74 research outputs found

    Iodate respiration by Azoarcus sp. DN11 and its potential use for removal of radioiodine from contaminated aquifers

    Get PDF
    Azoarcus sp. DN11 was previously isolated from gasoline-contaminated groundwater as an anaerobic benzene-degrading bacterium. Genome analysis of strain DN11 revealed that it contained a putative idr gene cluster (idrABP1P2), which was recently found to be involved in bacterial iodate (IO3−) respiration. In this study, we determined if strain DN11 performed iodate respiration and assessed its potential use to remove and sequester radioactive iodine (129I) from subsurface contaminated aquifers. Strain DN11 coupled acetate oxidation to iodate reduction and grew anaerobically with iodate as the sole electron acceptor. The respiratory iodate reductase (Idr) activity of strain DN11 was visualized on non-denaturing gel electrophoresis, and liquid chromatography–tandem mass spectrometry analysis of the active band suggested the involvement of IdrA, IdrP1, and IdrP2 in iodate respiration. The transcriptomic analysis also showed that idrA, idrP1, and idrP2 expression was upregulated under iodate-respiring conditions. After the growth of strain DN11 on iodate, silver-impregnated zeolite was added to the spent medium to remove iodide from the aqueous phase. In the presence of 200 ΌM iodate as the electron acceptor, more than 98% of iodine was successfully removed from the aqueous phase. These results suggest that strain DN11 is potentially helpful for bioaugmentation of 129I-contaminated subsurface aquifers

    Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite

    Get PDF
    Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr 2+ and Co 2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters

    Novel Method of Quantifying Radioactive Cesium-Rich Microparticles (CsMPs) in the Environment from the Fukushima Daiichi Nuclear Power Plant

    Get PDF
    Highly radioactive cesium-rich microparticles (CsMPs) were released from the Fukushima Daiichi nuclear power plant (FDNPP) to the surrounding environment at an early stage of the nuclear disaster in March of 2011; however, the quantity of released CsMPs remains undetermined. Here, we report a novel method to quantify the number of CsMPs in surface soils at or around Fukushima and the fraction of radioactivity they contribute, which we call “quantification of CsMPs” (QCP) and is based on autoradiography. Here, photostimulated luminescence (PSL) is linearly correlated to the radioactivity of various microparticles, with a regression coefficient of 0.0523 becquerel/PSL/h (Bq/PSL/h). In soil collected from Nagadoro, Fukushima, Japan, CsMPs were detected in soil sieved with a 114 ÎŒm mesh. There was no overlap between the radioactivities of CsMPs and clay particles adsorbing Cs. Based on the distribution of radioactivity of CsMPs, the threshold radioactivity of CsMPs in the size fraction of <114 ÎŒm was determined to be 0.06 Bq. Based on this method, the number and radioactivity fraction of CsMPs in four surface soils collected from the vicinity of the FDNPP were determined to be 48–318 particles per gram and 8.53–31.8%, respectively. The QCP method is applicable to soils with a total radioactivity as high as ∌106 Bq/kg. This novel method is critically important and can be used to quantitatively understand the distribution and migration of the highly radioactive CsMPs in near-surface environments surrounding Fukushima

    The nuclear interaction at Oklo 2 billion years ago

    Get PDF
    We re-examine the effort to constrain the time-variability of the coupling constants of the fundamental interactions by studying the anomalous isotopic abundance of Sm observed at the remnants of the natural reactors which were in operation at Oklo about 2 billion years ago, in terms of a possible deviation of the resonance energy from the value observed today. We rely on new samples that were carefully collected to minimize natural contamination and also on a careful temperature estimate of the reactors. We obtain the upper bound (−0.2±0.8)×10−17(-0.2\pm 0.8)\times 10^{-17} y−1{\rm y}^{-1} on the fractional rate of change of the electromagnetic as well as the strong interaction coupling constants. Our result basically agrees with and even suggests some improvement of the result due recently to Damour and Dyson. Strictly speaking, however, we find another range of the resonance energy shift indicating a nonzero time variation of the constants. We find a rather strong but still tentative indication that this range can be ruled out by including the Gd data, for which it is essential to take the effect of contamination into account.Comment: 20 pages LaTex including 6 figures. Theoretical interpretation changed. More detailed discussions on the temperature estimate also adde

