120 research outputs found

    Fighting assessment triggers rapid changes in activity of the brain social Decision-Making network of cichlid fish

    Get PDF
    Social living animals have to adjust their behavior to rapid changes in the social environment. It has been hypothesized that the expression of social behavior is better explained by the activity pattern of a diffuse social decision-making network (SDMN) in the brain than by the activity of a single brain region. In this study, we tested the hypothesis that it is the assessment that individuals make of the outcome of the fights, rather than the expression of aggressive behavior per se, that triggers changes in the pattern of activation of the SDMN which are reflected in socially driven behavioral profiles (e.g., dominant vs. subordinate specific behaviors). For this purpose, we manipulated the perception of the outcome of an agonistic interaction in an African cichlid fish (Oreochromis mossambicus) and assessed if either the perception of outcome or fighting by itself was sufficient to trigger rapid changes in the activity of the SDMN. We have used the expression of immediate early genes (c-fos and egr-1) as a proxy to measure the neuronal activity in the brain. Fish fought their own image on a mirror for 15 min after which they were allocated to one of three conditions for the two last minutes of the trial: (1) they remained fighting the mirror image (no outcome treatment); (2) the mirror was lifted and a dominant male that had just won a fight was presented behind a transparent partition (perception of defeat treatment); and (3) the mirror was lifted and a subordinate male that had just lost a fight was presented behind a transparent partition (perception of victory treatment). Results show that these short-term social interactions elicit distinct patterns in the SDMN and that the perception of the outcome was not a necessary condition to trigger a SDMN response as evidenced in the second treatment (perception of defeat treatment). We suggest that the mutual assessment of relative fighting behavior drives these acute changes in the state of the SDMN.Fundação para a Ciência e Tecnologia-FCTinfo:eu-repo/semantics/publishedVersio

    Innate chemical, but not visual, threat cues have been co‐opted as unconditioned stimulus for social fear learning in zebrafish

    Get PDF
    Animals can use social information to detect threat in the environment. In particular, social learning allows animals to learn about dangers without incurring in the costs of trial-and-error learning. In zebrafish, both chemical and visual social cues elicit an innate alarm response, which consists of erratic movement followed by freezing behavior. Injured zebrafish release an alarm substance from their skin that elicits the alarm response. Similarly, the sight of conspecifics displaying the alarm response can also elicit the expression of this response in observers. In this study, we investigated if these social cues of danger can also be used by zebrafish as unconditioned stimulus (US) in learning. We found that only the chemical cue was effective in the social fear conditioning. We suggest that this differential efficacy of social cues results from the fact that the alarm cue is a more reliable indicator of threat, than the sight of an alarmed conspecific. Therefore, although multiple social cues may elicit innate responses not all have been evolutionarily co-opted to act as US in associative learning. Furthermore, the use of the expression of the immediate early genes as markers of neuronal activity showed that chemical social fear conditioning is paralleled by a differential activation of the olfactory bulbs and by a different pattern of functional connectivity across brain regions involved in olfactory processing.FCT - Fundação para a Ciência e Tecnologiainfo:eu-repo/semantics/publishedVersio

    Identification of region-specific astrocyte subtypes at single cell resolution

    Get PDF
    Astrocytes, a major cell type found throughout the central nervous system, have general roles in the modulation of synapse formation and synaptic transmission, blood-brain barrier formation, and regulation of blood flow, as well as metabolic support of other brain resident cells. Crucially, emerging evidence shows specific adaptations and astrocyte-encoded functions in regions, such as the spinal cord and cerebellum. To investigate the true extent of astrocyte molecular diversity across forebrain regions, we used single-cell RNA sequencing. Our analysis identifies five transcriptomically distinct astrocyte subtypes in adult mouse cortex and hippocampus. Validation of our data in situ reveals distinct spatial positioning of defined subtypes, reflecting the distribution of morphologically and physiologically distinct astrocyte populations. Our findings are evidence for specialized astrocyte subtypes between and within brain regions. The data are available through an online database (https://holt-sc.glialab.org/), providing a resource on which to base explorations of local astrocyte diversity and function in the brain.status: publishe

    Brain transcriptomic response to social eavesdropping in zebrafish (Danio rerio)

    Get PDF
    Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish (Danio rerio) in relation to the attention they paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter regionbased techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role. Furthermore, specifically observing fighting interactions further triggered pathways associated to a change in the alertness status (dnajb5) and to other genes related to memory formation (btg2, npas4b), which suggests that the acquisition of eavesdropped information about social relationships activates specific processes on top of those already activated just by observing conspecifics.Fundação para a Ciência e a Tecnologia (FCT

    Monolithic porous carbon materials prepared from polyurethane foam templates

    Get PDF
    Monolithic carbon foams with hierarchical porosity were prepared from polyurethane templates and resol precursors. Mesoporosity was achieved through the use of soft templating with surfactant Pluronic F127, and macroporosity from the polyurethane foams was retained. Conditions to obtain high porosity materials were optimized. The best materials have high specific surface areas (380 and 582 m(2) g(-1), respectively) and high electrical conductivity, which make them good candidates for supports in sensors. These materials showed an almost linear dependence between the potential and the pH of aqueous solutions

