67 research outputs found

    Seletividade de herbicidas por metabolismo diferencial: considerações para redução de danos em culturas agrícolas

    Get PDF
    A seletividade dos herbicidas é uma tecnologia agrícola que tem sido vastamente explorada nas estratégias de controle químico de plantas daninhas. É resultado da ação conjunta de diversos mecanismos que protegem a cultura da fitotoxicidade dos tratamentos herbicidas, mantendo-a com níveis de injúrias aceitáveis agronomicamente, ou mesmo na ausência destas. O principal mecanismo de seletividade dos herbicidas é o metabolismo diferencial desses produtos entre plantas daninhas e cultivadas, em que, nas situações de recomendação agronômica, as plantas daninhas são menos hábeis em realizá-lo. Neste caso, a fitotoxicidade pode ser entendida como a suplantação da capacidade máxima de proteção oferecida pelos mecanismos de seletividade ou, considerando o metabolismo como o principal mecanismo, como a superação da capacidade intrínseca da espécie em detoxificar determinada molécula. Considerando-se que o metabolismo de herbicidas envolve gasto de energia, os sintomas de fitotoxicidade caracterizam um segundo gasto energético que não deve ser aceito como uma resposta fisiológica natural, portanto pode resultar em perdas de rendimento das culturas. Para evitar ou minimizar as perdas ou injúrias às culturas, é necessário que as recomendações de herbicidas sejam baseadas em trabalhos de seletividade conduzidos com adequado rigor experimental; bem como é importante a conscientização dos agricultores quanto a melhor forma de utilizar cada produto.Herbicide selectivity is an agricultural technology largely exploited in chemical strategies of weed control. The joint action of several protection mechanisms avoids phytotoxicity from herbicide treatment, maintaining the level of agronomically accepted damage to a minimum, or even totally avoiding them. The major mechanism of herbicide selectivity derives from the differential metabolism between weed and crop plant species, with weeds presenting a limited ability to perform it under agronomically recommended conditions. In this case, phytotoxicity can be interpreted as an overcoming of the maximum protection capacity offered by the mechanisms of selectivity, or when considering metabolism as the main factor, the overcoming of the inherent plant ability to detoxify a particular molecule. Considering that herbicide metabolism requires energy disposal, symptoms of phytotoxicity characterize an additional waste of energy that should not be accepted as a natural physiologic response; therefore it might result in yield losses. To avoid or minimize crop losses or damages, it is required that herbicide application recommendations are based on results from rigorously conducted selectivity experiments, as well as that there is an increase in the awareness of growers about the best use of each product

    Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants

    Get PDF
    Plant hormones are likely key regulators of arbuscular mycorrhizae (AM) development. However, their roles in AM are not well known. Here mutants in five hormone classes introgressed in a single tomato (Lycopersicon esculentum Mill. Syn Solanum lycopersicum L.) background (cv. Micro-Tom) were used to determine their effects on AM development and the expression of defense-related genes (chitinases and b-1,3-glucanases) in roots. Under low P conditions, mutant epinastic (epi) and Never ripe (Nr), ethylene overproducer and low sensitivity, respectively, had the intraradical colonization by Glomus clarum highly inhibited, as compared to the control Micro-Tom (MT). No significant alterations in fungal colonization were observed in mutants affecting other hormone classes. Under low P conditions, the steady state levels of transcripts encoding a class I basic chitinase (chi9) were higher in mycorrhizal epi and Nr mutant roots as compared to MT controls. In contrast the steady state levels of a class III acidic b-1,3-glucanase (TomPR-Q'a) transcripts in mycorrhizal epi mutant roots were significantly lower than in mycorrhizal MT roots. Root colonization in epi mutants was accompanied by several alterations in fungal morphology, as compared to root colonization in MT controls. The data suggest that ethylene may play an important role in controlling intraradical arbuscular mycorrhizal fungal growth.Os hormônios vegetais são possíveis reguladores chave do desenvolvimento de micorrizas arbusculares (MAS). Contudo, seus papéis em MA são pouco conhecidos. No presente estudo, foram utilizados mutantes em cinco classes hormonais introgredidos em uma única cultivar (cv. Micro-Tom) de tomateiro (Lycopersicon esculentum Mill. Syn Solanum lycopersicum L.) para determinar seus efeitos no desenvolvimento de MA e expressão de genes relacionados à defesa (quitinases e b-1,3-glucanases) em raízes. Sob condição de baixo P, os mutantes epinastic (epi) e Never ripe (Nr), os quais são super produtores e pouco sensíveis a etileno, respectivamente, tiveram a colonização intra-radicular por Glomus clarum inibida quando comparada com o controle Micro-Tom (MT). Não se observou alterações significativas na colonização fúngica nos mutantes afetando outras classes hormonais. Sob condição de baixo P, o nível de transcritos codificando uma quitinase básica de classe I (chi9) foi mais elevado em raízes micorrizadas dos mutantes epi e Nr, quando comparado com o controle MT. Em contraste, o nível de transcritos de uma b-1,3-glucanase ácida da classe III (TomPR-Q'a) em raízes micorrizadas do mutante epi foi significativamente menor que em raízes micorrizadas de MT. A colonização de raízes no mutante epi foi acompanhada por várias alterações na morfologia fúngica, quando comparada com o controle MT. Os resultados sugerem que o etileno pode desempenhar um importante papel controlando o crescimento fúngico intra-radicular nas MAS

