553 research outputs found

    Haemodynamic changes in visceral hybrid repairs of type III and type V thoracoabdominal aortic aneurysms

    Get PDF
    The visceral hybrid procedure combining retrograde visceral bypass grafting and completion endovascular stent grafting is a feasible alternative to conventional open surgical or wholly endovascular repairs of thoracoabdominal aneurysms (TAAA). However, the wide variability in visceral hybrid configurations means that a priori prediction of surgical outcome based on haemodynamic flow profiles such as velocity pattern and wall shear stress post repair remain challenging. We sought to appraise the clinical relevance of computational fluid dynamics (CFD) analyses in the setting of visceral hybrid TAAA repairs. Two patients, one with a type III and the other with a type V TAAA, underwent successful elective and emergency visceral hybrid repairs, respectively. Flow patterns and haemodynamic parameters were analysed using reconstructed pre- and post-operative CT scans. Both type III and type V TAAAs showed highly disturbed flow patterns with varying helicity values preoperatively within their respective aneurysms. Low time-averaged wall shear stress (TAWSS) and high endothelial cell action potential (ECAP) and relative residence time (RRT) associated with thrombogenic susceptibility was observed in the posterior aspect of both TAAAs preoperatively. Despite differing bypass configurations in the elective and emergency repairs, both treatment options appear to improve haemodynamic performance compared to preoperative study. However, we observed reduced TAWSS in the right iliac artery (portending a theoretical risk of future graft and possibly limb thrombosis), after the elective type III visceral hybrid repair, but not the emergency type V repair. We surmise that this difference may be attributed to the higher neo-bifurcation of the aortic stent graft in the type III as compared to the type V repair. Our results demonstrate that CFD can be used in complicated visceral hybrid repair to yield potentially actionable predictive insights with implications on surveillance and enhanced post-operative management, even in patients with complicated geometrical bypass configurations

    Survey of Nutrition Management Practices in Centers for Pediatric Intestinal Rehabilitation

    Full text link
    Background: Nutrition management of pediatric intestinal failure (IF) requires interdisciplinary coordination of parenteral nutrition (PN) and enteral nutrition (EN) support. Nutrition strategies used by specialists in pediatric intestinal rehabilitation to promote gut adaptation and manage complications have not been previously summarized. Methods: A practice survey was distributed to members of the dietitian subgroup of the American Society for Parenteral and Enteral Nutrition Pediatric Intestinal Failure Section. The survey included 24 open‐ended questions related to PN and enteral feeding strategies, nutrition management of PN‐associated liver disease, and laboratory monitoring. Results: Dietitians from 14 centers completed the survey. Management components for patients at risk for cholestasis were consistent and included fat minimization, trace element modification, avoiding PN overfeeding, and providing EN. Parenteral amino acid solutions designed for infants/young children are used in patients <1 or 2 years of age. Trace minerals are dosed individually in 10 of 14 centers. Eleven centers prescribe a continuous infusion of breast milk or elemental formula 1–2 weeks after resection while 3 centers determine the formula type by the extent of resection. Most (86%) centers do not have a protocol for initiating oral/motor therapy. Laboratory panel composition varied widely by center. The selection and frequency of use depended on clinical variables, including cholestatic status, exclusive vs partial PN dependence, postrepletion verification vs routine monitoring, intestinal anatomy, and acuity of care. Conclusion: EN and PN management strategies are relatively consistent among U.S. centers. Collaborative initiatives are necessary to define better practices and establish laboratory monitoring guidelines.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145220/1/ncp10040_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145220/2/ncp10040.pd

    Dr, I Fractured My Prosthetic Knee

    Get PDF
    Pertiprosthetic fractures after total knee arthroplasty are challenging to treat. Tibial side are less commonly affected with only few studies and cases reported. We would like to present our patient that presented to us 5 years postoperative in whom revision rotating platform knee surgery was performed

    A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Get PDF
    BACKGROUND: Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca(2+ )stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca(2+ )in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC) or receptor operated channels (ROC). Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca(2+ )stores. The mechanism underlying SOC activation following depletion of intracellular Ca(2+ )stores in smooth muscle has not been identified. METHODS: To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. RESULTS: Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70%) of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca(2+ )influx in response to store depletion by cyclopiazonic acid (60%) or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. CONCLUSION: Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca(2+ )store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model

    Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF

    Get PDF
    Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene Vegf was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment via VEGF function, and suggest promising approaches for future applications in neural repair

    A novel investigation into the application of non-destructive evaluation for vibration assessment and analysis of in-service pipes

