres between 2010 and 2017 and pooled retrospectively. Data on pRNFL, GCIPL and INL were obtained at each centre. Results: There was a significant increase in INL volume in eyes with new MSON during the study (N = 61/1562, beta = 0.01mm(3), p<.001). Clinical relapses (other than MSON) were significantly associated with increased INL volume (beta = 0.005, p =.025). INL volume was independent of disease progression (beta = 0.002mm(3), p =.474). Conclusion: Our data demonstrate that an increase in INL volume is associated with MSON and the occurrence of clinical relapses. Therefore, INL volume changes may be useful as an outcome marker for inflammatory disease activity in MSON and MS treatment trials

    MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement - frequency, presentation and outcome

    Get PDF
    Background Myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) are present in a subset of aquaporin-4 (AQP4)-IgG-negative patients with optic neuritis (ON) and/or myelitis. Little is known so far about brainstem involvement in MOG-IgG-positive patients. Objective To investigate the frequency, clinical and paraclinical features, course, outcome, and prognostic implications of brainstem involvement in MOG-IgG-positive ON and/or myelitis. Methods Retrospective case study. Results Among 50 patients with MOG-IgG-positive ON and/or myelitis, 15 (30 %) with a history of brainstem encephalitis were identified. All were negative for AQP4-IgG. Symptoms included respiratory insufficiency, intractable nausea and vomiting (INV), dysarthria, dysphagia, impaired cough reflex, oculomotor nerve palsy and diplopia, nystagmus, internuclear ophthalmoplegia (INO), facial nerve paresis, trigeminal hypesthesia/dysesthesia, vertigo, hearing loss, balance difficulties, and gait and limb ataxia; brainstem involvement was asymptomatic in three cases. Brainstem inflammation was already present at or very shortly after disease onset in 7/15 (47 %) patients. 16/21 (76.2 %) brainstem attacks were accompanied by acute myelitis and/or ON. Lesions were located in the pons (11/13), medulla oblongata (8/14), mesencephalon (cerebral peduncles; 2/14), and cerebellar peduncles (5/14), were adjacent to the fourth ventricle in 2/12, and periaqueductal in 1/12; some had concomitant diencephalic (2/13) or cerebellar lesions (1/14). MRI or laboratory signs of blood-brain barrier damage were present in 5/12. Cerebrospinal fluid pleocytosis was found in 11/14 cases, with neutrophils in 7/11 (3-34 % of all CSF white blood cells), and oligoclonal bands in 4/14. Attacks were preceded by acute infection or vaccination in 5/15 (33.3 %). A history of teratoma was noted in one case. The disease followed a relapsing course in 13/15 (87 %); the brainstem was involved more than once in 6. Immunosuppression was not always effective in preventing relapses. Interferon-beta was followed by new attacks in two patients. While one patient died from central hypoventilation, partial or complete recovery was achieved in the remainder following treatment with high-dose steroids and/or plasma exchange. Brainstem involvement was associated with a more aggressive general disease course (higher relapse rate, more myelitis attacks, more frequently supratentorial brain lesions, worse EDSS at last follow-up). Conclusions Brainstem involvement is present in around one third of MOG-IgG-positive patients with ON and/or myelitis. Clinical manifestations are diverse and may include symptoms typically seen in AQP4-IgG-positive neuromyelitis optica, such as INV and respiratory insufficiency, or in multiple sclerosis, such as INO. As MOG-IgG-positive brainstem encephalitis may take a serious or even fatal course, particular attention should be paid to signs or symptoms of additional brainstem involvement in patients presenting with MOG-IgG-positive ON and/or myelitis

