46 research outputs found

    Task-generic and task-specific connectivity modulations in the ADHD brain:an integrated analysis across multiple tasks

    Get PDF
    Contains fulltext : 231786.pdf (publisher's version ) (Open Access)Attention-deficit/hyperactivity disorder (ADHD) is associated with altered functioning in multiple cognitive domains and neural networks. This paper offers an overarching biological perspective across these. We applied a novel strategy that extracts functional connectivity modulations in the brain across one (P(single)), two (P(mix)) or three (P(all)) cognitive tasks and compared the pattern of modulations between participants with ADHD (n-89), unaffected siblings (n = 93) and controls (n = 84; total N = 266; age range = 8-27 years). Participants with ADHD had significantly fewer P(all) connections (modulated regardless of task), but significantly more task-specific (P(single)) connectivity modulations than the other groups. The amplitude of these P(single) modulations was significantly higher in ADHD. Unaffected siblings showed a similar degree of P(all) connectivity modulation as controls but a similar degree of P(single) connectivity modulation as ADHD probands. P(all) connections were strongly reproducible at the individual level in controls, but showed marked heterogeneity in both participants with ADHD and unaffected siblings. The pattern of reduced task-generic and increased task-specific connectivity modulations in ADHD may be interpreted as reflecting a less efficient functional brain architecture due to a reduction in the ability to generalise processing pathways across multiple cognitive domains. The higher amplitude of unique task-specific connectivity modulations in ADHD may index a more "effortful" coping strategy. Unaffected siblings displayed a task connectivity profile in between that of controls and ADHD probands, supporting an endophenotype view. Our approach provides a new perspective on the core neural underpinnings of ADHD

    Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models

    Get PDF
    International audienceBACKGROUNDThe neuroanatomical basis of autism spectrum disorder (ASD) has remained elusive, mostly owing to high biological and clinical heterogeneity among diagnosed individuals. Despite considerable effort toward understanding ASD using neuroimaging biomarkers, heterogeneity remains a barrier, partly because studies mostly employ case-control approaches, which assume that the clinical group is homogeneous.METHODS:Here, we used an innovative normative modeling approach to parse biological heterogeneity in ASD. We aimed to dissect the neuroanatomy of ASD by mapping the deviations from a typical pattern of neuroanatomical development at the level of the individual and to show the necessity to look beyond the case-control paradigm to understand the neurobiology of ASD. We first estimated a vertexwise normative model of cortical thickness development using Gaussian process regression, then mapped the deviation of each participant from the typical pattern. For this, we employed a heterogeneous cross-sectional sample of 206 typically developing individuals (127 males) and 321 individuals with ASD (232 males) (6-31 years of age).RESULTS:We found few case-control differences, but the ASD cohort showed highly individualized patterns of deviations in cortical thickness that were widespread across the brain. These deviations correlated with severity of repetitive behaviors and social communicative symptoms, although only repetitive behaviors survived corrections for multiple testing.CONCLUSIONS:Our results 1) reinforce the notion that individuals with ASD show distinct, highly individualized trajectories of brain development and 2) show that by focusing on common effects (i.e., the "average ASD participant"), the case-control approach disguises considerable interindividual variation crucial for precision medicine

    Towards robust and replicable sex differences in the intrinsic brain function of autism.

    Get PDF
    BACKGROUND: Marked sex differences in autism prevalence accentuate the need to understand the role of biological sex-related factors in autism. Efforts to unravel sex differences in the brain organization of autism have, however, been challenged by the limited availability of female data. METHODS: We addressed this gap by using a large sample of males and females with autism and neurotypical (NT) control individuals (ABIDE; Autism: 362 males, 82 females; NT: 409 males, 166 females; 7-18 years). Discovery analyses examined main effects of diagnosis, sex and their interaction across five resting-state fMRI (R-fMRI) metrics (voxel-level Z > 3.1, cluster-level P < 0.01, gaussian random field corrected). Secondary analyses assessed the robustness of the results to different pre-processing approaches and their replicability in two independent samples: the EU-AIMS Longitudinal European Autism Project (LEAP) and the Gender Explorations of Neurogenetics and Development to Advance Autism Research. RESULTS: Discovery analyses in ABIDE revealed significant main effects of diagnosis and sex across the intrinsic functional connectivity of the posterior cingulate cortex, regional homogeneity and voxel-mirrored homotopic connectivity (VMHC) in several cortical regions, largely converging in the default network midline. Sex-by-diagnosis interactions were confined to the dorsolateral occipital cortex, with reduced VMHC in females with autism. All findings were robust to different pre-processing steps. Replicability in independent samples varied by R-fMRI measures and effects with the targeted sex-by-diagnosis interaction being replicated in the larger of the two replication samples-EU-AIMS LEAP. LIMITATIONS: Given the lack of a priori harmonization among the discovery and replication datasets available to date, sample-related variation remained and may have affected replicability. CONCLUSIONS: Atypical cross-hemispheric interactions are neurobiologically relevant to autism. They likely result from the combination of sex-dependent and sex-independent factors with a differential effect across functional cortical networks. Systematic assessments of the factors contributing to replicability are needed and necessitate coordinated large-scale data collection across studies

