
ar
X

iv
:1

10
8.

56
02

v2
  [

he
p-

ex
]  

28
 D

ec
 2

01
1

EPJ manuscript No.
(will be inserted by the editor)

CERN-PH-EP-2011-114 Submitted to Eur. Phys. J. C

Performance of Missing Transverse Momentum
Reconstruction in Proton-Proton Collisions at

√
s = 7 TeV with

ATLAS
The ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

December 6, 2011

Abstract. The measurement of missing transverse momentum in the ATLASdetector, described in this paper, makes
use of the full event reconstruction and a calibration basedon reconstructed physics objects. The performance of the
missing transverse momentum reconstruction is evaluated using data collected inpp collisions at a centre-of-mass en-
ergy of 7 TeV in 2010. Minimum bias events and events with jetsof hadrons are used from data samples corresponding
to an integrated luminosity of about 0.3 nb−1 and 600 nb−1 respectively, together with events containing aZ boson
decaying to two leptons (electrons or muons) or aW boson decaying to a lepton (electron or muon) and a neutrino,from
a data sample corresponding to an integrated luminosity of about 36 pb−1. An estimate of the systematic uncertainty
on the missing transverse momentum scale is presented.

1 Introduction

In a collider event the missing transverse momentum is defined
as the momentum imbalance in the plane transverse to the beam
axis, where momentum conservation is expected. Such an im-
balance may signal the presence of unseen particles, such as
neutrinos or stable, weakly-interacting supersymmetric (SUSY)
particles. The vector momentum imbalance in the transverse
plane is obtained from the negative vector sum of the momenta
of all particles detected in appcollison and is denoted as miss-
ing transverse momentum,Emiss

T . The symbolEmiss
T is used for

its magnitude.
A precise measurement of the missing transverse momen-

tum,Emiss
T , is essential for physics at the LHC. A largeEmiss

T is
a key signature for searches for new physics processes such as
SUSY and extra dimensions. The measurement ofEmiss

T also
has a direct impact on the quality of a number of measurements
of Standard Model (SM) physics, such as the reconstruction of
the top-quark mass intt̄ events. Furthermore, it is crucial in the
search for the Higgs boson in the decay channelsH → WW
andH → ττ, where a goodEmiss

T measurement improves the
reconstruction of the Higgs boson mass [1].

This paper describes an optimized reconstruction and cali-
bration ofEmiss

T developed by the ATLAS Collaboration. The
performance achieved represents a significant improvement
compared to earlier results [2] presented by ATLAS. The opti-
mal reconstruction ofEmiss

T in the ATLAS detector is complex
and validation with data, in terms of resolution, scale and tails,
is essential. A number of data samples encompassing a variety
of event topologies are used. Specifically, the event samples
used to assess the quality of theEmiss

T reconstruction are: min-

imum bias events, events where jets at high transverse momen-
tum are produced via strong interactions described by Quan-
tum Chromodynamics (QCD) and events with leptonically de-
cayingW and Z bosons. This allows the full exploitation of
the detector capability in the reconstruction and calibration of
different physics objects and optimization of theEmiss

T calcu-
lation. Moreover, in events withW → ℓν , whereℓ is an elec-
tron or muon, theEmiss

T performance can be studied in events
where genuineEmiss

T is present due to the neutrino, thus al-
lowing a validation of theEmiss

T scale. In simulated events, the

genuineEmiss
T , Emiss,True

T , is calculated from all generated non-
interacting particles in the event and it is also referred toas true
Emiss

T in the following.

An important requirement on the measurement ofEmiss
T is

the minimization of the impact of limited detector coverage,
finite detector resolution, the presence of dead regions anddif-
ferent sources of noise that can produce fakeEmiss

T . The AT-
LAS calorimeter coverage extends to large pseudorapidities 1

to minimize the impact of high energy particles escaping in the
very forward direction. Even so, there are inactive transition
regions between different calorimeters that produce fakeEmiss

T .
Dead and noisy readout channels in the detector, if present,as

1 ATLAS uses a right-handed coordinate system with its originat
the nominal interaction point (IP) in the centre of the detector and the
z-axis coinciding with the axis of the beam pipe. Thex-axis points
from the IP to the centre of the LHC ring, and they axis points up-
ward. Cylindrical coordinates(r,φ) are used in the transverse plane,φ
being the azimuthal angle around the beam pipe. The pseudorapidity
is defined in terms of the polar angleθ asη =− ln tan(θ/2).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Comum

https://core.ac.uk/display/223220608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1108.5602v2


2 The ATLAS Collaboration: Performance of Missing Transverse Momentum Reconstruction at
√

s = 7 TeV

well as cosmic-ray and beam-halo muons crossing the detec-
tor, will produce fakeEmiss

T . Such sources can significantly en-
hance the background from multi-jet events in SUSY searches
with large Emiss

T or the background fromZ → ℓℓ events ac-
companied by jets of high transverse momentum (pT) in Higgs
boson searches in final states with two leptons andEmiss

T . Cuts
are applied to clean the data against all these sources (see Sec-
tion 3), and more severe cuts to suppress fakeEmiss

T are applied
in analyses for SUSY searches, after which, for selected events
with high-pT jets, the tails of theEmiss

T distributions are well
described by MC simulation [3].

This paper is organised as follows. Section 2 gives a brief
introduction to the ATLAS detector. Section 3 and Section 4
describe the data and Monte Carlo samples used and the event
selections applied. Section 5 outlines howEmiss

T is reconstructed
and calibrated. Section 6 presents theEmiss

T performance for
data and Monte Carlo simulation, first in minimum bias and jet
events and then inZ andW events. The systematic uncertainty
on theEmiss

T absolute scale is discussed in Section 7. Section
8 describes the determination of theEmiss

T scale in-situ using
W→ ℓν events. Finally, the conclusions are given in Section 9.

2 The ATLAS Detector

The ATLAS detector [1] is a multipurpose particle physics ap-
paratus with a forward-backward symmetric cylindrical geom-
etry and near 4π coverage in solid angle. The inner tracking
detector (ID) covers the pseudorapidity range|η | < 2.5, and
consists of a silicon pixel detector, a silicon microstrip detector
(SCT), and, for|η |< 2.0, a transition radiation tracker (TRT).
The ID is surrounded by a thin superconducting solenoid pro-
viding a 2 T magnetic field. A high-granularity lead/liquid-
argon (LAr) sampling electromagnetic calorimeter covers the
region|η | < 3.2. An iron/scintillator-tile calorimeter provides
hadronic coverage in the range|η | < 1.7. LAr technology is
also used for the hadronic calorimeters in the end-cap region
1.5 < |η | < 3.2 and for both electromagnetic and hadronic
measurements in the forward region up to|η |< 4.9. The muon
spectrometer surrounds the calorimeters. It consists of three
large air-core superconducting toroid systems, precisiontrack-
ing chambers providing accurate muon tracking out to|η | = 2.7,
and additional detectors for triggering in the region|η |< 2.4.

3 Data samples and event selection

During 2010 a large number of proton-proton collisions, at a
centre-of-mass energy of 7 TeV, were recorded with stable pro-
ton beams as well as nominal magnetic field conditions. Only
data with a fully functioning calorimeter, inner detector and
muon spectrometer are analysed.

Cuts are applied to clean the data sample against instru-
mental noise and out-of-time energy deposits in the calorime-
ter (from cosmic-rays or beam-induced background). Topolog-
ical clusters reconstructed in the calorimeters (see Section 5.1)
at the electromagnetic energy (EM) scale2 are used as the in-
puts to the jet finder [4]. In this paper the anti-kt algorithm

2 The EM scale is the basic calorimeter signal scale for the AT-
LAS calorimeters. It provides the correct scale for energy deposited

[5], with distance parameterR = 0.6, is used for jet recon-
struction. The reconstructed jets are required to pass basic jet-
quality selection criteria. In particular events are rejected if
any jet in the event with transverse momentumpT>20 GeV is
caused by sporadic noise bursts in the end-cap region, coherent
noise in the electromagnetic calorimeter or reconstructedfrom
large out-of-time energy deposits in the calorimeter. These cuts
largely suppress the residual sources of fakeEmiss

T due to those
instrumental effects which remain after the data-quality require-
ments.

The 2010 data sets used in this paper correspond to a to-
tal integrated luminosity [6,7] of approximately 600 nb−1 for
jet events and to 0.3 nb−1 for minimum bias events. Trigger
and selection criteria for these events are described in Section
3.1. For theZ → ℓℓ andW → ℓν channels, the samples anal-
ysed correspond to an integrated luminosity of approximately
36 pb−1. Trigger and selection criteria, similar to those devel-
oped for theW/Z cross-section measurement [8], are applied.
These criteria are described in Sections 3.2 and 3.3.

3.1 Minimum bias and di-jet event selection

For the minimum bias events, only the early period of data tak-
ing, with a minimal pile-up contribution, is studied. Selected
minimum bias events were triggered by the minimum bias trig-
ger scintillators (MBTS), mounted at each end of the detector
in front of the LAr end-cap calorimeter cryostats [9].

Events in the QCD jet sample are required to have passed
the first-level calorimeter trigger, which indicates a significant
energy deposit in a certain region of the calorimeter, with the
most inclusive trigger with a nominalpT threshold at 15 GeV.
The event sample used in this analysis consists of two subsets
of 300 nb−1 each, corresponding to two periods with differ-
ent pile-up and trigger conditions3 . One subset corresponds to
the periods with lower pile-up conditions with, on average,1
to 1.6 reconstructed vertices per event. The other subset corre-
sponds to the periods with higher pileup conditions, where the
peak number of visible inelastic interactions per bunch crossing
goes up to 3. In the following, di-jet events are used, selected
requiring the presence of exactly two jets withpT > 25 GeV
and|η | < 4.5. Jets are calibrated with the local hadronic cali-
bration (see Section 5.1).

