

https://helda.helsinki.fi

New highly radioactive particles derived from Fukushima Daiichi Reactor Unit 1 : Properties and environmental impacts

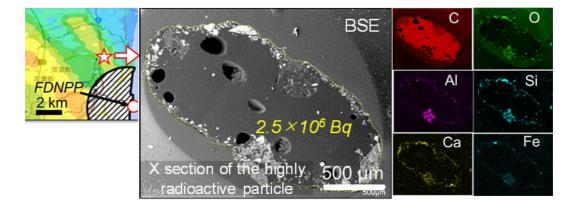
Morooka, Kazuya

2021-06-15

Morooka, K, Kurihara, E, Takehara, M, Takami, R, Fueda, K, Horie, K, Takehara, M, Yamasaki, S, Ohnuki, T, Grambow, B, Law, GTW, Ang, WLJ, Bower, WR, Parker, J, Ewing, RC & Utsunomiya, S 2021, 'New highly radioactive particles derived from Fukushima Daiichi Reactor Unit 1 : Properties and environmental impacts ', The Science of the Total Environment, vol. 773, 145639. https://doi.org/10.1016/j.scitotenv.2021.145639

http://hdl.handle.net/10138/354576 https://doi.org/10.1016/j.scitotenv.2021.145639

cc_by_nc_nd acceptedVersion


Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Graphical abstract

Highlights

- New type of radioactive particles discovered 3.9 km NNW of Fukushima Daiichi
- Particles consist of glassy carbon with other micro-particles embedded into the surface
- Isotopic analysis indicates volatilization of Cs before the H₂ explosion
- The human health effects of the particles are expected to be minimal owing to their large size

(>500 µm)

1	Original manuscript submitted to Science of the Total Environment on October 23rd, 2020
2	Revision submitted on January 30, 2021
3	
4	New Highly Radioactive Particles Derived from Fukushima Daiichi
5	Reactor Unit 1: Properties and Environmental Impacts
6	
7	
8	Kazuya Morooka, ^a Eitaro Kurihara, ^a Masato Takehara, ^a Ryu Takami, ^a Kazuki Fueda, ^a Kenji Horie, ^{b,c}
9	Mami Takehara, ^b Shinya Yamasaki, ^d Toshihiko Ohnuki, ^e Bernd Grambow, ^f Gareth T. W. Law, ^g Joyce
10	W. L. Ang, ^g William R. Bower, ^g Julia Parker, ^h Rodney C. Ewing, ⁱ and Satoshi Utsunomiya, ^a *
11	
12	^a Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
13	^b National Institute of Polar Research, 10-3, Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
14	^c Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan
15	Village, Hayama, Kanagawa, 240-0193, Japan
16	^d Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental

17	Dynamics,	University of Tsukuba,	, 1-1-1 Tennodai,	Tsukuba,	Ibaraki 305-8577 Japan	
----	-----------	------------------------	-------------------	----------	------------------------	--

- 18 eLaboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of
- 19 Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- 20 ^fSUBATECH, IMT Atlantique, CNRS-IN2P3, the University of Nantes, Nantes 44307, France
- 21 ^gRadiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
- 22 hDiamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- 23 ⁱDepartment of Geological Sciences and Center for International Security and Cooperation, Stanford
- 24 University, Stanford, CA 94305-2115 USA
- 25
- 26 Email: utsunomiya.satoshi.998@m.kyushu-u.ac.jp

28 Abstract

29	A contaminated zone elongated toward Futaba Town, north-northwest of the Fukushima
30	Daiichi Nuclear Power Plant (FDNPP), contains highly radioactive particles released from reactor
31	Unit 1. There are uncertainties associated with the physio-chemical properties and environmental
32	impacts of these particles. In this study, 31 radioactive particles were isolated from surface soils
33	collected 3.9 km north-northwest of the FDNPP. Two of these particles have the highest particle-
34	associated $^{134+137}$ Cs activity ever reported for Fukushima (6.1 × 10 ⁵ and 2.5 × 10 ⁶ Bq per particle after
35	decay-correction to March, 2011). The new, highly-radioactive particle labeled FTB1 is an aggregate
36	of flaky silicate nanoparticles with an amorphous structure containing \sim 0.8 wt% Cs, occasionally
37	associated with SiO_2 and TiO_2 inclusions. FTB1 likely originates from the reactor building, which was
38	damaged by a H_2 explosion, after adsorbing volatilized Cs. The ¹³⁴⁺¹³⁷ Cs activity in the other highly
39	radioactive particle labeled FTB26 exceeded 10^6 Bq. FTB26 has a glassy carbon core and a surface
40	that is embedded with numerous micro-particles: Pb-Sn alloy, fibrous Al-silicate, Ca-carbonate or
41	hydroxide, and quartz. The isotopic signatures of the micro-particles indicate neutron capture by B, Cs
42	volatilization, and adsorption of natural Ba. The composition of the micro-particles on FTB26 reflects
43	the composition of airborne particles at the moment of the H ₂ explosion. Owing to their large size, the

44	health effects of the highly radioactive particles are likely limited to external radiation during static
45	contact with skin; the highly radioactive particles are thus expected to have negligible health impacts
46	for humans. By investigating the mobility of the highly radioactive particles, we can better understand
47	how the radiation dose transfers through environments impacted by Unit 1. The highly radioactive
48	particles also provide insights into the atmospheric conditions at the time of the Unit 1 explosion and
49	the physio-chemical phenomena that occurred during reactor meltdown.