    Viseće slike

    Get PDF
    Contains fulltext : 231781.pdf (Publisher’s version ) (Open Access)Reversal learning deficits following reward and punishment processing are observed across disruptive behaviors (DB) and attention-deficit/hyperactivity disorder (ADHD), and have been associated with callous-unemotional (CU) traits. However, it remains unknown to what extent these altered reinforcement sensitivities are linked to the co-occurrence of oppositional traits, ADHD symptoms, and CU traits. Reward and punishment sensitivity and perseverative behavior were therefore derived from a probabilistic reversal learning task to investigate reinforcement sensitivity in participants with DB (n=183, ODD=62, CD=10, combined=57, age-range 8-18), ADHD (n=144, age-range 11-28), and controls (n=191, age-range 8-26). The SNAP-IV and Conners rating scales were used to assess oppositional and ADHD traits. The Inventory of CU traits was used to assess CU traits. Decreased reward sensitivity was associated with ADHD symptom severity (p=0.018) if corrected for oppositional symptoms. ADHD symptomatology interacted with oppositional behavior on perseveration (p=0.019), with the former aggravating the effect of oppositional behavior on perseveration and vice versa. Within a pooled sample, reversal learning alterations were associated with the severity of ADHD symptoms, underpinned by hyposensitivity to reward and increased perseveration. These results show ADHD traits, as opposed to oppositional behavior and CU traits, is associated with decreased reward-based learning in adolescents and adults.01 april 202

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

    Get PDF
    Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels

    The EU-AIMS Longitudinal European Autism Project (LEAP): design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders.

    Get PDF
    BACKGROUND: The tremendous clinical and aetiological diversity among individuals with autism spectrum disorder (ASD) has been a major obstacle to the development of new treatments, as many may only be effective in particular subgroups. Precision medicine approaches aim to overcome this challenge by combining pathophysiologically based treatments with stratification biomarkers that predict which treatment may be most beneficial for particular individuals. However, so far, we have no single validated stratification biomarker for ASD. This may be due to the fact that most research studies primarily have focused on the identification of mean case-control differences, rather than within-group variability, and included small samples that were underpowered for stratification approaches. The EU-AIMS Longitudinal European Autism Project (LEAP) is to date the largest multi-centre, multi-disciplinary observational study worldwide that aims to identify and validate stratification biomarkers for ASD. METHODS: LEAP includes 437 children and adults with ASD and 300 individuals with typical development or mild intellectual disability. Using an accelerated longitudinal design, each participant is comprehensively characterised in terms of clinical symptoms, comorbidities, functional outcomes, neurocognitive profile, brain structure and function, biochemical markers and genomics. In addition, 51 twin-pairs (of which 36 had one sibling with ASD) are included to identify genetic and environmental factors in phenotypic variability. RESULTS: Here, we describe the demographic characteristics of the cohort, planned analytic stratification approaches, criteria and steps to validate candidate stratification markers, pre-registration procedures to increase transparency, standardisation and data robustness across all analyses, and share some 'lessons learnt'. A clinical characterisation of the cohort is given in the companion paper (Charman et al., accepted). CONCLUSION: We expect that LEAP will enable us to confirm, reject and refine current hypotheses of neurocognitive/neurobiological abnormalities, identify biologically and clinically meaningful ASD subgroups, and help us map phenotypic heterogeneity to different aetiologies
    corecore