For each event, at least one good primary vertex is required
with a z displacement from the nominalpp interaction point
less than 200 mm and with at least five associated tracks. Af-
ter selection, the samples used in the analysis presented here
correspond to 14 million minimum bias events and 13 million
di-jet events.

3.2 Z → ℓℓ event selection

CandidateZ→ ℓℓ events, whereℓ is an electron or a muon, are
required to pass ane/γ or muon trigger with apT threshold be-
tween 10 and 15 GeV, where the exact trigger selection varies

by electromagnetic showers. It does not correct for the lower energy
hadron shower response nor for energy losses in the dead material.

3 Pile-up in the following refers to the contribution of additional pp
collisions superimposed on the hard physics process.
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depending on the data period analysed. For each event, at least
one good primary vertex, as defined above, is required.

The selection ofZ → µµ events requires the presence of
exactly two good muons. A good muon is defined to be a muon
reconstructed in the muon spectrometer with a matched track
in the inner detector with transverse momentum above 20 GeV
and|η | < 2.5 [10]. Additional requirements on the number of
hits used to reconstruct the track in the inner detector are ap-
plied. Thez displacement of the muon track from the primary
vertex is required to be less than 10 mm. Isolation cuts are ap-
plied around the muon track.

The selection ofZ → ee events requires the presence of
exactly two identified electrons with|η | < 2.47, which pass
the “medium” identification criteria [8,11] and have transverse
momenta above 20 GeV. Electron candidates in the electromag-
netic calorimeter transition region, 1.37< |η | < 1.52, are not
considered for this study. Additional cuts are applied to remove
electrons falling into regions where the readout of the calorime-
ter was not fully operational.

In both theZ→ ee and theZ→ µµ selections, the two lep-
tons are required to have opposite charge and the reconstructed
invariant mass of the di-lepton system,mℓℓ, is required to be
consistent with theZ mass, 66< mℓℓ < 116 GeV.

With these selection criteria, about 9000Z→ ee and 13000
Z → µµ events are selected. The estimated background con-
tribution to these samples is less than 2% in both channels [8].

3.3 W → ℓν event selection

Lepton candidates are selected with lepton identification crite-
ria similar to those used for theZ analysis. The differences for
the selection ofW → eν events are that the “tight” electron
identification criteria [11,8] are used and an isolation cutis ap-
plied on the electron cluster in the calorimeter to reduce con-
tamination from QCD jet background. The event is rejected if
it contains more than one reconstructed lepton. TheEmiss

T , cal-
culated as described in Section 5, is required to be greater than
25 GeV, and the reconstructed lepton-Emiss

T transverse mass,
mT , is required to be greater than 50 GeV.

With these selection criteria, about 8.5×104 W → eν and
1.05×105 W → µν events are selected. The background con-
tribution to these samples is estimated to be about 5% in both
channels [8].

4 Monte Carlo simulation samples

Monte Carlo (MC) events are generated using the PYTHIA 6
program [12] with the ATLAS minimum bias tune (AMBT1) of
the PYTHIA fragmentation and hadronisation parameters [13].
The generated events are processed with the detailed GEANT4
[14] simulation of the ATLAS detector.

The minimum bias MC event samples are generated using
non-diffractive as well as single- and double-diffractivepro-
cesses, where the different components are weighted according
to the cross-sections given by the event generators.

The jet MC samples, generated using a 2-to-2 QCD matrix
element and subsequent parton shower development, are used
for comparison with the two subsets of data taken with different

pile-up conditions. In the earlier sample the fraction of events
with at least two observed interactions is at most of the order
of 8 – 10 %, while in the sample taken later in 2010 this frac-
tion ranges from 10 % to more than 50 %. These samples are
generated in thepT range 8 – 560 GeV, in separated parton
pT bins to provide a larger statistics also in the high-pT bins.
Each sample is weighted according to its cross-section.

MC events for the study of SM backgrounds inZ → ℓℓ and
W → ℓν analyses are also generated using PYTHIA 6. The only
exceptions are thett̄ background and theW → eν samples
used in Section 8.2, which are generated with the MC@NLO
program [15]. For the study of the total transverse energy ofthe
events, samples produced with PYTHIA 8 [16] are used as well.

MC samples were produced with different levels of pile-up
in order to reflect the conditions in different data-taking peri-
ods. In particular, two event samples were used for jets: one
was simulated with a pile-up model where only pile-up colli-
sions originating from the primary bunch crossing are consid-
ered (in-time pile-up) and a second one was simulated with a
realistic configuration of the LHC bunch group structure, where
pile-up collisions from successive bunch crossings are also in-
cluded in the simulation. In the case of events containingZ →
ℓℓ orW → ℓν, MC samples with in-time pile-up configuration
are used, because these data correspond to periods where the
contribution of out-of-time pileup is small.

The trigger and event selection criteria used for the data are
also applied to the MC simulation.

5 Emiss
T reconstruction and calibration

The Emiss
T reconstruction includes contributions from energy

deposits in the calorimeters and muons reconstructed in the
muon spectrometer. The twoEmiss

T components are calculated
as:

Emiss
x(y) = Emiss,calo

x(y) +Emiss,µ
x(y) . (1)

Low-pT tracks are used to recover lowpT particles which
are missed in the calorimeters (see Section 5.3.1), and muons
reconstructed from the inner detector are used to recover muons
in regions not covered by the muon spectrometer (see Section
5.2). The two terms in the above equation are referred to as
the calorimeter and muon terms, and will be described in more
detail in the following sections. The values ofEmiss

T and its
azimuthal coordinate (φmiss) are then calculated as:

Emiss
T =

√

(Emiss
x )

2
+
(

Emiss
y

)2
,

φmiss= arctan(Emiss
y ,Emiss

x ). (2)

5.1 Calculation of the Emiss
T calorimeter term

In this paper, theEmiss
T reconstruction uses calorimeter cells

calibrated according to the reconstructed physics object to which
they are associated. Calorimeter cells are associated witha re-
constructed and identified high-pT parent object in a chosen
order: electrons, photons, hadronically decayingτ-leptons, jets



4 The ATLAS Collaboration: Performance of Missing Transverse Momentum Reconstruction at
√

s = 7 TeV

and muons. Cells not associated with any such objects are also
taken into account in theEmiss

T calculation. Their contribution,
namedEmiss,CellOut

T hereafter, is important for theEmiss
T resolu-

tion [17].
Once the cells are associated with objects as described above,

theEmiss
T calorimeter term is calculated as follows (note that the

Emiss,calo,µ
x(y) term is not always added, as explained in Section

5.2, and for that reason it is written between parentheses):

Emiss,calo
x(y) = Emiss,e

x(y) +Emiss,γ
x(y) +Emiss,τ

x(y) +Emiss,jets
x(y)

+Emiss,softjets
x(y) +(Emiss,calo,µ

x(y) )+Emiss,CellOut
x(y) (3)

where each term is calculated from the negative sum of cali-
brated cell energies inside the corresponding objects, as:

Emiss,term
x =−

Nterm
cell

∑
i=1

Ei sinθi cosφi ,

Emiss,term
y =−

Nterm
cell

∑
i=1

Ei sinθi sinφi (4)

whereEi , θi andφi are the energy, the polar angle and the az-
imuthal angle, respectively. The summations are over all cells
associated with specified objects in the pseudorapidity range4

|η |< 4.5.
Because of the high granularity of the calorimeter, it is

crucial to suppress noise contributions and to limit the cells
used in theEmiss

T sum to those containing a significant sig-
nal. This is achieved by using only cells belonging to three-
dimensional topological clusters, referred as topoclusters here-
after [18], with the exception of electrons and photons for which
a different clustering algorithm is used [11]. The topoclusters
are seeded by cells with deposited energy5 |Ei |> 4σnoise, and
are built by iteratively adding neighbouring cells with|Ei | >
2σnoise and, finally, by adding all neighbours of the accumu-
lated cells.

The various terms in Equation 3 are described in the fol-
lowing:

• Emiss,e
x(y) , Emiss,γ

x(y) , Emiss,τ
x(y) are reconstructed from cells in clus-

ters associated to electrons, photons andτ-jets from hadron-
ically decayingτ-leptons, respectively;

• Emiss,jets
x(y) is reconstructed from cells in clusters associated

to jets with calibratedpT > 20 GeV;
• Emiss,softjets

x(y) is reconstructed from cells in clusters associ-
ated to jets with 7 GeV< pT < 20 GeV;

• Emiss,calo,µ
x(y) is the contribution toEmiss

T originating from the
energy lost by muons in the calorimeter (see Section 5.2);

• theEmiss,CellOut
x(y) term is calculated from the cells in topoclus-

ters which are not included in the reconstructed objects.
All these terms are calibrated independently as described

in Section 5.3. The finalEmiss
x(y) is calculated from Equation 1

adding theEmiss,µ
x(y) term, described in Section 5.2.

4 Thisη cut is chosen because the MC simulation does not describe
data well in the very forward region.

5 σnoise is the Gaussian width of the EM cell energy distribution
measured in randomly triggered events far from collision bunches.

5.2 Calculation of the Emiss
T muon term

TheEmiss
T muon term is calculated from the momenta of muon

tracks reconstructed with|η |< 2.7:

Emiss,µ
x(y) =− ∑

muons
pµ

x(y) (5)

where the summation is over selected muons. In the region
|η | < 2.5, only well-reconstructed muons in the muon spec-
trometer with a matched track in the inner detector are con-
sidered (combined muons). The matching requirement consid-
erably reduces contributions from fake muons (reconstructed
muons not corresponding to true muons). These fake muons
can sometimes be created from high hit multiplicities in the
muon spectrometer in events where some particles from very
energetic jets punch through the calorimeter into the muon sys-
tem.

In order to deal appropriately with the energy deposited by
the muon in the calorimeters,Emiss,calo,µ

x(y) , the muon term is cal-
culated differently for isolated and non-isolated muons, with
non-isolated muons defined as those within a distance∆R=
√

(∆η)2+(∆φ)2 < 0.3 of a reconstructed jet in the event:
• The pT of an isolated muon is determined from the com-

bined measurement of the inner detector and muon spec-
trometer, taking into account the energy deposited in the
calorimeters. In this case the energy lost by the muon in
the calorimeters (Emiss,calo,µ

x(y) ) is not added to the calorime-
ter term (Equation 3) to avoid double counting of energy.

• For a non-isolated muon, the energy deposited in the calori-
meter cannot be resolved from the calorimetric energy de-
positions of the particles in the jet. The muon spectrometer
measurement of the muon momentum after energy loss in
the calorimeter is therefore used, so theEmiss,calo,µ

x(y) term is
added to the calorimeter term (Equation 3). Only in cases
in which there is a significant mis-match between the spec-
trometer and the combined measurement, the combined mea-
surement is used and a parameterized estimation of the muon
energy loss in the calorimeter [10] is subtracted.

For higher values of pseudorapidity (2.5< |η | < 2.7), outside
the fiducial volume of the inner detector, there is no matched
track requirement and the muon spectrometerpT alone is used
for both isolated and non-isolated muons.

Aside from the loss of muons outside the acceptance of
the muon spectrometer (|η |> 2.7), muons can be lost in other
small inactive regions (around|η | = 0 and|η | ∼ 1.2) of the
muon spectrometer. The muons which are reconstructed by seg-
ments matched to inner detector tracks extrapolated to the muon
spectrometer are used to recover their contributions toEmiss

T in
the|η | ∼ 1.2 regions [10].

Although the core of theEmiss
T resolution is not much af-

fected by the muon term, any muons which are not reconstruc-
ted, badly measured, or fake, can be a source of fakeEmiss

T .

5.3 Calibration of Emiss
T

The calibration ofEmiss
T is performed using the scheme de-

scribed below, where the cells are calibrated separately accord-
ing to their parent object:
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• TheEmiss,e
T term is calculated from reconstructed electrons

passing the “medium” electron identification requirements,
with pT > 10 GeV and calibrated with the default electron
calibration [8].

• The Emiss,γ
T term is calculated from photons reconstructed

with the “tight” photon identification requirements [11],
with pT > 10 GeV at the EM scale. Due to the low pho-
ton purity, the default photon calibration is not applied.

• TheEmiss,τ
T term is calculated fromτ-jets reconstructed with

the “tight” τ-identification requirements [19], withpT > 10
GeV, calibrated with the local hadronic calibration (LCW)
scheme [20]. The LCW scheme uses properties of clusters
to calibrate them individually. It first classifies calorimeter
clusters as electromagnetic or hadronic, according to the
cluster topology, and then weights each calorimeter cell in
clusters according to the cluster energy and the cell energy
density. Additional corrections are applied to the clusteren-
ergy for the average energy deposited in the non-active ma-
terial before and between the calorimeters and for unclus-
tered calorimeter energy.

• TheEmiss,softjets
T term is calculated from jets (reconstructed

using the anti-kt algorithm with R=0.6) with 7< pT < 20
GeV calibrated with the LCW calibration.

• The Emiss,jets
T term is calculated from jets withpT > 20

GeV calibrated with the LCW calibration and the jet energy
scale (JES) factor [21] applied. The JES factor corrects the
energy of jets, either at the EM-scale or after cluster cali-
bration, back to particle level. The JES is derived as a func-
tion of reconstructed jetη andpT using the generator-level
information in MC simulation.

• The Emiss,CellOut
T term is calculated from topoclusters out-

side reconstructed objects with the LCW calibration and
from reconstructed tracks as described in Section 5.3.1.

Note that object classification criteria and calibration can be
chosen according to specific analysis criteria, if needed.

5.3.1 Calculation of the Emiss,CellOut
T term with a

track-cluster matching algorithm

In events withW andZ boson production, the calibration of
the Emiss,CellOut

T term is of particular importance because, due
to the low particle multiplicity in these events, thisEmiss

T con-
tribution balances theW/Z bosonpT to a large extent [17]. An
energy-flow algorithm is used to improve the calculation of the
low-pT contribution toEmiss

T (Emiss,CellOut
T ). Tracks are added

to recover the contribution from low-pT particles which do
not reach the calorimeter or do not seed a topocluster. Further-
more the track momentum is used instead of the topocluster
energy for tracks associated to topoclusters, thus exploiting the
better calibration and resolution of tracks at low momentum
compared to topoclusters.

Reconstructed tracks withpT > 400 MeV, passing track
quality selection criteria such as the number of hits andχ2 of
the track fit, are used for the calculation of theEmiss,CellOut

T term.
All selected tracks are extrapolated to the second layer of the
electromagnetic calorimeter and very loose criteria are used for
association to reconstructed objects or topoclusters, to avoid

double counting. If a track is neither associated to a topocluster
nor a reconstructed object, its transverse momentum is added
to the calculation ofEmiss,CellOut

T . In the case where the track is
associated to a topocluster, its transverse momentum is used for
the calculation of theEmiss,CellOut

T and the topocluster energy is
discarded, assuming that the topocluster energy corresponds to
the charged particle giving the track. It has to be noticed that
there is a strong correlation between the number of particles
and topoclusters, so, in general no neutral energy is lost replac-
ing the topocluster by a track, and the neutral topoclustersare
kept in most of the cases. If more than one topocluster is asso-
ciated to a track, only the topocluster with the largest energy is
excluded from theEmiss

T calculation, assuming that this energy
corresponds to the track.

6 Study of Emiss
T performance

In this section the distributions ofEmiss
T in minimum bias, di-

jet, Z → ℓℓ andW → ℓν events from data are compared with
the expected distributions from the MC samples. The perfor-
mance ofEmiss

T in terms of resolution and scale is also derived.
Minimum bias, di-jet events andZ → ℓℓ events are used

to investigate theEmiss
T performance without relying on MC

detector simulation. In general, apart from a small contribu-
tion from the semi-leptonic decay of heavy-flavour hadrons in
jets, no genuineEmiss

T is expected in these events. Thus most
of the Emiss

T reconstructed in these events is a direct result of
imperfections in the reconstruction process or in the detector
response.

6.1 Emiss
T performance in minimum bias and di-jet

events

The distributions ofEmiss
x , Emiss

y , Emiss
T andφmiss for data

and MC simulation are shown in Figure 1 for minimum bias
events. The distributions are shown only for events with to-
tal transverse energy (see definition at the end of this section)
greater than 20 GeV in order to reduce the contamination of
fake triggers from the MBTS. Figure 2 shows the distributions
of the same variables for the di-jet sample. The di-jet sample
corresponding to the periods with higher pileup conditions(see
Section 3.1) is used. The MC simulation expectations are su-
perimposed, normalized to the number of events in the data.

In di-jet events a reasonable agreement is found between
data and simulation for all basic quantities, while there issome
disagreement in minimum bias events, attributed to imperfect
modelling of soft particle activity in the MC simulation. The
better agreement between data and MC simulation in theφmiss

distribution for the di-jet sample can be partly explained by the
fact that theEmiss

T is not corrected for the primary vertex po-
sition; the primary vertex position in data is better reproduced
by the MC simulation for the di-jet sample than in the case of
the minimum bias sample.

Events in the tails of theEmiss
T distributions have been care-

fully checked, in order to understand the origin of the large
measuredEmiss

T . The tails are not completely well described by
MC simulation, but, both in data and in MC simulation they are
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in general due to mis-measured jets. In minimum bias events
there are more events in the tail in MC simulation and this can
be due to the fact that the MC statistics is larger than in data. In
di-jet events, there are more events in the tail in data. MoreMC
events would be desirable. In di-jet events there are 19 events
with Emiss

T > 110 GeV in the data. The majority of them (13
events) are due to mis-measured jets, where in most of the cases
at least one jet points to a transition region between calorime-
ters. Two events are due to a combination of mis-measured jets
with an overlapping muon, and one event is due to a fake high-
pT muon. Finally two events look like goodbb̄ candidates,
and one event has one reconstructed jet and no activity in the
other hemisphere.

The events with fakeEmiss
T due to mis-measured jets and

jets containing leptonic decays of heavy hadrons can be re-
jected by a cut based on the azimuthal angle between the jet
andEmiss

T , ∆φ (jet,Emiss
T ). Since the requirement of event clean-

ing depends on the physics analysis, the minimal cleaning cut
is applied and careful evaluation of tail events is performed
in this paper. Analyses that rely on a careful understanding
and reduction of the tails of theEmiss

T distribution (e.g. SUSY
searches such as Ref. [3]) have performed more detailed stud-
ies to characterize the residual tail in events containing high-
pT jets. These analyses use tighter jet cleaning cuts, track-jet
matching, and angular cuts on∆φ (jet,Emiss

T ) to further reduce
the fakeEmiss

T tail. In Ref. [3] a fully data-driven method (de-
scribed in detail in Ref. [17]) was then employed to determine
the residual fakeEmiss

T background.
The contributions from jets, soft jets and topoclusters not

associated to the reconstructed objects and muons are shownin
Figure 3 for the di-jet events. The data-MC agreement is good
for all of the terms contributing toEmiss

T . The tails observed in
the muon term are mainly due to reconstructed fake muons and
to one cosmic-ray muon, which can be rejected by applying a
tighter selection for the muons used in theEmiss

T reconstruction,
based onχ2 criteria for the combination, isolation criteria and
requirements on the number of hits in muon chambers used for
the muon reconstruction.

In the following some distributions are shown for the total
transverse energy,∑ET, which is an important quantity to pa-
rameterise and understand theEmiss

T performance. It is defined
as:

∑ET =
Ncell

∑
i=1

Ei sinθi (6)

whereEi andθi are the energy and the polar angle, respectively,
of calorimeter cells associated to topoclusters within|η |< 4.5.
Cell energies are calibrated according to the scheme described
in Section 5.3 forEmiss

T .
The data distributions of∑ET for minimum bias and di-jet

events from the subset corresponding to lower pileup condi-
tions (see Section 3.1) are compared to MC predictions from
two versions of PYTHIA in Figure 4. The left-hand distribu-
tions show comparisons with the ATLAS tune of PYTHIA 6.
The right-hand distributions show the comparisons with thede-
fault tune of PYTHIA 8. Due to the limited number of events
simulated, the distribution for the di-jet PYTHIA 8 MC sample
is not smooth, and is zero in the lowest∑ET bin populated by
data. This is not understood, also if it can be partly explained

by the fact that the low∑ET region is populated by events from
the jet MC sample generated in the lowest partonpT bin (17-
35 GeV), which is the most suppressed by the di-jet selection
(a factor about 20 more than other samples) and has a large
weight, due to cross-section. Moreover the PYTHIA 8 jet MC
sample in the 8-17 GeV partonpT bin is not available. In the
case of the minimum bias sample, due to the very limited num-
ber of events simulated (about a factor 25 less respect to data),
the tails in the PYTHIA 8 MC distribution are strongly depleted.

The PYTHIA 8 MC [16] version used in this paper has not
yet been tuned to the ATLAS data. The current tune [22] uses
the CTEQ 6.1 parton distribution functions (PDF) instead of
the MRST LO∗∗ as used in PYTHIA 6, and its diffraction model
differs, including higher-Q2 diffractive processes. The compar-
ison of the mean values and the shapes of the two different MC
distributions with data seems to indicate that a better agreement
is obtained with the PYTHIA 8 but, due to the reduced PYTHIA 8
MC statistics, no firm conclusion can be drawn. In the rest of
the paper, the PYTHIA 6 MC samples with the ATLAS tune are
used for comparison with data; this version is used as the base-
line for PYTHIA MC samples for 2010 data analyses.

6.2 Emiss
T performance in Z → ℓℓ events

The absence of genuineEmiss
T in Z → ℓℓ events, coupled with

the clean event signature and the relatively large cross-section,
means that it is a good channel to studyEmiss

T performance.
The distributions ofEmiss

T andφmiss for data and MC sim-
ulation are shown in Figure 5 forZ → ee andZ → µµ events.
The contributions due to muons are shown forZ → µµ events
in Figure 6. Both the contributions from energy deposited in
calorimeter cells associated to muons, taken at the EM scale,
and the contributions from reconstructed muons are shown. For
Z → ee events, the contributions from electrons, jets, soft jets
and topoclusters outside the reconstructed objects are shown
separately in Figure 7. The peak at zero in the distribution
of the jet term corresponds to events where there are no jets
with pT above 20 GeV, and the small values (< 20 GeV) in
the distribution are due to events with two jets whose trans-
verse momenta balance. The MC simulation expectations, from
Z→ ℓℓ events and from the dominant SM backgrounds, are su-
perimposed. Each MC sample is weighted with its correspond-
ing cross-section and then the total MC expectation is normal-
ized to the number of events in data. Reasonable agreement be-
tween data and MC simulation is observed in all distributions.

Events in the tails of theEmiss
T distributions in Figure 5 have

been carefully checked. The 22 events with the highestEmiss
T

values, above 60 GeV, have been examined in detail to check
whether they are related to cosmic-ray muon background, fake
muons, badly measured jets or jets pointing to dead calorime-
ter regions. The events in the tails are found to be compatible
with either signal candidates, includingtt̄, WW andWZ di-
boson events, all involving realEmiss

T , or events in which the
Emiss

T vector is close to a jet in the transverse plane. The lat-
ter category of events can arise from mis-measured jets, andbe
rejected at the analysis level with cuts on∆φ (jet, Emiss

T ) (see
Section 6.1).
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Fig. 1. Distribution of Emiss
x (top left), Emiss

y (top right), Emiss
T (bottom left),φmiss (bottom right) as measured in a data sample of minimum

bias events. The expectation from MC simulation, normalized to the number of events in data, is superimposed.

6.2.1 Measuring Emiss
T response in Z → ℓℓ events

From the event topology [17] in events withZ → ℓℓ decay one
can define an axis in the transverse plane such that the compo-
nent ofEmiss

T along this axis is sensitive to detector resolution
and biases. The direction of this axis,AZ, is defined by the
reconstructed momenta of the leptons:

AZ = ( pT
ℓ+ + pT

ℓ−)/| pT
ℓ+ + pT

ℓ− | (7)

where pT
ℓ are the vector transverse momenta of the lepton and

anti-lepton. The direction ofAZ thus reconstructs the direction
of motion of the Z boson. The perpendicular axis in the trans-
verse plane,AAZ, is a unit vector placed at right angles toAZ,
with positive direction anticlockwise from the direction of the
Z boson.

The mean value of the projection ofEmiss
T onto the lon-

gitudinal axis,〈Emiss
T · AZ〉, is a measure of theEmiss

T scale,
as this axis is sensitive to the balance between the leptons and
the hadronic recoil. Figure 8 shows the value of〈Emiss

T ·AZ〉 as
a function ofpZ

T. These mean values are used as a diagnostic
to validate theEmiss

T reconstruction algorithms. If the leptons
perfectly balanced the hadronic recoil, regardless of the net mo-
mentum of the lepton system, then theEmiss

T ·AZ would be zero,
independent ofpZ

T. Instead,〈Emiss
T ·AZ〉 displays a small bias in

both the electron and muon channels which is reasonably re-
produced by the MC simulation. The observed bias is slightly
negative for low values ofpZ

T, suggesting either that thepT of
the lepton system is overestimated or that the magnitude of the
hadronic recoil is underestimated. The same sign and magni-
tude of bias is seen in both electron and muon channels, sug-
gesting that the hadronic recoil, here dominated byEmiss,CellOut

T
and by soft jets, is the source of bias. The component of the
Emiss

T along the perpendicular axis,Emiss
T · AAZ, displays no

bias, and, indeed there is no mechanism for generating such a
bias.

In Figure 9 the dependences of〈Emiss
T · AZ〉 on pZ

T are
shown separately for events withZ → ℓℓ produced in associ-
ation with zero jets or with at least one jet, with the jet defini-
tion as described in Section 3.1. The figure demonstrates that
there is a negative bias in〈Emiss

T ·AZ〉 for events with zero jets,
which increases withpZ

T up to 6 GeV. A similar bias is ob-
served in both electron and muon channels, hence it is inter-
preted as coming from imperfections in the calibration of the
soft hadronic recoil (theEmiss,CellOut

T and theEmiss,softjets
T terms).

In events with at least one jet there is a small positive bias in the
electron channel at highpZ

T, which is visible also in the muon
channel forpZ

T in the region 15-20 GeV.
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Fig. 2. Distribution of Emiss
x (top left), Emiss

y (top right), Emiss
T (bottom left),φmiss (bottom right) as measured in the data sample of di-jet

events. The expectation from MC simulation, normalized to the number of events in data, is superimposed. The events in the tails are discussed
in the text.

Figure 10 shows〈Emiss
T ·AZ〉 for Z → ℓℓ events where there

are neither highpT nor soft jets, for two cases ofEmiss
T re-

construction: calculating theEmiss,CellOut
T term with the track-

cluster matching algorithm (see Section 5.3.1) or calculating
this term from the calorimeter topoclusters only (denoted as
Emiss

T no tracks). The plots show a lower bias for the case
with the track-cluster matching algorithm, indicating that it im-
proves the reconstruction of theEmiss,CellOut

T term.

6.3 Emiss
T performance in W → ℓν events

In this section theEmiss
T performance is studied inW → eν and

W → µν events. In these events genuineEmiss
T is expected due

to the presence of the neutrino, therefore theEmiss
T scale can be

checked.
The distributions ofEmiss

T andφmiss in data and in MC
simulation are shown in Figure 11 forW → eν and W →
µν events. The contributions due to muons are shown for
W → µν events in Figure 12. Both, theEmiss

T contribution
from energy deposited in calorimeter cells associated to muons,
taken at the EM scale, and theEmiss

T contribution from re-
constructed muons are shown. The contributions given by the
electrons, jets, soft jets and topoclusters outside reconstructed

objects are shown in Figure 13 forW → eν events. The MC
expectations are also shown, both fromW → ℓν events, and
from the dominant SM backgrounds. The MC simulation de-
scribes all of the quantities well, with the exception that very
small data-MC discrepancies are observed in the distribution
of theEmiss,e

T at low Emiss
T values. This can be attributed to the

QCD jet background, which would predominantly populate the
region of lowEmiss

T [8], but which is not included in the MC
expectation shown.

6.3.1 Emiss
T linearity in W → ℓν MC events

The expectedEmiss
T linearity, which is defined as the mean

value of the ratio:(Emiss
T −Emiss,True

T )/Emiss,True
T , is shown as

a function ofEmiss,True
T in Figure 14 forW → eν andW →

µν MC events. The mean value of this ratio is expected to be
zero if the reconstructedEmiss

T has the correct scale. In Figure
14, it can be seen that there is a displacement from zero which
varies with the trueEmiss

T . The bias at lowEmiss,True
T values is

about 5% and is due to the finite resolution of theEmiss
T mea-

surement. The reconstructedEmiss
T is positive by definition, so

the relative difference is positive when theEmiss,True
T is small.
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Fig. 3. Distribution of Emiss
T computed with cells from topoclusters in jets (top left), insoft jets (top right), from topoclusters outside recon-

structed objects (bottom left) and from reconstructed muons (bottom right) for data for di-jet events. The expectationfrom MC simulation,

normalized to the number of events in data, is superimposed.The events in the tail of the Emiss,µ
T distribution are discussed in the text.

