231 research outputs found

    Age and metallicity of the bulges in lenticular galaxies

    Full text link
    Panoramic spectroscopic data of the sample of 80 nearby lenticular galaxies obtained with the Multi-Pupil Fiber Spectrograph of the 6-m telescope are presented. The SSP-equivalent ages, [Z/H], and [Mg/Fe] are determined through the Lick indices H-beta, Mgb, and separately for the nuclei and for the bulges. About a half of the sample contain chemically distinct nuclei, more metal-rich and younger than the bulges. The correlations of the stellar population properties for the nearby S0s are discussed.Comment: 5 pages, 2 figures. To appear in the Proceedings of the IAU Symposium 245, "Formation and Evolution of Galaxy Bulges", held at Oxford, U.K., July 2007, Eds. M. Bureau, E. Athanassoula, B. Barbu

    Structural transformations in heat resistant coatings containing rare earth elements

    Get PDF
    Degradation of two-layered coatings and ZhS6U alloy microstructure were studied during long-term processes of high temperature annealing and creeping. It was shown that yttrium and zirconium oxides are promising as protective coatings for heat resistant nickel based alloy

    Vascular E-selectin expression correlates with CD8 lymphocyte infiltration and improved outcome in Merkel cell carcinoma

    Get PDF
    Merkel cell carcinoma (MCC) is an aggressive, polyomavirus-linked skin cancer. While CD8 lymphocyte infiltration into the tumor is strongly correlated with improved survival, these cells are absent or sparse in most MCCs. We investigated whether specific mechanisms of T-cell migration may be commonly disrupted in MCC tumors with poor CD8 lymphocyte infiltration. Intratumoral vascular E-selectin, critical for T-cell entry into skin, was downregulated in the majority (52%) of MCCs (n=56), and its loss was associated with poor intratumoral CD8 lymphocyte infiltration (p<0.05; n=45). Importantly, survival was improved in MCC patients whose tumors had higher vascular E-selectin expression (p<0.05). Local nitric oxide (NO) production is one mechanism of E-selectin downregulation and it can be tracked by quantifying nitrotyrosine, a stable biomarker of NO-induced reactive nitrogen species (RNS). Indeed, increasing levels of nitrotyrosine within MCC tumors were associated with low E-selectin expression (p<0.05; n=45) and decreased CD8 lymphocyte infiltration (p<0.05, n=45). These data suggest that one mechanism of immune evasion in MCC may be restriction of T cell entry into the tumor. Existing therapeutic agents that modulate E-selectin expression and/or RNS generation may restore T cell entry and could potentially synergize with other immune-stimulating therapies

    Large scale nested stellar discs in NGC 7217

    Full text link
    NGC7217 is an unbarred early-type spiral galaxy having a multi-segment exponential light profile and a system of starforming rings of the unknown origin; it also possesses a circumnuclear gaseous polar disc. We analysed new long slit spectroscopic data for NGC7217 and derived the radial distributions of its stellar population parameters and stellar and gaseous kinematics up to the radius of r~100 arcsec (~8 kpc). We performed the dynamical analysis of the galaxy by recovering its velocity ellipsoid at different radii, and estimated the scaleheights of its two exponential discs. The inner exponential stellar disc of NGC7217 appears to be thin and harbours intermediate age stars (t(SSP) ~ 5 Gyr). The outer stellar disc seen between the radii of 4 and 7 kpc is very thick (z0 = 1...3 kpc), metal-poor, [Fe/H]<-0.4 dex, and has predominantly young stars, t(SSP) = 2 Gyr. The remnants of minor mergers of gas-rich satellites with an early-type giant disc galaxy available in the GalMer database well resemble different structural components of NGC7217, suggesting two minor merger events in the past responsible for the formation of the inner polar gaseous disc and large outer starforming ring. Another possibility to form the outer ring is the re-accretion of the tidal streams created by the first minor merger.Comment: Accepted to MNRAS, 12 pages, 10 figure

    Stars and ionized gas in S0 galaxy NGC 7743: an inclined large-scale gaseous disk

    Full text link
    We used deep long-slit spectra and integral-field spectral data to study the stars and ionized gas kinematics and stellar population properties in the lenticular barred galaxy NGC 7743. We have shown that ionized gas at the distances larger than 1.5 kpc from the nucleus settles in the disk which is significantly inclined to the stellar disk of the galaxy. Making different assumptions about the geometry of the disks and involving different sets of emission lines into the fitting, under the assumption of thin flat disk circular rotation, we obtain the full possible range of angle between the disks to be 34+/-9 or 77+/-9 deg. The most probable origin of the inclined disk is the external gas accretion from a satellite, orbiting the host galaxy with a corresponding angular momentum direction. The published data on the HI distribution around NGC 7743 suggest that the galaxy has a gas-rich environment. The emission-line ratio diagrams imply the domination of shock waves in the ionization state of the gaseous disk, whereas the contribution of photoionization by recent star formation seems to be negligible. In some parts of the disk a difference between the velocities of the gas emitting in the forbidden lines and in the Balmer lines is detected. It may be caused by the fact that the inclined disk is mainly shock-excited, whereas some fraction of the Balmer-line emission is produced by a small amount of gas excited by young stars in the main stellar disk of NGC 7743. In the circumnuclear region (R< 200 pc) some evidences of the AGN jet interaction with an ambient interstellar medium were found.Comment: 11 pages, 7 figures, accepted by Astrophysical Journa

    Endogenous Wnt/β-Catenin Signaling Is Required for Cardiac Differentiation in Human Embryonic Stem Cells

    Get PDF
    Wnt/beta-catenin signaling is an important regulator of differentiation and morphogenesis that can also control stem cell fates. Our group has developed an efficient protocol to generate cardiomyocytes from human embryonic stem (ES) cells via induction with activin A and BMP4.We tested the hypothesis that Wnt/beta-catenin signals control both early mesoderm induction and later cardiac differentiation in this system. Addition of exogenous Wnt3a at the time of induction enhanced cardiac differentiation, while early inhibition of endogenous Wnt/beta-catenin signaling with Dkk1 inhibited cardiac differentiation, as indicated by quantitative RT-PCR analysis for beta-myosin heavy chain (beta-MHC), cardiac troponin T (cTnT), Nkx2.5, and flow cytometry analysis for sarcomeric myosin heavy chain (sMHC). Conversely, late antagonism of endogenously produced Wnts enhanced cardiogenesis, indicating a biphasic role for the pathway in human cardiac differentiation. Using quantitative RT-PCR, we show that canonical Wnt ligand expression is induced by activin A/BMP4 treatment, and the extent of early Wnt ligand expression can predict the subsequent efficiency of cardiogenesis. Measurement of Brachyury expression showed that addition of Wnt3a enhances mesoderm induction, whereas blockade of endogenously produced Wnts markedly inhibits mesoderm formation. Finally, we show that Wnt/beta-catenin signaling is required for Smad1 activation by BMP4.Our data indicate that induction of mesoderm and subsequent cardiac differentiation from human ES cells requires fine-tuned cross talk between activin A/BMP4 and Wnt/beta-catenin pathways. Controlling these pathways permits efficient generation of cardiomyocytes for basic studies or cardiac repair applications

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore