112 research outputs found

    Precision bond lengths for Rydberg Matter clusters KN (N = 19, 37, 61 and 91) in excitation levels n = 4 - 8 from rotational radio-frequency emission spectra

    Get PDF
    Clusters of the electronically excited condensed matter Rydberg Matter (RM) are planar and six-fold symmetric with magic numbers N = 7, 19, 37, 61 and 91. The bond distances in the clusters are known with a precision of +- 5% both from theory and Coulomb explosion experiments. Long series of up to 40 consecutive lines from rotational transitions in such clusters are now observed in emission in the radio-frequency range 7-90 MHz. The clusters are produced in five different vacuum chambers equipped with RM emitters. The most prominent series with B = 0.9292 +- 0.0001 MHz agrees accurately with expectation (within 2%) for the planar six-fold symmetric cluster K19 in excitation level n = 4. Other long series agree even better with K19 at n = 5 and 6. The ratio between the interatomic distance and the theoretical electron orbit radius (the dimensional ratio) for K19 in n = 4 is found to be 2.8470 +- 0.0003. For clusters K19 (n = 6) and K37 (n = 7 and 8) the dimensional ratio 2.90 is the highest value that is found, which happens to be exactly the theoretical value. Clusters K61 and K91 in n = 5 and 6 have slightly lower dimensional ratios. This is expected since the edge effects are smaller. Intensity alternations are observed of approximately 7:3. The nuclear spins interact strongly with the magnetic field from the orbiting electrons. Spin transitions are observed with energy differences corresponding accurately (within 0.6%) to transitions with apparent total (delta)F = -3 at excitation levels n = 5 and 6. The angular momentum coupling schemes in the clusters are complex but well understood.Comment: 37 pages, 14 figure

    Total synthesis of the Amaryllidaceae alkaloid clivonine

    Get PDF
    Two syntheses of the Amaryllidaceae alkaloid clivonine (1) are described. Both employ previously reported 7-arylhydrindane 6 as an intermediate but differ in the method employed for subsequent introduction of what becomes the ring-B lactone carbonyl carbon (C7). The synthesis featuring a Bischler–Napieralski reaction for this transformation constitutes the first asymmetric synthesis of natural (+)-clivonine. Crystal structures for compounds (±)-13, (±)-16, (−)-20 and (±)-28 are also reported

    Prediction of COPD by the single-breath nitrogen test and various respiratory symptoms

    No full text
    Early identification of subjects running an increased risk of contracting COPD enables focus on individual preventive measures. The slope of the alveolar plateau of the single-breath nitrogen washout test (N-2-slope) is a sensitive measure of small-airway dysfunction. However, its role remains unexplored in predicting hospital admission or death related to COPD, i.e. incident COPD events, in relation to the presence of various respiratory symptoms. A random population sample of 625 men, aged 50 (n=218) or 60 years (n=407), was followed for 38 years for incident COPD events. At baseline, a questionnaire on respiratory symptoms and smoking habits was collected, spirometry and the single-breath nitrogen test were performed, and the N-2-slope was determined. Proportional hazard regression (Cox regression) analysis was used for the prediction model. The N-2-slope improved the prediction of COPD events significantly beyond that of respiratory symptoms weighted all together and other covariates (hazard ratio 1.63, 95% CI 1.20-2.22; p<0.005), a prediction applicable to subjects without (p=0.001) and with (p<0.05) airway obstruction. Dyspnoea and wheezing were the most predictive symptoms. The combination of the N-2-slope and number of respiratory symptoms notably resulted in an effective prediction of incident COPD events even in nonobstructive subjects, as evidenced by a predicted incidence of similar to 70% and similar to 90% for a very steep N-2-slope combined with many respiratory symptoms in subject without and with airway obstruction, respectively. The alveolar N-2-slope should be considered in the critical need for further research on early diagnosis of COPD

    Synthesis of 1-methyl-1,2,4-triazole

    No full text
    • 

    corecore