90 research outputs found
Application of Reliability and Linear Regression to Enterprise Architecture in Support of the US Air Force\u27s Capability Review and Risk Assessment
This research explored the use of modeling and enterprise architecture in the analysis of Air Force Capabilities. The Air Force accomplishes this through the Capability Review and Risk Assessment (CRRA). The CRRA is currently performed by building architectures which contain Process Sequence Models (PSMs). PSMs are scored by Subject Matter Experts to determine the probability of successfully completing the mission they model and ultimately to determine the risk associated to Air Force capabilities. Two findings were identified. The first is that creating additional architectural viewpoints, some of which are currently being proposed for version 2.0 of the DoD Architecture Framework, can benefit CRRA development. The second is PSMs have fundamental limitations associated with the inability to capture dependencies among activities as well as the inability to get beyond binary success criteria to address issues of capability sufficiency. To remedy these limitations a model called Extended Sequence Models (ESMs) was developed. ESMs extend PSMs by using reliability modeling techniques combined with linear regression to show dependencies between components. This model also allows the effects of capability sufficiency to be captured and related to mission success
Recommended from our members
Bioluminescent Genetically Encoded Glutamate Indicators for Molecular Imaging of Neuronal Activity.
Genetically encoded optical sensors and advancements in microscopy instrumentation and techniques have revolutionized the scientific toolbox available for probing complex biological processes such as release of specific neurotransmitters. Most genetically encoded optical sensors currently used are based on fluorescence and have been highly successful tools for single-cell imaging in superficial brain regions. However, there remains a need to develop new tools for reporting neuronal activity in vivo within deeper structures without the need for hardware such as lenses or fibers to be implanted within the brain. Our approach to this problem is to replace the fluorescent elements of the existing biosensors with bioluminescent elements. This eliminates the need of external light sources to illuminate the sensor, thus allowing deeper brain regions to be imaged noninvasively. Here, we report the development of the first genetically encoded neurotransmitter indicators based on bioluminescent light emission. These probes were optimized by high-throughput screening of linker libraries. The selected probes exhibit robust changes in light output in response to the extracellular presence of the excitatory neurotransmitter glutamate. We expect this new approach to neurotransmitter indicator design to enable the engineering of specific bioluminescent probes for multiple additional neurotransmitters in the future, ultimately allowing neuroscientists to monitor activity associated with a specific neurotransmitter as it relates to behavior in a variety of neuronal and psychiatric disorders, among many other applications
Motherless quail mothers display impaired maternal behavior and produce more fearful and less socially motivated offspring
International audienceEarly maternal deprivation impairs the behavioral development of young individuals. Recently, strong differences between mothered and maternally deprived chicks have been reported concerning their emotionality, sociality, and spatial skills. Here we investigated long-term and cross-generational impacts of maternal deprivation by comparing the characteristics of the non-reproductive and the maternal behavior of 22 mothered and 22 non-mothered adult female Japanese quail (Coturnix c. japonica) and by comparing the behavior of their respective fostered chicks. We reveal that non-brooded mothers were more fearful and less competent in spatial tasks and expressed impaired maternal care, characterized by more aggression towards chicks, higher activity rates, and more abnormal pacing during the first days of the care period. Chicks' behavior was clearly affected by maternal care inducing strong differences in their fearfulness and social motivation. Our results show both long-term and cross-generational impacts of early maternal deprivation in precocial birds
Age Affects the Expression of Maternal Care and Subsequent Behavioural Development of Offspring in a Precocial Bird
Variations of breeding success with age have been studied largely in iteroparous species and particularly in birds: survival of offspring increases with parental age until senescence. Nevertheless, these results are from observations of free-living individuals and therefore, it remains impossible to determine whether these variations result from parental investment or efficiency or both, and whether these variations occur during the prenatal or the postnatal stage or during both. Our study aimed first, to determine whether age had an impact on the expression of maternal breeding care by comparing inexperienced female birds of two different ages, and second, to define how these potential differences impact chicks’ growth and behavioural development. We made 22 2-month-old and 22 8-month-old female Japanese quail foster 1-day-old chicks. We observed their maternal behaviour until the chicks were 11 days old and then tested these chicks after separation from their mothers. Several behavioural tests estimated their fearfulness and their sociality. We observed first that a longer induction was required for young females to express maternal behaviour. Subsequently as many young females as elder females expressed maternal behaviour, but young females warmed chicks less, expressed less covering postures and rejected their chicks more. Chicks brooded by elder females presented higher growth rates and more fearfulness and sociality. Our results reveal that maternal investment increased with age independently of maternal experience, suggesting modification of hormone levels implied in maternal behaviour. Isolated effects of maternal experience should now be assessed in females of the same age. In addition, our results show, for first time in birds, that variations in maternal care directly induce important differences in the behavioural development of chicks. Finally, our results confirm that Japanese quail remains a great laboratory model of avian maternal behaviour and that the way we sample maternal behaviour is highly productive
Measuring Distributional Effects of Fiscal Reforms
The purpose of this paper is to provide an overview of how to analyse the distributional effects of fiscal reforms. Thereby, distributional effects shall be differentiated by four subconcepts, i.e. 1.) the traditional concept of inequality, 2.) the rather novel concept of polarisation, 3.) the concept of progression in taxation, and 4.) the concepts of income poverty and richness. The concept of inequality and the concept of income poverty are the by far most widely applied concepts in empirical analyses, probably since they appear to be the most transparent ones in their structure as well as the most controversial ones in political affairs. However, the concepts of richness, polarisation and progression in taxation shall additionally be subject of this analysis, since they appear to be useful devices on the course of analysing cause and effect of the other two concepts
Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review
Background: Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps.