    Cross-sectional evaluation of the periapical status as related to quality of root canal fillings and coronal restorations in a rural adult male population of Turkey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the prevalence of periapical lesions in root canal-treated teeth in a rural, male adult, Turkish population and to investigate the influence of the quality of root canal fillings on prevalence of periapical lesions.</p> <p>Methods</p> <p>The sample for this cross-sectional study consisted of 552 adult male patients, 18-32 years of age, presenting consecutively as new patients seeking routine dental care at the Dental Sciences of Gulhane Military Medicine, Ankara. The radiographs of the 1014 root canal-treated teeth were evaluated. The teeth were grouped according to the radiographic quality of the root canal filling and the coronal restoration. The criteria used for the examination were slightly modified from those described by De Moor. Periapical status was assessed by the Periapical Index scores (PAI) proposed by Orstavik.</p> <p>Results</p> <p>The overall success rate of root canal treatment was 32.1%. The success rates of adequately root canal treatment were significantly higher than inadequately root canal treatment, regardless of the quality or presence of the coronal restoration (P < .001). In addition, the success rate of inadequate root canal treatment was also significantly affected by the quality of coronal restorations.</p> <p>Conclusions</p> <p>Our results revealed a high prevalence of periapical lesions in root canal treatment, which is comparable to that reported in other methodologically compatible studies from diverse geographical locations. In addition, the results from the present study confirm the findings of other studies that found the quality of the root canal treatment to be a key factor for prognosis with or without adequate coronal restoration.</p

    Patterns of Retinal Damage Facilitate Differential Diagnosis between Susac Syndrome and MS

    Get PDF
    Susac syndrome, a rare but probably underdiagnosed combination of encephalopathy, hearing loss, and visual deficits due to branch retinal artery occlusion of unknown aetiology has to be considered as differential diagnosis in various conditions. Particularly, differentiation from multiple sclerosis is often challenging since both clinical presentation and diagnostic findings may overlap. Optical coherence tomography is a powerful and easy to perform diagnostic tool to analyse the morphological integrity of retinal structures and is increasingly established to depict characteristic patterns of retinal pathology in multiple sclerosis. Against this background we hypothesised that differential patterns of retinal pathology facilitate a reliable differentiation between Susac syndrome and multiple sclerosis. In this multicenter cross-sectional observational study optical coherence tomography was performed in nine patients with a definite diagnosis of Susac syndrome. Data were compared with age-, sex-, and disease duration-matched relapsing remitting multiple sclerosis patients with and without a history of optic neuritis, and with healthy controls. Using generalised estimating equation models, Susac patients showed a significant reduction in either or both retinal nerve fibre layer thickness and total macular volume in comparison to both healthy controls and relapsing remitting multiple sclerosis patients. However, in contrast to the multiple sclerosis patients this reduction was not distributed over the entire scanning area but showed a distinct sectorial loss especially in the macular measurements. We therefore conclude that patients with Susac syndrome show distinct abnormalities in optical coherence tomography in comparison to multiple sclerosis patients. These findings recommend optical coherence tomography as a promising tool for differentiating Susac syndrome from MS

    A novel selection of optimal statistical features in the DWPT domain for discrimination of ictal and seizure-free electroencephalography signals

    Get PDF
    Properly determining the discriminative features which characterize the inherent behaviors of electroencephalography (EEG) signals remains a great challenge for epileptic seizure detection. In this present study, a novel feature selection scheme based on the discrete wavelet packet decomposition and cuckoo search algorithm (CSA) was proposed. The normal as well as epileptic EEG recordings were frst decomposed into various frequency bands by means of wavelet packet decomposition, and subsequently, statistical features at all developed nodes in the wavelet packet decomposition tree were derived. Instead of using the complete set of the extracted features to construct a wavelet neural networks-based classifer, an optimal feature subset that maximizes the predictive competence of the classifer was selected by using the CSA. Experimental results on the publicly available benchmarks demonstrated that the proposed feature subset selection scheme achieved promising recognition accuracies of 98.43–100%, and the results were statistically signifcant using z-test with p value <0.0001

    Phylogenetically and spatially close marine sponges harbour divergent bacterial communities

    Get PDF
    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These findings suggest a pivotal host-driven effect on the shape of the marine sponge microbiome, bearing implications to our current understanding of the distribution of microbial genetic resources in the marine realm.This work was financed by the Portuguese Foundation for Science and Technology (FCT - http://www.fct.pt) through the research project PTDC/MAR/101431/2008. CCPH has a PhD fellowship granted by FCT (Grant No. SFRH/BD/60873/2009). JRX’s research is funded by a FCT postdoctoral fellowship (grant no. SFRH/BPD/62946/2009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore