231 research outputs found
Theory of Supercoupling, Squeezing Wave Energy, and Field Confinement in Narrow Channels and Tight Bends Using Epsilon-Near-Zero Metamaterials
In this work, we investigate the detailed theory of the supercoupling,
anomalous tunneling effect, and field confinement originally identified in [M.
Silveirinha, N. Engheta, Phys. Rev. Lett. 97, 157403, (2006)], where we
demonstrated the possibility of using materials with permittivity near zero to
drastically improve the transmission of electromagnetic energy through a narrow
irregular channel with very subwavelength transverse cross-section. Here, we
present additional physical insights, describe new applications of the
tunneling effect in relevant waveguide scenarios (e.g., the "perfect" or
"super" waveguide coupling), study the effect of metal losses in the metallic
walls, and the possibility of using epsilon-near zero materials to confine
energy in a subwavelength cavity with gigantic field enhancement. In addition,
we systematically study the propagation of electromagnetic waves through narrow
channels filled with anisotropic epsilon-near zero materials. It is
demonstrated that these materials may have interesting potentials, and that for
some particular geometries the reflectivity of the channel is independent of
the specific dimensions or parameters of epsilon-near zero transition. We also
describe several realistic metamaterial implementations of the studied
problems, based on standard metallic waveguides, microstrip line
configurations, and wire media.Comment: under revie
Thermal Casimir Force between Magnetic Materials
We investigate the Casimir pressure between two parallel plates made of
magnetic materials at nonzero temperature. It is shown that for real
magnetodielectric materials only the magnetic properties of ferromagnets can
influence the Casimir pressure. This influence is accomplished through the
contribution of the zero-frequency term of the Lifshitz formula. The
possibility of the Casimir repulsion through the vacuum gap is analyzed
depending on the model used for the description of the dielectric properties of
the metal plates.Comment: 9 pages, 3 figures. Contribution to the Proceedings of QFEXT09,
Norman, OK, September 21-25, 200
Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture
Euan Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, Mischa Bonn, Alastair P. Hibbins, and Matthew J. Lockyear, Physical Review Letters, Vol. 100, article 123901 (2008). "Copyright © 2008 by the American Physical Society."We demonstrate optical control over the transmission of terahertz (THz) radiation through a single subwavelength slit in an otherwise opaque silicon wafer. The addition of periodic corrugation on each side of the wafer allows coupling to surface plasmon polaritons, so that light not impinging directly on the slit can contribute to the transmission. A significant enhancement of the THz transmission can be achieved through control of the surface wave propagation length by excitation at optical wavelengths. The observed transmission increase is in distinct contrast to the reduction reported for photoexcitation of arrays of holes in semiconductors
Low-temperature far-infrared ellipsometry of convergent beam
Development of an ellipsometry to the case of a coherent far infrared
irradiation, low temperatures and small samples is described, including a
decision of the direct and inverse problems of the convergent beam ellipsometry
for an arbitrary wavelength, measurement technique and a compensating
orientation of cryostat windows. Experimental results are presented: for a gold
film and UBe13 single crystal at room temperature (lambda=119 um), temperature
dependencies of the complex dielectric function of SrTiO3 (lambda=119, 84 and
28 um) and of YBa2Cu3O7-delta ceramic (lambda=119 um).Comment: 14 pages, 6 figure
Dust in the Photospheric Environment: Unified Cloudy Models of M, L, and T Dwarfs
We address the problem of how dust forms and how it could be sustained in the
static photospheres of cool dwarfs for a long time. In the cool and dense gas,
dust forms easily at the condensation temperature, T_cond, and the dust can be
in detailed balance with the ambient gas so long as it remains smaller than the
critical radius, r_cr. However, dust will grow larger and segregate from the
gas when it will be larger than r_cr somewhere at the lower temperature, which
we refer to as the critical temperature, T_cr. Then, the large dust grains will
precipitate below the photosphere and only the small dust grains in the region
of T_cr < T < T_cond can be sustained in the photosphere. Thus a dust cloud is
formed. Incorporating the dust cloud, non-grey model photo- spheres in
radiative-convective equilibrium are extended to T_eff as low as 800K. Observed
colors and spectra of cool dwarfs can consistently be accounted for by a single
grid of our cloudy models. This fact in turn can be regarded as supporting
evidence for our basic assumption on the cloud formation.Comment: 50 pages with 14 postscript figures, to be published in Astrophys.
Modal Filtering for Nulling Interferometry-First Single-Mode Conductive Waveguides in the Mid-Infrared
This paper presents the work achieved for the manufacturing and
characterization of first single-mode waveguides to be used as modal filters
for nulling interferometry in the mid-infrared range [4-20 um]. As very high
dynamic range is mandatory for detection of Earth-like planets, modal filtering
is one of the most stringent instrumental aspects. The hollow metallic
waveguides (HMW) presented here are manufactured using micro-machining
techniques. Single-mode behavior has been investigated in laboratory through a
technique of polarization analysis while transmission features have been
measured using flux relative comparison. The single-mode behavior have been
assessed at lambda=10.6 um for rectangular waveguides with dimensions a=10 um
and b<5.3 um with an accuracy of ~2.5 %. The tests have shown that a
single-polarization state can be maintained in the waveguide. A comparison with
results on multi-mode HMW is proposed. Excess losses of 2.4 dB (~ 58 %
transmission) have been measured for a single-mode waveguide. In particular,
the importance of coupling conditions into the waveguide is emphasized here.
The goal of manufacturing and characterizing the first single-mode HMW for the
mid-infrared has been achieved. This opens the road to the use of integrated
optics for interferometry in the mentioned spectral range.Comment: 10 pages, 6 figures, accepted in A&
Infrared Studies of the Onset of Conductivity in Ultra-Thin Pb Films
In this paper we report the first experimental measurement of the infrared
conductivity of ultra-thin quenched-condensed Pb films. For dc sheet
resistances such that the ac conductance increases with
frequency but is in disagreement with the predictions of weak localization. We
attribute this behavior to the effects of an inhomogeneous granular structure
of these films, which is manifested at the very small probing scale of infrared
measurements. Our data are consistent with predictions of two-dimensional
percolation theory.Comment: Submitted to Physical Review Letter
Silver-based surface plasmon waveguide for terahertz quantum cascade lasers
Terahertz-frequency quantum cascade lasers (THz QCLs) based on ridge waveguides incorporating silver waveguide layers have been investigated theoretically and experimentally, and compared with traditional gold-based devices. The threshold gain associated with silver-, gold- and copper-based devices, and the effects of titanium adhesion layers and top contact layers, in both surface-plasmon and double-metal waveguide geometries, have been analysed. Our simulations show that silver-based waveguides yield lower losses for THz QCLs across all practical operating temperatures and frequencies. Experimentally, QCLs with silver-based surface-plasmon waveguides were found to exhibit higher operating temperatures and higher output powers compared to those with identical but gold-based waveguides. Specifically, for a three-well resonant phonon active region with a scaled oscillator strength of 0.43 and doping density of 6.83 × 10¹⁵ cm‾³, an increase of 5 K in the maximum operating temperature and 40% increase in the output power were demonstrated. These effects were found to be dependent on the active region design, and greater improvements were observed for QCLs with a larger radiative diagonality. Our results indicate that silver-based waveguide structures could potentially enable THz QCLs to operate at high temperatures
Electron Dynamics in NdCeCuO: Evidence for the Pseudogap State and Unconventional c-axis Response
Infrared reflectance measurements were made with light polarized along the a-
and c-axis of both superconducting and antiferromagnetic phases of electron
doped NdCeCuO. The results are compared to
characteristic features of the electromagnetic response in hole doped cuprates.
Within the CuO planes the frequency dependent scattering rate,
1/, is depressed below 650 cm; this behavior is a
hallmark of the pseudogap state. While in several hole doped compounds the
energy scales associated with the pseudogap and superconducting states are
quite close, we are able to show that in NdCeCuO
the two scales differ by more than one order of magnitude. Another feature of
the in-plane charge response is a peak in the real part of the conductivity,
, at 50-110 cm which is in sharp contrast with the
Drude-like response where is centered at . This
latter effect is similar to what is found in disordered hole doped cuprates and
is discussed in the context of carrier localization. Examination of the c-axis
conductivity gives evidence for an anomalously broad frequency range from which
the interlayer superfluid is accumulated. Compelling evidence for the pseudogap
state as well as other characteristics of the charge dynamics in
NdCeCuO signal global similarities of the cuprate
phase diagram with respect to electron and hole doping.Comment: Submitted to PR
Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum
- …