The effect extends up to 40 GeV. The bias is in general larger
for W → µν events than forW → eν events. Considering
only events withEmiss,True

T > 40 GeV, theEmiss
T linearity is bet-

ter than 1% inW → eν events, while there is a non-linearity
up to about 3% inW → µν events. This may be explained by
an underestimation of theEmiss,calo,µ

T term, in which too few
calorimeter cells are associated to the reconstructed muon.

6.4 Emiss
T resolution

A more quantitative evaluation of theEmiss
T performance can

be obtained from a study of the(Emiss
x ,Emiss

y ) resolutions as a
function of ∑ET. In Z → ℓℓ events, as well as in minimum
bias and QCD jet events, no genuineEmiss

T is expected, so the
resolution of the twoEmiss

T components is measured directly
from reconstructed quantities, assuming that the true values of
Emiss

x andEmiss
y are equal to zero. The resolution is estimated

from the width of the combined distribution ofEmiss
x andEmiss

y

(denoted(Emiss
x ,Emiss

y ) distribution) in bins of∑ET. The core
of the distribution is fitted, for each∑ET bin, with a Gaus-
sian over twice the expected resolution obtained from previous
studies [17] and the fitted width,σ , is examined as a function of

∑ET. TheEmiss
T resolution follows an approximately stochastic

behaviour as a function of∑ET, which can be described with
the functionσ = k ·

√
ΣET, but deviations from this simple law

are expected in the low∑ET region due to noise and in the very
large∑ET region due to the constant term.

Figure 15 (left) shows the resolution from data at
√

s= 7
TeV for Z → ℓℓ events, minimum bias and di-jet events as a
function of the total transverse energy in the event, obtained by
summing thepT of muons and the∑ET in calorimeters, cal-
culated as described in Section 6.1. If the resolution is shown
as a function of the∑ET in calorimeters, a difference between
Z → ee andZ → µµ events is observed due to the fact that
∑ET includes electron momenta inZ→ ee events while muon
momenta are not included inZ → µµ events.

The resolution of the twoEmiss
T components is fitted with

the simple function given above. The fits are acceptable and are
of similar quality for all different channels studied. Thisallows
to use the parameterk as an estimator for the resolution and to
compare it in various physics channels in data and MC simula-
tion. There is a reasonable agreement in theEmiss

T resolution in
the different physics channels, as can be seen from the fit pa-
rametersk reported in the figure. Thek parameter has fit values
ranging from 0.42 GeV1/2 for Z → ℓℓ events to 0.51 GeV1/2

for di-jet events. TheEmiss
T resolution is better inZ→ ℓℓ events
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Fig. 4. Distribution of∑ET as measured in a data sample of minimum bias events (top) and di-jet events (bottom) selecting two jets with pT >
25 GeV. The expectation from MC simulation, normalized to the number of events in data, is superimposed. On the leftPYTHIA 6 (ATLAS tune)
is compared with the data. On the rightPYTHIA 8 is compared with the data.

because the lepton momenta are measured with better precision
than jets.

In Figure 15 (right) theEmiss
T resolution is shown for MC

events. In addition to theZ → ℓℓ, minimum bias and di-jet
events, the resolution is also shown forW → ℓν MC events. In
W events the resolution of the twoEmiss

T components is esti-
mated from the width of(Emiss

x −Emiss,True
x ,Emiss

y −Emiss,True
y )

in bins of ∑ET, fitted with a Gaussian as explained above.
There is a reasonable agreement in theEmiss

T resolution in the
different MC channels studied with the fitted value ofk ranging
from 0.42 GeV1/2 for Z → ℓℓ events to 0.50 GeV1/2 for di-jet
events. As observed for data, theEmiss

T resolution is better in
Z → ℓℓ events and slightly better inW → ℓν events, due to the
presence of the leptons which are more precisely measured.

The resolution in MC minimum bias events is slightly worse
than in data. This is probably due to imperfections of the mod-
elling of soft particle activity in MC simulation, while there is
a good data-MC agreement in the resolution for other channels.

7 Evaluation of the systematic uncertainty
on the Emiss

T scale

For any analysis usingEmiss
T , it is necessary to be able to evalu-

ate the systematic uncertainty on theEmiss
T scale. TheEmiss

T , as
defined in Section 5.3, is the sum of several terms correspond-
ing to different types of reconstructed objects. The uncertainty
on each individual term can be evaluated given the knowledge
of the reconstructed objects [8,23] that are used to build itand
this uncertainty can be propagated toEmiss

T . The overall sys-
tematic uncertainty on theEmiss

T scale is then calculated by
combining the uncertainties on each term.

The relative impact of the uncertainty of the constituent
terms onEmiss

T differs from one analysis to another depending
on the final state being studied. In particular, in events contain-
ing W andZ bosons decaying to leptons, uncertainties on the
scale and resolution in the measurements of the charged lep-
tons, together with uncertainties on the jet energy scale, need to
be propagated to the systematic uncertainty estimate ofEmiss

T .
Another significant contribution to theEmiss

T scale uncertainty
in W andZ boson final states comes from the contribution of
topoclusters outside reconstructed objects and from soft jets. In
the next three subsections, two complementary methods for the
evaluation of the systematic uncertainty on theEmiss

T
,CellOut and
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from Monte Carlo simulation is superimposed and normalizedto data, after each MC sample is weighted with its corresponding cross-section.
The sum of all backgrounds is shown in the lower plots.
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Fig. 7. Distribution of Emiss
T computed with cells associated to electrons (Emiss,e

T ) (top left), jets with pT > 20 GeV (Emiss,jets
T ) (top right), jets

with 7 GeV< pT < 20 GeV (Emiss,softjets
T ) (bottom left) and from topoclusters outside reconstructed objects (Emiss,CellOut

T ) (bottom right) for
Z → ee data. The expectation from Monte Carlo simulation is superimposed and normalized to data, after each MC sample is weighted with
its corresponding cross-section.

theEmiss
T

,softjetsterms are described. Finally the overallEmiss
T un-

certainty forW → ℓν events is calculated.

7.1 Evaluation of the systematic uncertainty on the
Emiss

T
,CellOut scale using Monte Carlo simulation

There are several possible sources of systematic uncertainty in
the calculation ofEmiss

T
,CellOut. These sources include inaccu-

racies in the description of the detector material, the choice of
shower model and the model for the underlying event in the
simulation. The systematic uncertainty due to each of these
sources is estimated with dedicated MC simulations. The MC
jet samples, generated with PYTHIA , are those used to assess
the systematic uncertainty on the jet energy scale [21]. Table 1
lists the simulation samples considered, referred to in thefol-
lowing as “variations” with respect to the nominal sample.

The estimate of the uncertainty onEmiss
T

,CellOut for a vari-
ation i is determined by calculating the percentage difference
between the mean value of this term for the nominal sample,
labelledµ0, and that for the variation sample, labelledµi . This
approach assumes that the variations affect the total scaleand
none of the variations introduces a shape dependence in the

Emiss
T

,CellOut term, as verified in Ref. [24]. In order to cross-
check for a possible dependence on the event total transverse
energy, the relative differenceRi = (µi − µ0)/µ0 between dif-
ferent variations is computed in bins of∑ET for the jet samples.
No significant dependence ofRi on ∑ET is observed. A cross-
check on the topology dependence is done usingW → ℓν sam-
ples simulated by introducing the variationsi. Table 2 shows
theRi values as computed in both the QCD jet samples and the
W → ℓν samples. The results are consistent, showing that the
estimated uncertainty does not have a large dependence on the
event topology.

A symmetric systematic uncertainty on theEmiss
T

,CellOut scale
is obtained by summing in quadrature the estimated uncertain-
ties averaged between simulated jet andW events. The total
estimated uncertainty6 on theEmiss

T
,CellOut term is 2.6%.

6 In this uncertainty evaluation using MC simulation, the uncer-
tainty on the absolute electromagnetic energy scale in the calorimeters
should also be taken into account. For the bulk of the LAr barrel elec-
tromagnetic calorimeter a 1.5% uncertainty is found on the cell energy
measurement, increasing to 5% for the presampler and 3% for the tile
calorimeter [25].
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Variation Description

Dead Material 5% increase in the inner detector material
0.1X0 in front of the cryostat of the EM barrel calorimeter

0.05X0 between presampler and EM barrel calorimeter
0.1X0 in the cryostat after the EM barrel calorimeter

density of material in barrel-endcap transition of the EM calorimeter×1.5
FTFPBERT An alternative shower model for hadronic interaction in GEANT4

QGSP An alternative shower model for hadronic interaction in GEANT4
PYTHIA Perugia 2010 tune An alternative setting of the PYTHIA parameters

with increased final state radiation and more soft particles

Table 1. Variations of the default simulation settings used for the estimate of theEmiss
T

,CellOut term systematic uncertainty. See Ref. [21] for
details of the parameters.

7.2 Evaluation of the systematic uncertainty on the
Emiss

T
,CellOut scale from the topocluster energy scale

uncertainty

The uncertainty on the scale of theEmiss
T

,CellOut term, which is
built from topoclusters with a correction based on tracks (see
Section 5.3.1), can also be calculated from the topoclusteren-
ergy scale uncertainties. These uncertainties can be estimated
from comparisons between data and MC simulation using the

E/p response from single tracks, measured by summing the en-
ergies of all calorimeter clusters around a single isolatedtrack
[25]. The effects of these uncertainties on theEmiss

T
,CellOut term

can be evaluated by varying the energy scale of topoclusters
that contribute to theEmiss

T
,CellOut term inW → eν MC sam-

ples, as was done in Ref. [8].
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Fig. 15. Emiss
x and Emiss
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a functionσ = k ·√ΣET and the fitted values of the parameter k, expressed in GeV1/2, are reported in the figure.

