Total Synthesis of the Amaryllidaceae Alkaloid Clivonine

Helmut Haning,^{*a,b*} Carles Giró Mañas,^{*c*} Victoria L. Paddock,^{*c*} Christian G. Bochet,^{*d,b*} Andrew J. P. White,^{*c*} Gerald Bernardinelli,^{*b*} Inderjit Mann,^{*e*} Wolfang Oppolzer^{† *b*} and Alan C. Spivey^{*c,b}

¹Department of Chemistry, South Kensington Campus, Imperial College London, London SW7 2AZ, UK

² Department of Chemistry, University of Fribourg, 9 Ch. du Musee, CH-1700 Fribourg, Switzerland

³Department of Organic Chemistry, University of Geneva, 30, quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland

⁴GSK Tonbridge, Old Powder Mills, Leigh, Tonbridge, Kent, TN11 9AN, UK.

SUPPORTING INFORMATION

Details of DFT molecular modelling for alcohol 11	
and its C3a epimer, including coordinates	2-3

NMR spectra (compounds 1, 8, 9, 11-13, 16 and 25-31) 4-22

[†] Deceased March 15th, 1996.

DFT Procedures for Compound 11 and its C3a Epimer

DFT calculations were performed at the B3LYP 6-31G(d,p) level using Gaussian 09[‡] **Coordinates for 11** (clivonine series): Total energy: -1075.2678728 Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Type	Х	Y	Z	
1	6	0	1.669277	3.663338	1.525224	
2	6	0	1.176000	3.158283	0.175270	
3	6	0	0.367818	4.210494	-0.586844	
4	8	0	0.406109	1.974953	0.396291	
5	6	0	0.659265	1.105222	-0.723033	
6	1	0	0.058813	1.440006	-1.582719	
7	6	0	2.144848	1.377282	-0.987434	
8	1	0	2.385904	1,266963	-2.052068	
9	8	0	2,292923	2.756143	-0.640261	
10	6	0	3.047841	0.481500	-0.143493	
11	6	0	2.753652	-1.002430	-0.408050	
12	1	0	3.066807	-1.236267	-1.441521	
13	6	0	3.574341	-1.911653	0.531454	
14	6	0	3.620929	-3.382873	0.110879	
1.5	8	0	4.355112	-4.188648	1.023663	
16	6	0	1.267988	-1.263439	-0.298435	
17	6	0	0.301035	-0.334241	-0.414857	
18	6	0	-1.143396	-0.684372	-0.341627	
19	6	0	-2 068718	0 227778	0 226744	
20	6	0	-3 390647	-0 157629	0 278869	
21	8	0	-4 463242	0 556013	0 766000	
22	6	0	-5 578115	-0 339604	0 717249	
23	8	0	-5 193059	-1 488525	-0 048798	
24	6	0	-3 831793	-1 385344	-0 207253	
25	6	0	-2 958935	-2 287361	-0 781773	
26	6	0	-1 607487	-1 911284	-0 844282	
20	1	0	2 247816	2 884524	2 025985	
28	1	0	0 823185	3 939059	2 160807	
20	1	0	2 30/337	1 542290	1 386//3	
29	1	0	-0 007538	3 800409	_1 527826	
31	⊥ 1	0	0.007550	5 0720/1	_0 819793	
33	⊥ 1	0	-0 482017	J.U/2041 / 5/8301	0.013081	
33	⊥ 1	0	1 0070201/	4.J40JZI 0.717104	-0 3/8253	
31	⊥ 1	0	2 860715	0.111104	0.340233	
24	⊥ 1	0	2.000/13	-1 0/570/	1 552010	
30	T	U	3.TOT008	-1.040/94	1.000048	

[‡] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

36	1	0	4.605967	-1.532004	0.565973
37	1	0	4.026671	-3.464029	-0.911763
38	1	0	2.616171	-3.816383	0.088971
39	1	0	5.260654	-3.851810	1.046828
40	1	0	0.966897	-2.289724	-0.100675
41	1	0	-1.740654	1.181652	0.619301
42	1	0	-6.423518	0.155294	0.229578
43	1	0	-5.844861	-0.652651	1.737090
44	1	0	-3.305644	-3.233313	-1.181859
45	1	0	-0.904404	-2.585102	-1.321658

Coordinates fo	r <i>epi-</i> 11 (t	rianthine	series): '	Total e	energy:	-1075.	2667877	Hartrees