    Get PDF
    Flow induced vibrations that are close to resonance frequencies are a major problem in all oil and gas processing industries, so all piping systems require regular condition monitoring and inspection to assess changes in their dynamic characteristics and structural integrity in order to prevent catastrophic failures. One of the main causes of pipe failure is weak support causing low frequency high amplitude flow-induced vibration. This causes wear and tear, especially near joints due to their dissimilar stiffness resulting in fatigue failure of joints caused by vibration-induced high cyclic stress. Other contributing factors in pipe failure are poor or inadequate design, poor workmanship during installation or maintenance and inadequate or weak and flexible support. These pipes are usually required to work non-stop for 24 hours a day 7 days a week for weeks, months or years at a time. Regular monitoring and in-service dynamic analysis should ensure continuous and safe operation. A novel method of non-destructive testing and evaluation of these pipes, while in service, is proposed in this paper. This technique will enable early detection and identification of the root causes of any impending failure due to excess vibration as a result of cyclic force induced by the flow. The method pinpoints the location of the impending failure prior to condition-based maintenance procedures. The technique relies on the combined application of Operating Deflection Shapes (ODS) analysis and computational mechanics utilizing Finite Element Analysis (FEA), i.e. linear elastic stress analysis. Any structural modification to the pipes and their supports can then be applied virtually and their effects on the system can be analysed. The effect on vibration levels is assessed and verified. The effect of any change in the forces corresponding to changes in the Differential Pressure (DP) at constant flow rate through the pipes can then be estimated. It was concluded that maintaining the differential pressure above some “critical” threshold ensures the pipe operates under the allowable dynamic stress for a theoretically “indefinite” life cycle

    A Burkholderia pseudomallei Toxin Inhibits Helicase Activity of Translation Factor eIF4A

    Get PDF
    This is the author accepted manuscript. The final version is available from American Association for the Advancement of Science via the DOI in this record.The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1

    Multicentre phase II study of gemcitabine and cisplatin in malignant pleural mesothelioma

    Get PDF
    Malignant pleural mesothelioma is a notoriously chemoresistant tumour. However, a recent single institution study showed an impressive activity of gemcitabine and cisplatin. Our aim is to investigate the efficacy and toxicity of a gemcitabine and cisplatin combination in selected and chemo-naive patients with histologically proven malignant pleural mesothelioma. Method: Gemcitabine 1250 mg m−2 was administered on day 1 and day 8 and cisplatin 80 mg m−2 was administered on day 1 in a 3-week cycle with a maximum of six cycles. Response and toxicity evaluations were performed according to WHO and NCIC-CTC criteria. Pathology and radiology were centrally reviewed. Results show that in 25 evaluable patients, four PR were observed (ORR 16%, 95% CI 1–31%). Responses of seven patients were unevaluable. No unexpected toxicity occurred. Time to progression was 6 months (5–7 months) with a median survival from registration of 9.6 months (95% CI 8–12 months). In conclusion this trial excludes with 90% power a response rate of greater than 30% in patients with malignant pleural mesothelioma using a combination of gemcitabine and cisplatin at the proposed dose and schedule

    A multicentric study on stigma towards people with mental illness in health sciences students

    Get PDF
    BackgroundThere is evidence of negative attitudes among health professionals towards people with mental illness but there is also a knowledge gap on what training must be given to these health professionals during their education. The purpose of this study is to compare the attitudes of students of health sciences: nursing, medical, occupational therapy, and psychology.MethodsA comparative and cross-sectional study in which 927 final-year students from health sciences university programmes were evaluated using the Mental Illness: Clinicians' Attitudes (both MICA-2 and MICA-4) scale. The sample was taken in six universities from Chile and Spain.ResultsWe found consistent results indicating that stigma varies across university programmes. Medical and nursing students showed more negative attitudes than psychology and occupational therapy students in several stigma-related themes: recovery, dangerousness, uncomfortability, disclosure, and discriminatory behaviour.ConclusionsOur study presents a relevant description of the attitudes of each university programme for education against stigma in the formative years. Results show that the biomedical understanding of mental disorders can have negative effects on attitudes, and that education based on the psychosocial model allows a more holistic view of the person over the diagnosis

    Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: a mitochondrial division/mitophagy inhibitor

    Get PDF
    Doxorubicin is one of the most effective anti-cancer agents. However, its use is associated with adverse cardiac effects, including cardiomyopathy and progressive heart failure. Given the multiple beneficial effects of the mitochondrial division inhibitor (mdivi-1) in a variety of pathological conditions including heart failure and ischaemia and reperfusion injury, we investigated the effects of mdivi-1 on doxorubicin-induced cardiac dysfunction in naïve and stressed conditions using Langendorff perfused heart models and a model of oxidative stress was used to assess the effects of drug treatments on the mitochondrial depolarisation and hypercontracture of cardiac myocytes. Western blot analysis was used to measure the levels of p-Akt and p-Erk 1/2 and flow cytometry analysis was used to measure the levels p-Drp1 and p-p53 upon drug treatment. The HL60 leukaemia cell line was used to evaluate the effects of pharmacological inhibition of mitochondrial division on the cytotoxicity of doxorubicin in a cancer cell line. Doxorubicin caused a significant impairment of cardiac function and increased the infarct size to risk ratio in both naïve conditions and during ischaemia/reperfusion injury. Interestingly, co-treatment of doxorubicin with mdivi-1 attenuated these detrimental effects of doxorubicin. Doxorubicin also caused a reduction in the time taken to depolarisation and hypercontracture of cardiac myocytes, which were reversed with mdivi-1. Finally, doxorubicin caused a significant elevation in the levels of signalling proteins p-Akt, p-Erk 1/2, p-Drp1 and p-p53. Co-incubation of mdivi-1 with doxorubicin did not reduce the cytotoxicity of doxorubicin against HL-60 cells. These data suggest that the inhibition of mitochondrial fission protects the heart against doxorubicin-induced cardiac injury and identify mitochondrial fission as a new therapeutic target in ameliorating doxorubicin-induced cardiotoxicity without affecting its anti-cancer properties
    corecore