Variation jet events W production

Dead Material (−0.5±0.1)% (−0.6±0.2)%
FTFPBERT (0.1±0.4)% (0.5±0.2)%

QGSP (−1.6±0.4)% (−2.2±0.2)%
PYTHIA Perugia 2010 tune (−1.7±0.1)% (−1.5±0.2)%

Table 2. Systematic uncertainties (Ri) onEmiss,CellOut
T associated with

variations in the dead material (all the variations listed in Table 1
are applied at the same time), in the calorimeter shower modelling
(FTFPBERT, QGSP) and in the event generator settings (PYTHIA Pe-
rugia 2010 tune).

The shift in the topocluster energy scale is applied by mul-
tiplying the topocluster energy by the function:

1±a× (1+b/pT) (8)

with a= 3(10)% for |η |< (>)3.2 andb= 1.2 GeV.
The a parameter in Equation 8 addresses the uncertainty

on the cluster energy scale, obtained by comparing the ratioof
the cluster energy and the measured track momentum,E/p, in

data and MC simulation [25]. The value in the forward region,
where tracks cannot be used to validate the energy scale, is
estimated from the transverse momentum balance of one jet in
the central region and one jet in the forward region in events
with only two jets at high transverse momenta.

Thebparameter in Equation 8 addresses the possible change
in the clustering efficiency and scale in a non-isolated environ-
ment. To go from the response for single isolated particles to
the cluster energy scale, possible effects from the noise thresh-
olds in the configuration with nearby particles are taken into
account .

Because of threshold effects, more energy is clustered for
nearby particles than for isolated ones. In an hypothetic worst
case scenario, the environment is so busy that the clustering
algorithm is forced to cluster all the deposited energy, with no
bias due to the noise thresholds. Therefore, the maximal size
of the noise threshold effect can be evaluated by comparing
the ratioEcell/p of the total energyEcell deposited into all cells
around an isolated track to the track momentum, to the ratio



The ATLAS Collaboration: Performance of Missing Transverse Momentum Reconstruction at
√

s = 7 TeV 17

E/p of the clustered energyE to the track momentum, in data
and MC simulation.

The fractionalEmiss,CellOut
T uncertainty is evaluated from:

(∆CellOut++∆CellOut−)/(2×Emiss,CellOut
T ) (9)

where

∆CellOut+ = |Emiss,CellOut+
T −Emiss,CellOut

T |
∆CellOut− = |Emiss,CellOut−

T −Emiss,CellOut
T | (10)

with Emiss
T

,CellOut+ and Emiss
T

,CellOut− obtained by shifting the
topocluster energies up and down, respectively, using Equation
8. The value of the fractionalEmiss

T
,CellOut uncertainty is found

to be approximately 13%, decreasing slightly with increasing
∑ET

CellOut. This uncertainty is much larger than the uncertainty
due to the detector description estimated from the first three
lines of Table 2. The main reason is that the values ofa and
b which enter into Equation 8 are conservative, to include the
effects described above. In particular the cluster energy uncer-
tainty in the forward region is conservatively estimated, since
the uncertainty cannot be evaluated using tracks. Moreover, the
procedure does not take into account the fact that when the
clusters are shifted up inpT, some of them can form jets above
threshold and they are therefore included in the soft jet term in
Emiss

T . These clusters should be removed from theEmiss
T

,CellOut,
they are in fact kept and this increases the uncertainty. It should
also be noted that in the calculation ofEmiss

T
,CellOut the track

momentum is used instead of the topocluster energy when there
is a track-topocluster matching (see Section 5.3.1). This would
result in a reduced uncertainty due to the more precise measure-
ment of the track momentum, which is not taken into account
here. Further study is expected to provide a reduction in this
uncertainty in future, by considering the described effects in
detail.

To give an estimate of theEmiss
T

,CellOut systematic uncer-
tainty, the calorimeter contribution can be taken from Section
7.2, and the uncertainty from the event generator settings from
Section 7.1 (PYTHIA Perugia 2010 tune). This results in a to-
tal systematic uncertainty on the scale ofEmiss

T
,CellOut of about

13%, which slightly decreases when∑ET
CellOut increases.

7.3 Evaluation of the systematic uncertainty on the
Emiss

T
,softjetsscale

The same procedure described in the previous sections is used
to assess the systematic uncertainty on theEmiss

T term calcu-
lated from soft jets (see Section 5.1).

Using the MC approach described in Section 7.1, it is found
that the uncertainty onEmiss

T
,softjets does not exhibit a large de-

pendence on the event∑ET, as was also found for the un-
certainty on theEmiss,CellOut

T scale. The results are consistent
between the QCD jet samples and theW samples, as can be
seen from Table 3 which gives the systematic uncertaintiesRi
as computed in jet samples and inW → ℓν samples.

A total, symmetric, systematic uncertainty of about 3.3%
on theEmiss

T
,softjets term is obtained by combining the results

Variation jet events W production

Dead Material (−1.5±0.1)% (−1.5±0.2)%
FTFPBERT (0.3±0.4)% (0.8±0.2)%

QGSP (−2.6±0.4)% (−2.5±0.2)%
PYTHIA Perugia 2010 tune (−1.4±0.1)% (−1.0±0.2)%

Table 3. Systematic uncertainties (Ri) on Emiss
T

,softjetsassociated with
variations in the dead material (all the variations listed in Table 1
are applied at the same time), in the calorimeter shower modelling
(FTFPBERT, QGSP) and in the event generator settings (PYTHIA Pe-
rugia 2010 tune).

in Table 3, as was done in Section 7.1. With the same data-
driven approach utilising the uncertainty on the topocluster en-
ergy scale described in Section 7.2, the systematic uncertainty
onEmiss

T
,softjets is evaluated to be about 10%.

As for Emiss
T

,CellOut, the uncertainty on theEmiss
T

,softjetsscale
found by shifting the topocluster energies is larger than the
uncertainty estimated from MC simulation. To give an esti-
mate of the systematic uncertainty onEmiss

T
,softjets, the contribu-

tion from the calorimeter response can be taken from the data-
driven evaluation and the contribution from the event generator
settings from Table 3. This results in an overall systematicun-
certainty of about 10% onEmiss

T
,softjets, slightly increasing as

∑ET increases.

7.4 Evaluation of the overall systematic uncertainty
on the Emiss

T scale in W → eν and W → µν events

Using as inputs the systematic uncertainties on the different re-
constructed objects [8,21] and onEmiss

T
,CellOut andEmiss

T
,softjets

evaluated in the previous sections, the overallEmiss
T systematic

uncertainty inW → eν andW → µν events is estimated. The
same method can be applied to any final state event topology.
Figure 16 shows, for bothW → eν andW → µν events, the
systematic uncertainties on each of the termsEmiss

T
,e (Emiss

T
,µ ),

Emiss
T

,jets, Emiss
T

,softjetsandEmiss
T

,CellOut as a function of their in-
dividual contribution to∑ET labelled∑ET

term. All the uncer-
tainties are calculated with the formulae in Equations 9 and10.
In the same figure the uncertainty onEmiss

T due to the uncer-
tainties on the different terms is also shown as a function of
the total∑ET, together with the overall uncertainty onEmiss

T ,
obtained by combining the partial terms. The uncertaintieson
Emiss

T
,softjets andEmiss

T
,CellOut are considered to be fully corre-

lated. InW → eν andW → µν events, selected as described
in Section 3.3, the overall uncertainty on theEmiss

T scale in-
creases with∑ET from ∼ 1% to∼ 7%. It is estimated to be,
on average, about 2.6% for both channels.

TheEmiss
T scale uncertainty depends on the event topology

because the contribution of a givenEmiss
T term can vary for

different final states.
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Fig. 16. Fractional systematic uncertainty (calculated as in Equations 9 and 10) on different Emiss
T terms as a function of respective

∑ET
term (left) and contributions of different term uncertainties on Emiss

T uncertainty as a function of∑ET (right) in MC W→ eν events (top)
and W→ µν events (bottom). The overall systematic uncertainty on theEmiss

T scale, obtained combining the various contributions is shown
in the right plots (filled circles). The uncertainties on Emiss

T
,softjetsand Emiss

T
,CellOut are considered to be fully correlated.

8 Determination of the Emiss
T scale from

W → ℓν events

The determination of the absoluteEmiss
T scale is important in a

range of analyses involvingEmiss
T measurements, ranging from

precision measurements to searches for new physics.
In this section two complementary methods to determine

the absolute scale ofEmiss
T usingW → ℓν events are described.

The first method uses a fit to the distribution of the transverse
mass,mT, of the lepton-Emiss

T system, and is sensitive both to
the scale and the resolution ofEmiss

T . The second method uses
the interdependence of the neutrino and lepton momenta in the
W → eν channel, and theEmiss

T scale is determined as a func-
tion of the reconstructed electron transverse momentum. Both
methods allow checks on the agreement between data and MC
simulation for theEmiss

T scale.