    Simple polystyrene Microfluidic Device for Sensitive and Accurate SERS-Based Detection of Infection By Malaria Parasites

    Get PDF
    Early and accurate detection of infection by pathogenic microorganisms, such as Plasmodium, the causative agent of malaria, is critical for clinical diagnosis and ultimately determines the patient’s outcome. We have combined a polystyrene-based microfluidic device with an immunoassay which utilises Surface-Enhanced Raman Spectroscopy (SERS) to detect malaria. The method can be easily translated to a point-of-care testing format and shows excellent sensitivity and specificity, when compared to the gold standard for laboratorial detection of Plasmodium infections. The device can be fabricated in less than 30 min by direct patterning on shrinkable polystyrene sheets of adaptable three-dimensional microfluidic chips. To validate the microfluidic system, samples of P. falciparum-infected red blood cell cultures were used. The SERS-based immunoassay enabled the detection of 0.0012 ± 0.0001 % parasitaemia in a P. falciparum-infected red blood cell culture supernatant, an ~7-fold higher sensitivity than that attained by most rapid diagnostic tests. Our approach successfully overcomes the main challenges of the current Plasmodium detection methods, including increased reproducibility, sensitivity, and specificity. Furthermore, our system can be easily adapted for detection of other pathogens and has excellent properties for early diagnosis of infectious diseases, a decisive step towards lowering their high burden on healthcare systems worldwide

    Measurement of the cross section for the production of a WW boson in association with bb^- jets in pppp collisions at s=7\sqrt{s}=7 TeV with the ATLAS detector

    Get PDF
    A measurement is presented of the cross section for the production of a W boson with one or two jets, of which at least one must be a b-jet, in pp collisions at sqrt(s)=7 TeV. Production via top decay is not included in the signal definition. The measurement is based on 35 pb^-1 of data collected with the ATLAS detector at the LHC. The W+b-jet cross section is defined for jets reconstructed with the anti-kt clustering algorithm with transverse momentum above 25 GeV and rapidity within +/-2.1. The b-jets are identified by reconstructing secondary vertices. The fiducial cross section is measured both for the electron and muon decay channel of the W boson and is found to be 10.2 +/- 1.9 (stat) +/- 2.6 (syst) pb for one lepton flavour. The results are compared with next-to-leading order QCD calculations, which predict a cross section smaller than, though consistent with, the measured value.Peer Reviewe

    Search for New Physics in the Dijet Mass Distribution using 1 fb1^{-1} of pppp Collision Data at s=\sqrt{s}=7 TeV collected by the ATLAS Detector

    Get PDF
    Invariant mass distributions of jet pairs (dijets) produced in LHC proton-proton collisions at a centre-of-mass energy sqrt(s)=7 TeV have been studied using a data set corresponding to an integrated luminosity of 1.0 fb^-1 recorded in 2011 by ATLAS. Dijet masses up to ~4 TeV are observed in the data, and no evidence of resonance production over background is found. Limits are set at 95% CL for several new physics hypotheses: excited quarks are excluded for masses below 2.99 TeV, axigluons are excluded for masses below 3.32 TeV, and colour octet scalar resonances are excluded for masses below 1.92 TeV.Peer Reviewe

    Measurement of the top quark pair production cross section in pppp collisions at s=7\sqrt{s}=7 TeV in dilepton final states with ATLAS

    Get PDF
    A measurement of the production cross section of top quark pairs (ttbar) in proton-proton collisions at a center-of-mass energy of 7 TeV recorded with the ATLAS detector at the Large Hadron Collider is reported. Candidate events are selected in the dilepton topology with large missing transverse energy and at least two jets. Using a data sample corresponding to an integrated luminosity of 35 pb^-1, a ttbar production cross section of 171 +/- 20(stat.) +/- 14(syst.) +8-6(lum.) pb is measured for an assumed top quark mass of 172.5 GeV. A second measurement requiring at least one jet identified as coming from a b quark yields a comparable result, demonstrating that the dilepton final states are consistent with being accompanied by b-quark jets. These measurements are in good agreement with Standard Model predictions.Peer Reviewe

    Performance of Missing Transverse Momentum Reconstruction in Proton-Proton Collisions at 7 TeV with ATLAS

    Get PDF
    The measurement of missing transverse momentum in the ATLAS detector, described in this paper, makes use of the full event reconstruction and a calibration based on reconstructed physics objects. The performance of the missing transverse momentum reconstruction is evaluated using data collected in pp collisions at a centre-of-mass energy of 7 TeV in 2010. Minimum bias events and events with jets of hadrons are used from data samples corresponding to an integrated luminosity of about 0.3 inverse nb and 600 inverse nb, together with events containing a Z boson decaying to two leptons (electrons or muons) or a W boson decaying to a lepton (electron or muon) and a neutrino, from a data sample corresponding to an integrated luminosity of about 36 inverse pb. An estimate of the systematic uncertainty on the missing transverse momentum scale is presented.Peer Reviewe
    corecore