Methodology: This review is based on existing literature, in combination with integrated analysis of datasets, obtained through the Census of Marine Life program on Biogeography of Deep-Water Chemosynthetic Ecosystems (ChEss).
Findings: Nematodes are often thriving in the sulphidic sediments of deep cold seeps, with standing stock values ocassionaly exceeding largely the numbers at background sites. Vents seem not characterized by elevated densities. Both chemosynthetic driven ecosystems are showing low nematode diversity, and high dominance of single species. Genera richness seems inversely correlated to vent and seep fluid emissions, associated with distinct habitat types. Deep-sea cold seeps and hydrothermal vents are, however, highly dissimilar in terms of community composition and dominant taxa. There is no unique affinity of particular nematode taxa with seeps or vents.
Conclusions: It seems that shallow water relatives, rather than typical deep-sea taxa, have successfully colonized the reduced sediments of seeps at large water depth. For vents, the taxonomic similarity with adjacent regular sediments is much higher, supporting rather the importance of local adaptation, than that of long distance distribution. Likely the ephemeral nature of vents, its long distance offshore and the absence of pelagic transport mechanisms, have prevented so far the establishment of a successful and typical vent nematode fauna. Some future perspectives in meiofauna research are provided in order to get a more integrated picture of vent and seep biological processes, including all components of the marine ecosystem
Enhancing Discovery of Genetic Variants for Posttraumatic Stress Disorder Through Integration of Quantitative Phenotypes and Trauma Exposure Information
Funding Information: This work was supported by the National Institute of Mental Health / U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium ), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience . Statistical analyses were carried out on the LISA/Genetic Cluster Computer ( https://userinfo.surfsara.nl/systems/lisa ) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. Funding Information: MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc., RallyPoint Networks, Inc., Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled “Genotype-guided dosing of opioid agonists,” filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Funding Information: This work was supported by the National Institute of Mental Health/ U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience. Statistical analyses were carried out on the LISA/Genetic Cluster Computer (https://userinfo.surfsara.nl/systems/lisa) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. This material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting true views of the U.S. Department of the Army or the Department of Defense. We thank the investigators who comprise the PGC-PTSD working group and especially the more than 206,000 research participants worldwide who shared their life experiences and biological samples with PGC-PTSD investigators. We thank Mark Zervas for his critical input. Full acknowledgments are in Supplement 1. MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc. RallyPoint Networks, Inc. Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled ?Genotype-guided dosing of opioid agonists,? filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Publisher Copyright: © 2021 Society of Biological PsychiatryBackground: Posttraumatic stress disorder (PTSD) is heritable and a potential consequence of exposure to traumatic stress. Evidence suggests that a quantitative approach to PTSD phenotype measurement and incorporation of lifetime trauma exposure (LTE) information could enhance the discovery power of PTSD genome-wide association studies (GWASs). Methods: A GWAS on PTSD symptoms was performed in 51 cohorts followed by a fixed-effects meta-analysis (N = 182,199 European ancestry participants). A GWAS of LTE burden was performed in the UK Biobank cohort (N = 132,988). Genetic correlations were evaluated with linkage disequilibrium score regression. Multivariate analysis was performed using Multi-Trait Analysis of GWAS. Functional mapping and annotation of leading loci was performed with FUMA. Replication was evaluated using the Million Veteran Program GWAS of PTSD total symptoms. Results: GWASs of PTSD symptoms and LTE burden identified 5 and 6 independent genome-wide significant loci, respectively. There was a 72% genetic correlation between PTSD and LTE. PTSD and LTE showed largely similar patterns of genetic correlation with other traits, albeit with some distinctions. Adjusting PTSD for LTE reduced PTSD heritability by 31%. Multivariate analysis of PTSD and LTE increased the effective sample size of the PTSD GWAS by 20% and identified 4 additional loci. Four of these 9 PTSD loci were independently replicated in the Million Veteran Program. Conclusions: Through using a quantitative trait measure of PTSD, we identified novel risk loci not previously identified using prior case-control analyses. PTSD and LTE have a high genetic overlap that can be leveraged to increase discovery power through multivariate methods.publishersversionpublishe
- …