8.1 Reconstructed transverse mass method

The method described in this section uses the shape of the
mT distribution and is sensitive to both theEmiss

T resolution and

scale. The lepton transverse momentum,pℓT, and theEmiss
T are

used to calculatemT as:

mT =
√

2pℓTEmiss
T (1− cosφ) (11)

whereφ is the azimuthal angle between the lepton momentum
andEmiss

T directions. The truemT is reconstructed from the sim-
ulation under the hypothesis thatEmiss

T is entirely due to the
neutrino momentum,pν

T. Template histograms of themT distri-
butions are generated by convoluting the true transverse mass
distribution with a Gaussian function:

Emiss,smeared
x(y) = α Emiss,True

x(y) ∗Gauss(0,k ·
√

ΣET) (12)

where the parametersα andk are theEmiss
T scale and resolution

respectively.
The α and k parameters are determined through a fit of

themT distribution to data using a linear combination of signal
and backgroundmT distributions obtained from simulation. All
the backgrounds, with the exception of the jet background, are
evaluated from the same MC samples used in Section 6.3 and
the normalization is fixed according to their cross-sections. The
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shape of the jet background is also evaluated from MC simula-
tion and its normalization is obtained from the fit, in addition
to α andk.

To selectW → µν events, the same criteria as described in
Section 3.3 are used, with the exception that no cut onEmiss

T
is applied and a looser cut,mT > 30 GeV, is applied in order
that the background normalization can be fitted. Theα andk
parameters obtained from the fit are shown in Table 4, together
with the numbers of events for the signal and backgrounds and
theχ2/ndof of the fit. In the table, instead of the values ofα, the
values ofα −1= 〈(Emiss

x(y) −Emiss,True
x(y) )/Emiss,True

x(y) 〉 are reported,
in order to compare with the result in Sections 6.3.1 and 8.2.
The results for theα andk parameters using themT distribution
of the simulated signal are also shown in Table 4, and they are
in good agreement with the results from data. The result of the
fit to data and MC simulation is shown in Figure 17.

To selectW → eν events, the selection described in Sec-
tion 3.3 is used with the addition of tighter cuts. A cutEmiss

T >

36 GeV is applied to exclude the region where theEmiss
T re-

sponse is not linear (see Figure 14). A cutmT > 40 GeV is
also applied. Theα andk parameters obtained from the fit are
shown in Table 4, together with the results obtained from the
MC, which are in good agreement with data. The result of the
fit to data and MC simulation is shown in Figure 17.

The results obtained with this method are compatible, at
the few percent level, with the results shown in Figure 14 and
Figure 15, which were derived using only simulation. From
those figures, for theW → µν channelα −1 has values up to
3% and the resolution is 0.47

√
∑ET; for theW → eν channel

α −1 is close to zero for highEmiss
T values and the resolution

is 0.47
√

∑ET.
The uncertainty due to background subtraction is already

included in the uncertainty reported in Table 4. The systematic
uncertainty onα − 1 is determined to be about 1% for each
channel, by checking the stability of the results using different
cuts onEmiss

T and using a different generator, MC@NLO. In
summary, with this method theEmiss

T absolute scale is deter-
mined fromW → ℓν events, in a data sample corresponding
to an integrated luminosity of about 36 pb−1, with an uncer-
tainty (adding the uncertainties reported in Table 4 with the
systematic uncertainty) of about 1.5% and about 2% for the
W → µν andW → eν decay channels, respectively.

8.2 Method based on the correlation between
electron and neutrino transverse momenta in
W → eν

In this section the correlation between the transverse momenta
of charged and neutral leptons fromW boson decays is used to
determine theEmiss

T scale. The mean measuredEmiss
T is com-

pared to the mean trueEmiss
T from signal MC events. The rela-

tive bias in the reconstructedEmiss
T , (〈Emiss

T 〉−〈Emiss
T

,True〉)/〈Emiss
T

,True〉,
is studied as a function ofpe

T because the MC simulation of the
electron response is more accurate than that for hadrons.

This method is shown forW → eν events by applying
selection criteria similar to the ones described in Section3.3,
but with isolation requirements both on the electron track and

calorimeter signal. TheEmiss
T is required to be greater than 20

GeV and no cut is applied onmT.

MC samples are generated with MC@NLO [15]. A next-
to-leading-order (NLO) generator is used for this study because
in this approach theEmiss

T scale is validated on the basis of the
known decay properties of theW boson. The correlation be-
tweenpν

T andpe
T is important for this study, and is poorly de-

scribed by leading-order generators such as PYTHIA, whereas
it is much improved in MC@NLO. The MC events are weighted
such that the trueW boson transverse momentum,pW

T , and
pseudorapidityηW agree with that generated using the RES-
BOS [26] generator which is more accurate in describingpW

T at
low values. Finally, an additional smearing is applied to the re-
constructed electron momentum in the MC samples, to match
the electron resolution measured in data, and the correction is
propagated toEmiss

T .

A data-driven technique is used to estimate the impact of
jet background, which is small (see Figure 18 left) and concen-
trated at lowpe

T. W → τν events, where theτ decays to an
electron, are the second largest background, but the impacton
the mean value ofEmiss

T is found to be negligible.

The distribution ofpe
T is shown in Figure 18. The distribu-

tion from data after event selection is fitted by varying the nor-
malization of signal MC and QCD background distributions.
A satisfactory description of data is achieved except for the
first bin, which is excluded from the fit. For eachpe

T bin, the
corrected distribution ofEmiss

T is obtained by subtracting that
of the background sample (after normalizing it according to
the fit) from the data distribution. The largest impact of back-
ground corresponds tope

T = 20 GeV, with an effect of about 2
GeV on the mean value ofEmiss

T ; the effect decreases quickly
to 0.2 GeV atpe

T = 30 GeV.

Since a cut onEmiss
T is used for the event selection and the

Emiss
T resolution is finite, the results are biased. To correct for

the bias in signal MC events the requirement of reconstructed
Emiss

T > 20 GeV is replaced by a cut on trueEmiss
T > 20 GeV.

The mean measuredEmiss
T , corrected for background and

for the event selection bias, is used to calculate the relative bias
in the reconstructedEmiss

T , (〈Emiss
T 〉− 〈Emiss

T
,True〉)/〈Emiss

T
,True〉,

which is shown in Figure 18 as a function ofpe
T. The figure

shows that theEmiss
T scale is correct at low values ofpe

T while
it is overestimated at high values ofpe

T.

The bias onEmiss
T is on the percent level between 25 and

35 GeV, then it rises up to 7% and it is 2 +- 0.1% on aver-
age. For comparison, if the entire calculation is performedon
signal MC events alone, the resulting average bias inEmiss

T is
2.9±0.1%. The method relies on simulation to derive the cor-
relation betweenEmiss

T
,True and pe

T, so it can be sensitive to
details of the simulation. In particular, the jet factorization and
renormalization scales, as well as the choice of PDF, can af-
fect the results, but all these also change thepW

T distribution.
Therefore the shape of thepW

T distribution was distorted by
±10%, justified by the comparison of a recent measurement of
the pZ

T distribution [27] with RESBOS predictions, and the
relative bias was calculated again. A systematic uncertainty on
the relativeEmiss

T scale bias of±2% is evaluated. The results
for the averageEmiss

T scale are summarized in Table 5. These
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Channel α −1 (%) k Signal EW(fixed) QCD χ2/ndo f

W → µν data 5.1±0.8 0.52±0.01 164920±840 14760 24870±840 68/87
W → µν MC 5.5±0.8 0.50±0.01 70/78
W → eν data −0.8±1.6 0.49±0.01 75660±180 1210 980±180 54/75
W → eν MC 1.8±1.7 0.50±0.01 38/54

Table 4. Results ofmT fit in W → ℓν events. The second and third columns show the scale and resolution parameters obtained. The numbers
of events for the signal, the electroweak and QCD backgrounds obtained from the fit are shown in the fourth, fifth and sixth columns for data.
In the last column theχ2/ndof of the fit is reported. The errors are statistical and take into account background subtraction uncertainties and
correlations.
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results agree within errors with the values ofα −1 shown in
Table 4.

9 Conclusion

The missing transverse momentum (Emiss
T ) has been measured

in minimum bias, di-jet,Z → ℓℓ andW → ℓν events in 7 TeV
ppcollisions recorded with the ATLAS detector in 2010.

The value ofEmiss
T is reconstructed from calorimeter cells

in topological clusters, with the exception of electrons and pho-
tons for which a different clustering algorithm is used, and
from reconstructed muons. The cells are calibrated according
to their parent particle type. The scheme yielding the best per-
formance is evaluated to be that in which electrons are cal-
ibrated with the default electron calibration and photons are
used at the EM scale, theτ-jets and jets are calibrated with
the local hadronic calibration (LCW), the jets withpT greater
than 20 GeV are scaled to the jet energy scale, and the contri-
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source scale bias (%)
data 2.0±0.1±2.0
MC 2.9±0.1

Table 5. Average relativeEmiss
T scale bias obtained from data and MC

simulation from the electron-neutrino correlation method. The statis-
tical and the systematic uncertainties are given for data.

bution from topoclusters not associated to high-pT objects is
calculated with LCW calibration combined with tracking infor-
mation.

Monte Carlo simulation is found to describe the data in gen-
eral rather well. No large tails are observed in theEmiss

T distri-
bution in minimum bias, di-jet andZ → ℓℓ events, where no
significantEmiss

T is expected. The tails are not completely well
described by MC simulation especially in di-jets events, where
there are more events in the tail in data.

There is some difference observed between data and MC
simulation for the reconstructed total transverse energy.The
precise difference is dependent on the model used to simulate
soft-physics processes.

TheEmiss
T resolution is similar in the different channels stud-

ied and in agreement with the resolution in the MC simulation.
The resolution follows a functionσ = k ·

√
ΣET, where the pa-

rameterk is about 0.5 GeV1/2.
The linearity of theEmiss

T measurement inW → ℓν events
is studied in MC simulation as a function of the trueEmiss

T .
Except for the bias observed at small trueEmiss

T values (visible
up to 40 GeV), due to the finiteEmiss

T resolution, the linearity is
better than 1% inW → eν events, while a small non-linearity
up to about 3% is observed inW → µν events.