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms) X Y Z				
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Number 6 6 6 1 6 1 8 6 1 6 1 8 6 6 1 6 6 8 6 6 6 8 6 6 6 8 6 6 6 8 6 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 6 1 1 8 6 6 1 8 6 6 1 8 6 6 1 8 6 6 1 8 6 6 1 8 6 6 1 8 6 6 1 8 6 6 1 1 6 6 1 8 6 6 1 1 8 6 6 1 1 6 6 1 1 8 6 6 1 1 6 6 6 1 1 8 6 6 1 1 6 6 6 1 1 6 6 6 1 1 8 6 6 6 1 1 6 6 6 1 1 6 6 6 6	Type 0 0 0 0 0 0 0 0 0 0 0 0 0	X -1.511717 -1.254713 -0.648200 -0.405382 -0.396616 -2.337687 -2.756340 -2.483338 -3.034651 -2.709260 -3.020273 -3.509529 -3.332746 -4.199877 -1.217185 -0.338284 1.111090 2.076063 3.403358 4.507704 5.639543 5.182778 3.812181 2.897196 1.539547 -1.943260 -0.577497 -2.207939 -0.439153 -1.348062 0.283879 -4.114986 -2.678503 -4.577478 -3.224723 -2.281693 -3.594259 -3.94259 -3.44052	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	$\begin{array}{c} & z \\ & -1.091961 \\ 0.117539 \\ 1.294133 \\ -0.291472 \\ 0.457130 \\ 1.472632 \\ 0.511916 \\ 1.440402 \\ 0.550489 \\ -0.709037 \\ -0.872942 \\ -1.884407 \\ 0.112362 \\ -0.108304 \\ 0.711499 \\ -0.775569 \\ -0.191093 \\ -0.088794 \\ -0.191093 \\ -0.088794 \\ -0.143366 \\ -0.059570 \\ -0.074163 \\ -0.059570 \\ -0.074163 \\ -0.156998 \\ 0.074163 \\ -0.156998 \\ 0.074148 \\ -1.903234 \\ -1.439989 \\ -0.826438 \\ 2.128116 \\ 1.643567 \\ 0.993325 \\ -0.637326 \\ -1.594022 \\ 0.013528 \\ 1.145458 \\ 0.041586 \\ -1.140479 \\ 1.631601 \\ -1.25254 \\ \end{array}$		
40 41 42 43 44	1 1 1 1	0 0 0 0	1.776293 6.361118 6.095131 3.213681	1.361902 0.220199 -0.053352 -3.413336	-0.267425 0.652763 -1.112388 0.291421		
45		U 	0./9/912	-2.823213	U.162//U		

NMR Spectra for compounds 1, 8, 9, 11-13, 16 and 25-31 $^{\$}$

[§] Spectra for compounds **18-24** absent. These were recorded in the Department of Organic Chemistry, University of Geneva in 1995 and were unfortunately destroyed following the untimely death of Prof. Wolfgang Oppolzer in Mar 1996.

¹H-¹H 2D COSY NMR, 400 MHz, CDCl₃

¹³C NMR, 100 MHz, CDCl₃

¹³C NMR, 100 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

¹³C NMR, 100 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

¹H NMR, 400 MHz, 298 K, CDCl₃

4.0

3.0

1.5

0.

1.0

¹H NMR, 400 MHz, 328 K, CDCl₃

6.5

5.5

6.0

5.0

7.0

7.5

8.0

¹³C NMR, 100 MHz, CDCl₃

¹H NMR, 400 MHz, 298 K, CDCl₃

 $^1\mathrm{H}\text{-}^{13}\mathrm{C}$ 2D HMC NMR, 500 MHz, 323 K, CDCl_3

¹H NMR, 400 MHz, CDCl₃

22

Total Synthesis of the Amaryllidaceae Alkaloid Clivonine

Helmut Haning,^{*a,b*} Carles Giró Mañas,^{*c*} Victoria L. Paddock,^{*c*} Christian Bochet,^{*d,b*} Andrew J. P. White,^{*c*} Gerald Bernardinelli,^{*b*} Inderjit Mann,^{*e*} Wolfang Oppolzer^{*b*} and Alan C. Spivey*^{*c,b*}

^a Bayer Schering Pharma AG, Müllerstr. 178, 13353 Berlin, Germany.

^b Department of Organic Chemistry, University of Geneva, 30, quai Ernest Ansermet, CH-1211 Geneva 4, Switzeland.

^c Department of Chemistry, Imperial College London, South Kensington campus, London, SW7 2AZ, UK.

^d Department of Chemistry, University of Fribourg, 9 Ch. du Musee, CH-1700 Fribourg, Switzerland.

^e GSK Tonbridge, Old Powder Mills, Leigh, Tonbridge, Kent, TN11 9AN UK.