    New highly radioactive particles derived from Fukushima Daiichi Reactor Unit 1 : Properties and environmental impacts

    Get PDF
    A contaminated zone elongated toward Futaba Town, north-northwest of the Fukushima Daiichi Nuclear Power Plant (FDNPP), contains highly radioactive particles released from reactor Unit 1. There are uncertainties associated with the physio-chemical properties and environmental impacts of these particles. In this study, 31 radioactive particles were isolated from surface soils collected 3.9 km north-northwest of the FDNPP. Two of these particles have the highest particle-associated 134+137Cs activity ever reported for Fukushima (6.1 × 105 and 2.5 × 106 Bq per particle after decay-correction to March 2011). The new, highly-radioactive particle labeled FTB1 is an aggregate of flaky silicate nanoparticles with an amorphous structure containing ~0.8 wt% Cs, occasionally associated with SiO2 and TiO2 inclusions. FTB1 likely originates from the reactor building, which was damaged by a H2 explosion, after adsorbing volatilized Cs. The 134+137Cs activity in the other highly radioactive particle labeled FTB26 exceeded 106 Bq. FTB26 has a glassy carbon core and a surface that is embedded with numerous micro-particles: Pb–Sn alloy, fibrous Al-silicate, Ca-carbonate or hydroxide, and quartz. The isotopic signatures of the micro-particles indicate neutron capture by B, Cs volatilization, and adsorption of natural Ba. The composition of the micro-particles on FTB26 reflects the composition of airborne particles at the moment of the H2 explosion. Owing to their large size, the health effects of the highly radioactive particles are likely limited to external radiation during static contact with skin; the highly radioactive particles are thus expected to have negligible health impacts for humans. By investigating the mobility of the highly radioactive particles, we can better understand how the radiation dose transfers through environments impacted by Unit 1. The highly radioactive particles also provide insights into the atmospheric conditions at the time of the Unit 1 explosion and the physio-chemical phenomena that occurred during reactor meltdown.Peer reviewe

    Particulate plutonium released from the Fukushima Daiichi meltdowns

    Get PDF
    Traces of Pu have been detected in material released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March of 2011; however, to date the physical and chemical form of the Pu have remained unknown. Here we report the discovery of particulate Pu associated with cesium-rich microparticles (CsMPs) that formed in and were released from the reactors during the FDNPP meltdowns. The Cs-pollucite-based CsMP contained discrete U(IV)O2 nanoparticles,Peer reviewe

    Isotopic signature and nano-texture of cesium-rich micro-particles: Release of uranium and fission products from the Fukushima Daiichi Nuclear Power Plant

    Get PDF
    Highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) provide nano-scale chemical fingerprints of the 2011 tragedy. U, Cs, Ba, Rb, K, and Ca isotopic ratios were determined on three CsMPs (3.79–780 Bq) collected within ~10 km from the FDNPP to determine the CsMPs’ origin and mechanism of formation. Apart from crystalline Fe-pollucite, CsFeSi2O6 · nH2O, CsMPs are comprised mainly of Zn–Fe-oxide nanoparticles in a SiO2 glass matrix (up to ~30 wt% of Cs and ~1 wt% of U mainly associated with Zn–Fe-oxide). The 235U/238U values in two CsMPs: 0.030 (±0.005) and 0.029 (±0.003), are consistent with that of enriched nuclear fuel. The values are higher than the average burnup estimated by the ORIGEN code and lower than non-irradiated fuel, suggesting non-uniform volatilization of U from melted fuels with different levels of burnup, followed by sorption onto Zn–Fe-oxides. The nano-scale texture and isotopic analyses provide a partial record of the chemical reactions that occurred in the fuel during meltdown. Also, the CsMPs were an important medium of transport for the released radionuclides in a respirable form
    • 

    corecore