TheEmiss
T projected along theZ direction inZ → ℓℓ events

is observed to have a bias up to 6 GeV at large values ofpZ
T

in events with no jets, suggesting that some improvements are
still needed in the calibration of low-pT objects.

The overall systematic uncertainty onEmiss
T scale, calculated

by combining the uncertainties on the various terms entering
the full Emiss

T calculation, is estimated to be, on average, 2.6%
in events with aW decaying to a lepton (electron or muon) and
neutrino. The uncertainty is larger at large∑ET.

Two methods are used for determining theEmiss
T scale from

W → ℓν events in data, giving results in agreement with that
evaluated using MC simulation. The resulting uncertainty on
theEmiss

T scale determined in-situ with 36 pb−1 of data is, on
average, about 2%.
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A.J. Barr118, F. Barreiro80, J. Barreiro Guimarães da Costa57, P. Barrillon115, R. Bartoldus143, A.E. Barton71, D. Bartsch20,
V. Bartsch149, R.L. Bates53, L. Batkova144a, J.R. Batley27, A. Battaglia16, M. Battistin29, G. Battistoni89a, F. Bauer136,
H.S. Bawa143, f , B. Beare158, T. Beau78, P.H. Beauchemin118, R. Beccherle50a, P. Bechtle41, H.P. Beck16, M. Beckingham48,
K.H. Becks174, A.J. Beddall18c, A. Beddall18c, S. Bedikian175, V.A. Bednyakov65, C.P. Bee83, M. Begel24, S. Behar Harpaz152,
P.K. Behera63, M. Beimforde99, C. Belanger-Champagne85, P.J. Bell49, W.H. Bell49, G. Bella153, L. Bellagamba19a,
F. Bellina29, M. Bellomo29, A. Belloni57, O. Beloborodova107, K. Belotskiy96, O. Beltramello29, S. Ben Ami152, O. Benary153,
D. Benchekroun135a, C. Benchouk83, M. Bendel81, N. Benekos165, Y. Benhammou153, D.P. Benjamin44, M. Benoit115,
J.R. Bensinger22, K. Benslama130, S. Bentvelsen105, D. Berge29, E. Bergeaas Kuutmann41, N. Berger4, F. Berghaus169,
E. Berglund49, J. Beringer14, K. Bernardet83, P. Bernat77, R. Bernhard48, C. Bernius24, T. Berry76, A. Bertin19a,19b,
F. Bertinelli29, F. Bertolucci122a,122b, M.I. Besana89a,89b, N. Besson136, S. Bethke99, W. Bhimji45, R.M. Bianchi29,
M. Bianco72a,72b, O. Biebel98, S.P. Bieniek77, K. Bierwagen54, J. Biesiada14, M. Biglietti134a,134b, H. Bilokon47, M. Bindi19a,19b,
S. Binet115, A. Bingul18c, C. Bini132a,132b, C. Biscarat177, U. Bitenc48, K.M. Black21, R.E. Blair5, J.-B. Blanchard115,
G. Blanchot29, T. Blazek144a, C. Blocker22, J. Blocki38, A. Blondel49, W. Blum81, U. Blumenschein54, G.J. Bobbink105,
V.B. Bobrovnikov107, S.S. Bocchetta79, A. Bocci44, C.R. Boddy118, M. Boehler41, J. Boek174, N. Boelaert35, S. Böser77,
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H. Ji172, W. Ji81, J. Jia148, Y. Jiang32b, M. Jimenez Belenguer41, G. Jin32b, S. Jin32a, O. Jinnouchi157, M.D. Joergensen35,
D. Joffe39, L.G. Johansen13, M. Johansen146a,146b, K.E. Johansson146a, P. Johansson139, S. Johnert41, K.A. Johns6,
K. Jon-And146a,146b, G. Jones82, R.W.L. Jones71, T.W. Jones77, T.J. Jones73, O. Jonsson29, C. Joram29, P.M. Jorge124a,b,
J. Joseph14, T. Jovin12b, X. Ju130, V. Juranek125, P. Jussel62, A. Juste Rozas11, V.V. Kabachenko128, S. Kabana16, M. Kaci167,
A. Kaczmarska38, P. Kadlecik35, M. Kado115, H. Kagan109, M. Kagan57, S. Kaiser99, E. Kajomovitz152, S. Kalinin174,
L.V. Kalinovskaya65, S. Kama39, N. Kanaya155, M. Kaneda29, T. Kanno157, V.A. Kantserov96, J. Kanzaki66, B. Kaplan175,
A. Kapliy30, J. Kaplon29, D. Kar43, M. Karagoz118, M. Karnevskiy41, K. Karr5, V. Kartvelishvili71, A.N. Karyukhin128,
L. Kashif172, A. Kasmi39, R.D. Kass109, A. Kastanas13, M. Kataoka4, Y. Kataoka155, E. Katsoufis9, J. Katzy41, V. Kaushik6,
K. Kawagoe67, T. Kawamoto155, G. Kawamura81, M.S. Kayl105, V.A. Kazanin107, M.Y. Kazarinov65, J.R. Keates82,
R. Keeler169, R. Kehoe39, M. Keil54, G.D. Kekelidze65, M. Kelly82, J. Kennedy98, C.J. Kenney143, M. Kenyon53, O. Kepka125,
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J. Kroseberg20, J. Krstic12a, U. Kruchonak65, H. Krüger20, T. Kruker16, Z.V. Krumshteyn65, A. Kruth20, T. Kubota86,
S. Kuehn48, A. Kugel58c, T. Kuhl41, D. Kuhn62, V. Kukhtin65, Y. Kulchitsky90, S. Kuleshov31b, C. Kummer98, M. Kuna78,
N. Kundu118, J. Kunkle120, A. Kupco125, H. Kurashige67, M. Kurata160, Y.A. Kurochkin90, V. Kus125, W. Kuykendall138,
M. Kuze157, P. Kuzhir91, J. Kvita29, R. Kwee15, A. La Rosa172, L. La Rotonda36a,36b, L. Labarga80, J. Labbe4, S. Lablak135a,
C. Lacasta167, F. Lacava132a,132b, H. Lacker15, D. Lacour78, V.R. Lacuesta167, E. Ladygin65, R. Lafaye4, B. Laforge78,
T. Lagouri80, S. Lai48, E. Laisne55, M. Lamanna29, C.L. Lampen6, W. Lampl6, E. Lancon136, U. Landgraf48, M.P.J. Landon75,
H. Landsman152, J.L. Lane82, C. Lange41, A.J. Lankford163, F. Lanni24, K. Lantzsch29, S. Laplace78, C. Lapoire20,
J.F. Laporte136, T. Lari89a, A.V. Larionov128, A. Larner118, C. Lasseur29, M. Lassnig29, P. Laurelli47, A. Lavorato118,
W. Lavrijsen14, P. Laycock73, A.B. Lazarev65, O. Le Dortz78, E. Le Guirriec83, C. Le Maner158, E. Le Menedeu136, C. Lebel93,
T. LeCompte5, F. Ledroit-Guillon55, H. Lee105, J.S.H. Lee150, S.C. Lee151, L. Lee175, M. Lefebvre169, M. Legendre136,
A. Leger49, B.C. LeGeyt120, F. Legger98, C. Leggett14, M. Lehmacher20, G. Lehmann Miotto29, X. Lei6, M.A.L. Leite23d,
R. Leitner126, D. Lellouch171, M. Leltchouk34, B. Lemmer54, V. Lendermann58a, K.J.C. Leney145b, T. Lenz105, G. Lenzen174,
B. Lenzi29, K. Leonhardt43, S. Leontsinis9, C. Leroy93, J-R. Lessard169, J. Lesser146a, C.G. Lester27, A. Leung Fook Cheong172,
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J. Schovancova125, M. Schram85, C. Schroeder81, N. Schroer58c, S. Schuh29, G. Schuler29, J. Schultes174,
H.-C. Schultz-Coulon58a, H. Schulz15, J.W. Schumacher20, M. Schumacher48, B.A. Schumm137, Ph. Schune136,
C. Schwanenberger82, A. Schwartzman143, Ph. Schwemling78, R. Schwienhorst88, R. Schwierz43, J. Schwindling136,
T. Schwindt20, W.G. Scott129, J. Searcy114, E. Sedykh121, E. Segura11, S.C. Seidel103, A. Seiden137, F. Seifert43, J.M. Seixas23a,
G. Sekhniaidze102a, D.M. Seliverstov121, B. Sellden146a, G. Sellers73, M. Seman144b, N. Semprini-Cesari19a,19b, C. Serfon98,
L. Serin115, R. Seuster99, H. Severini111, M.E. Sevior86, A. Sfyrla29, E. Shabalina54, M. Shamim114, L.Y. Shan32a, J.T. Shank21,
Q.T. Shao86, M. Shapiro14, P.B. Shatalov95, L. Shaver6, K. Shaw164a,164c, D. Sherman175, P. Sherwood77, A. Shibata108,
H. Shichi101, S. Shimizu29, M. Shimojima100, T. Shin56, A. Shmeleva94, M.J. Shochet30, D. Short118, M.A. Shupe6, P. Sicho125,
A. Sidoti132a,132b, A. Siebel174, F. Siegert48, J. Siegrist14, Dj. Sijacki12a, O. Silbert171, J. Silva124a,b, Y. Silver153,
D. Silverstein143, S.B. Silverstein146a, V. Simak127, O. Simard136, Lj. Simic12a, S. Simion115, B. Simmons77,
R. Simoniello89a,89b, M. Simonyan35, P. Sinervo158, N.B. Sinev114, V. Sipica141, G. Siragusa173, A. Sircar24, A.N. Sisakyan65,
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sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000;(d)Faculté des Sciences, Université Mohamed
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