Supporting Information — X-Ray Crystallography

Crystal data for **13**: C₂₀H₂₆O₆, M = 362.41, monoclinic, $P2_1/c$ (no. 14), a = 14.5941(4), b = 9.4049(2), c = 13.8121(3) Å, $\beta = 91.949(2)^\circ$, V = 1894.70(8) Å³, Z = 4, $D_c = 1.270$ g cm⁻³, μ (Mo-K α) = 0.093 mm⁻¹, T = 173 K, colourless plates, Oxford Diffraction Xcalibur 3 diffractometer; 6105 independent measured reflections ($R_{int} = 0.0455$), F^2 refinement, R_1 (obs) = 0.0448, wR_2 (all) = 0.1191, 3310 independent observed absorption-corrected reflections [$|F_o| > 4\sigma(|F_o|)$, $2\theta_{max} = 64^\circ$], 235 parameters. CCDC 792816.

Crystal data for 16: C₂₁H₂₇NO₅·H₂O, M = 391.45, monoclinic, $P2_1/n$ (no. 14), a = 7.2818(1), b = 33.8728(3), c = 8.3252(1) Å, $\beta = 104.148(1)^\circ$, V = 1991.17(4) Å³, Z = 4, $D_c = 1.306$ g cm⁻³, μ (Cu-K α) = 0.784 mm⁻¹, T = 173 K, colourless blocks, Oxford Diffraction Xcalibur PX Ultra diffractometer; 3808 independent measured reflections ($R_{int} = 0.0259$), F^2 refinement, R_1 (obs) = 0.0424, wR_2 (all) = 0.1248, 3426 independent observed absorption-corrected reflections [$|F_0| > 4\sigma$ ($|F_0|$), $2\theta_{max} = 143^\circ$], 263 parameters. CCDC 792817.

The hydrogen atoms of the included water molecule in the structure of **16** were located from ΔF maps and refined freely subject to an O–H distance constraint of 0.90 Å. The methyl protons of the N=CMe₂ unit were added in idealised tetrahedral positions and, as they are on sp^3 centres bonded to an sp^2 centre, the groups were allowed to rotate about the associated C– C bond to find the best fit with the electron density map (*i.e.* the SHELX HFIX/AFIX 137 command). C_i -related molecules are linked by O–H···O hydrogen bonding *via* the included water molecule (Fig. S3). *Crystal data for* **20**: C₁₉H₂₃NO₄, M = 329.38, hexagonal, $P6_1$ (no. 169), a = b = 10.695(1), c = 25.134(4) Å, V = 2489.7(5) Å³, Z = 6, $D_c = 1.318$ g cm⁻³, μ (Mo-K α) = 0.092 mm⁻¹, T = 298 K, colourless prisms, Stoe Stadi-4 diffractometer; 2331 independent measured reflections ($R_{int} = 0.0$), F^2 refinement, R_1 (obs) = 0.0446, wR_2 (all) = 0.0846, 1415 independent observed absorption-corrected reflections [$|F_o| > 4\sigma(|F_o|)$, $2\theta_{max} = 46^\circ$], 218 parameters. The absolute structure of **20** could not be determined by either an *R*-factor test [$R_1^+ = 0.0446$, $R_1^- = 0.0446$] or by use of the Flack parameter [$x^+ = 0.0(17)$, $x^- = 2.6(17)$], and so was assigned by internal reference on C(7), C(8), C(12), C(14) and C(22). CCDC 792818.

Crystal data for **28**: C₂₅H₂₆ClNO₅, M = 455.92, triclinic, P-1 (no. 2), a = 6.0988(2), b = 11.8551(4), c = 16.3205(5) Å, a = 102.804(3), $\beta = 98.740(3)$, $\gamma = 102.130(3)^{\circ}$, V = 1100.31(6) Å³, Z = 2, $D_c = 1.376$ g cm⁻³, μ (Cu-K α) = 1.854 mm⁻¹, T = 298 K, colourless plates, Oxford Diffraction Xcalibur PX Ultra diffractometer; 4218 independent measured reflections ($R_{int} = 0.0256$), F^2 refinement, R_1 (obs) = 0.0368, wR_2 (all) = 0.1087, 3060 independent observed absorption-corrected reflections [$|F_0| > 4\sigma$ ($|F_0|$), $2\theta_{max} = 143^{\circ}$], 290 parameters. CCDC 792819.

Figures

Fig. S1 The molecular structure of 13 (50% probability ellipsoids).

Fig. S2 The molecular structure of 16 (50% probability ellipsoids).

Fig. S3 The molecular structure of 16 showing the C_i-symmetric dimer formed by hydrogen bonding to the included water molecule. The O–H…O hydrogen bonds have [O…O], [H…O] distances (Å) and [O–H…O] angles (°) of a) 2.794(2), 1.90, 175, and b) 2.811(2), 1.98, 153.

Fig. S4 The molecular structure of 20 (50% probability ellipsoids).

Fig. S5 The molecular structure of 28 (30% probability ellipsoids).