    Differential tolerance of sugarcane varieties to herbicide stress

    Get PDF
    Este trabalho foi desenvolvido com o objetivo de realizar triagem primária para caracterização da tolerância de variedades SP e CTC de cana-de-açúcar à aplicação de dez herbicidas comumente recomendados para manejo de plantas daninhas nesta cultura. Dois experimentos foram desenvolvidos com esquema fatorial entre variedades de cana-de-açúcar e onze tratamentos herbicidas. No primeiro experimento utilizaram-se sete variedades SP (fatorial 7 x 11): SP80-1842, SP80-3280, SP83-2847, SP87-344, SP87-396, SP89-1115 e SP90-3414. No segundo experimento, foram avaliadas seis variedades CTC (fatorial 6 x 11): CTC1, CTC2, CTC3, CTC4, CTC5 e CTC6. Os tratamentos herbicidas aplicados em pós-emergência inicial foram: ametryn, ametryn + trifloxysulfuron-sodium, clomazone, diuron + hexazinone, isoxaflutole, imazapic, 2,4-D, tebuthiuron, sulfentrazone, MSMA e testemunha sem aplicação. Avaliou-se massa fresca, altura, teor de clorofila (índice SPAD) e perfilhamento, todos em termos percentuais relativos à testemunha sem aplicação. Constatou-se tolerância diferencial das variedades de cana-de-açúcar aos herbicidas comumente utilizados na cultura. As variedades SP80-3280 e CTC2 foram as mais tolerantes aos tratamentos herbicidas, podendo ter esta característica explorada em programas de melhoramento genético.This work was carried out with the objective of screening for tolerance response of SP and CTC sugarcane varieties to application of ten herbicides commonly recommended to weed management in this crop. Two trials were evaluated with factorial design between the sugarcane varieties and eleven herbicide treatments. In the first experiment, seven SP varieties were used (factorial 7 x 11): SP80-1842, SP80-3280, SP83-2847, SP87-344, SP87-396, SP89-1115 and SP90-3414. In the second experiment, six CTC varieties were evaluated (factorial 6 x 11): CTC1, CTC2, CTC3, CTC4, CTC5 and CTC6. The post-emergence-applied herbicide treatments were: ametryn, ametryn + trifloxysulfuron-sodium, clomazone, diuron + hexazinone, isoxaflutole, imazapic, 2,4-D, tebuthiuron, sulfentrazone, MSMA and check without application. The variables evaluated were: fresh mass, height, SPAD index and tillering: Valves here considered as relative percentage to the untreated control. Differential tolerance of sugarcane varieties was observed regarding to application of the tested herbicides. SP80-3280 and CTC2 were the most tolerant varieties to herbicide application, and might have this characteristic exploited by sugarcane breeding programs.FAPES

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays

    Biotechnological studies in Theobroma cacao L: Micropropagation, characterization of polysaccharides, and estimation of genetic diversity using molecular markers

    No full text
    A rapid system of micropropagation for Theobroma cacao (cacao), a species recalcitrant under conventional protocols, was developed based on exposure to high levels of CO\sb2. Increasing CO\sb2 concentration from ambient (470 ppm) up to chamber levels of 30,200 ppm significantly increased total axillary shoot elongation, number of leaves, and leaf area per explant, but decreased budbreak. The presence of light was necessary for the CO\sb2 effect, but estimation of net photosynthesis indicated that photosynthesis stimulation alone did not account for all the improved growth responses. Elevated CO\sb2 was associated with increased ethylene production in vitro and increased nutrient uptake. Nucellar embryony was induced by exposing nucellar tissue to 2,4 dichlorophenoxyacetic acid, 6-(γ,γ\gamma,\gamma-dimethylallylamino) purine (2iP), and coconut water. A protocol for conversion of nucellar somatic embryos into seedlings was developed involving preculture of somatic embryos in liquid medium and transfer to semi-solid medium in chambers receiving 20,000 ppm CO\sb2. A polysaccharide present in large amounts in all tissues of cacao, was hypothesized to be responsible for the recalcitrance to in vitro culture. Histochemical studies located lysigenous cavities throughout the pith and cortex of stems and pericarp of pod husks. Stem and pod husk gums contained the same monosaccharides as gum karaya (Sterculia spp), with higher proportion of rhamnose and acidic sugars (glucuronic and galacturonic). Cacao pod and stem gums have a higher viscosity at concentrations below 1% than gum karaya, but a lower viscosity on higher concentrations. The size of the haploid genome of cacao was estimated using laser flow cytometry as 0.43 pg. An improved DNA extraction procedure was developed based on isolation of a crude nuclei preparation from leaf tissue that effectively eliminated contamination of the DNA by polysaccharides and produced DNA that was on average greater than 50 kb in length. Differences in random amplified polymorphic DNA (RAPD) was used to evaluate the conventional classification of cacao into three major horticultural races (Criollo, Forastero, and Trinitario). A phenogram based on molecular markers (RAPD) indicated essentially continuous variation among different genotypes, with only a superficial rationale for the conventional classification, but a clear separation between wild and cultivated genotypes. DNA blot hybridization experiments using a flax ribosomal DNA probe revealed restriction fragment length polymorphisms (RFLP), and was used to establish phylogeny of Theobroma and Herrania species. A phenogram based on the rDNA polymorphism separated a T. cacao cluster and a Theobroma-Herrania cluster
    corecore