62 research outputs found

    Updates in the Relationship Between Human Rhinovirus and Asthma

    Get PDF
    Human rhinovirus (HRV) is a nonenveloped, single stranded RNA virus belonging to the family Picornaviridae. HRV infections can cause both upper and lower respiratory illnesses in children and adults. Lower respiratory illnesses are more likely to occur in specific high risk groups, including infants, and children and adults with asthma. The relationships between rates of infection and the risk of clinical illness and exacerbation are not completely understood. Recent studies employing polymerase chain reaction and other molecular techniques indicate that there are new branches on the HRV family tree, and one characteristic of recently detected viruses is that they cannot be detected by standard tissue culture. Here we review the current literature and discuss new advances in understanding the link between HRV and asthma

    Lower Respiratory Tract Infection Induced by a Genetically Modified Picornavirus in Its Natural Murine Host

    Get PDF
    Infections with the picornavirus, human rhinovirus (HRV), are a major cause of wheezing illnesses and asthma exacerbations. In developing a murine model of picornaviral airway infection, we noted the absence of murine rhinoviruses and that mice are not natural hosts for HRV. The picornavirus, mengovirus, induces lethal systemic infections in its natural murine hosts, but small genetic differences can profoundly affect picornaviral tropism and virulence. We demonstrate that inhalation of a genetically attenuated mengovirus, vMC0, induces lower respiratory tract infections in mice. After intranasal vMC0 inoculation, lung viral titers increased, peaking at 24 h postinoculation with viral shedding persisting for 5 days, whereas HRV-A01a lung viral titers decreased and were undetectable 24 h after intranasal inoculation. Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, induced an acute respiratory illness, with body weight loss and lower airway inflammation, characterized by increased numbers of airway neutrophils and lymphocytes and elevated pulmonary expression of neutrophil chemoattractant CXCR2 ligands (CXCL1, CXCL2, CXCL5) and interleukin-17A. Mice inoculated with vMC0, compared with those inoculated with vehicle or UV-inactivated vMC0, exhibited increased pulmonary expression of interferon (IFN-α, IFN-β, IFN-λ), viral RNA sensors [toll-like receptor (TLR)3, TLR7, nucleotide-binding oligomerization domain containing 2 (NOD2)], and chemokines associated with HRV infection in humans (CXCL10, CCL2). Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, was accompanied by increased airway fluid myeloperoxidase levels, an indicator of neutrophil activation, increased MUC5B gene expression, and lung edema, a sign of infection-related lung injury. Consistent with experimental HRV inoculations of nonallergic, nonasthmatic human subjects, there were no effects on airway hyperresponsiveness after inhalation of vMC0 by healthy mice. This novel murine model of picornaviral airway infection and inflammation should be useful for defining mechanisms of HRV pathogenesis in humans

    Mechanisms and Biomarkers of Exercise-Induced Bronchoconstriction.

    Get PDF
    Exercise is a common trigger of bronchoconstriction. In recent years, there has been increased understanding of the pathophysiology of exercise-induced bronchoconstriction. Although evaporative water loss and thermal changes have been recognized stimuli for exercise-induced bronchoconstriction, accumulating evidence points toward a pivotal role for the airway epithelium in orchestrating the inflammatory response linked to exercise-induced bronchoconstriction. Overproduction of inflammatory mediators, underproduction of protective lipid mediators, and infiltration of the airways with eosinophils and mast cells are all established contributors to exercise-induced bronchoconstriction. Sensory nerve activation and release of neuropeptides maybe important in exercise-induced bronchoconstriction, but further research is warranted

    Elucidation of pathways driving asthma pathogenesis: development of a systems-level analytic strategy.

    Get PDF
    Asthma is a genetically complex, chronic lung disease defined clinically as episodic airflow limitation and breathlessness that is at least partially reversible, either spontaneously or in response to therapy. Whereas asthma was rare in the late 1800s and early 1900s, the marked increase in its incidence and prevalence since the 1960s points to substantial gene × environment interactions occurring over a period of years, but these interactions are very poorly understood (1-6). It is widely believed that the majority of asthma begins during childhood and manifests first as intermittent wheeze. However, wheeze is also very common in infancy and only a subset of wheezy children progress to persistent asthma for reasons that are largely obscure. Here, we review the current literature regarding causal pathways leading to early asthma development and chronicity. Given the complex interactions of many risk factors over time eventually leading to apparently multiple asthma phenotypes, we suggest that deeply phenotyped cohort studies combined with sophisticated network models will be required to derive the next generation of biological and clinical insights in asthma pathogenesis
    corecore