We address the problem of how dust forms and how it could be sustained in the
static photospheres of cool dwarfs for a long time. In the cool and dense gas,
dust forms easily at the condensation temperature, T_cond, and the dust can be
in detailed balance with the ambient gas so long as it remains smaller than the
critical radius, r_cr. However, dust will grow larger and segregate from the
gas when it will be larger than r_cr somewhere at the lower temperature, which
we refer to as the critical temperature, T_cr. Then, the large dust grains will
precipitate below the photosphere and only the small dust grains in the region
of T_cr < T < T_cond can be sustained in the photosphere. Thus a dust cloud is
formed. Incorporating the dust cloud, non-grey model photo- spheres in
radiative-convective equilibrium are extended to T_eff as low as 800K. Observed
colors and spectra of cool dwarfs can consistently be accounted for by a single
grid of our cloudy models. This fact in turn can be regarded as supporting
evidence for our basic assumption on the cloud formation.Comment: 50 pages with 14 postscript figures, to be published in Astrophys.