50 Keywords

51 Radioactive particle, Unit 1, Fukushima Daiichi Nuclear Power Plant, cesium, boron, isotopic analysis

1. Introduction

53	The great east Japan earthquake, which occurred in March, 2011, was followed by a tsunami
54	that hit the Fukushima Daiichi Nuclear Power Plant (FDNPP), causing a power outage and meltdowns
55	in three reactors. Subsequently, a large-scale corium (a mixture of melted nuclear fuels and fuel
56	assembly materials) formed in Units 1 and 3. Before melting, the fuel rods experienced temperatures
57	>2200°C and interacted with vaporized water, generating hydrogen by the reaction: $Zr + 2H_2O \rightarrow ZrO_2$
58	+ 2H ₂ . Catastrophic hydrogen explosions then occurred in the reactor buildings (IAEA, 2015; Iwata et
59	al., 2012a). During the meltdowns, the corium broke through the reactor pressure vessel (RPV) and
60	dropped onto the concrete pedestal of the primary containment vessel (PCV). The molten core-concrete
61	interaction (MCCI) generated radioactive aerosols (Furuki et al., 2017). The corium was further mixed
62	with various structural materials, forming fuel debris upon cooling (IAEA, 2015). During the hydrogen
63	explosion and/or venting events, ~ 5.2×10^{17} Bq of various radionuclides, including 10^{15} - 10^{16} Bq of
64	¹³⁴⁺¹³⁷ Cs, were released into the environment (Buesseler et al., 2017; Chino et al., 2011; Koo et al., 2014;
65	Steinhauser et al., 2014). Radioactive ¹³⁷ Cs and ¹³⁴ Cs, with half-lives of 30.2 and 2.1 years, respectively,
66	have largely contributed to the present high radiation dose in Fukushima Prefecture and its vicinity. The
67	released Cs includes water-soluble Cs and two types of sparingly soluble Cs. The water-soluble forms

68	of Cs, such as CsI and CsOH, were mostly precipitated with rainwater and then the dissolved Cs
69	ions absorbed onto clay minerals and other geomedia in the surface soil (Auvinen et al., 2000; Iwata
70	et al., 2012b; Kaneko et al., 2015). The sparingly soluble Cs exists as fine particles and is classified
71	into two types based on different physical and chemical properties (Ikenoue et al., 2020).
72	To clarify the terminology, "Cs-rich" micro-particles (CsMPs) are defined as micro-
73	particles with dimensions of several micrometers with a bulk composition that includes O, Si, Zn, Fe,
74	and Cs. The Cs concentration in CsMPs ($\sim 10^{11}$ Bq/g) can be detected by scanning electron microscopy
75	with energy-dispersive X-ray spectroscopy (SEM-EDX) (Furuki et al., 2017). In this sense, the CsMP
76	is not simply a Cs-bearing micro-particle. After decay-correction to March 12 of 2011, the ¹³⁴ Cs/ ¹³⁷ Cs
77	radioactivity ratio of CsMPs exceeds 1.0, which is close to the average radioactivity ratios in Units 2
78	and 3 (1.08 and 1.05, respectively (Nishihara et al., 2012)). In contrast, the ratio is less than 1.0 for the
79	radioactive particles released from Unit 1 (calculated ratio is 0.945 (Nishihara et al., 2012)). Based on
80	this difference, the radioactive particles emitted by the damaged FDNPP reactors have been classified
81	into two groups: (i) particles derived from either Unit 2 or 3, which are defined as CsMPs (Furuki et
82	al., 2017), and (ii) particles released from Unit 1. The CsMPs occasionally contain nano-scale
83	inclusions composed of fission-fragment radionuclides, structural materials, and debris fragments

84	(Furuki et al., 2017; Imoto et al., 2017; Ochiai et al., 2018). Many CsMPs were transported by Cs-rich
85	plumes over long distances (>200 km from the FDNPP) (Ikehara et al., 2020; Nakajima et al., 2017;
86	Tsuruta et al., 2015; Utsunomiya et al., 2019). The CsMPs deposited on the ground have high
87	chemical durability, similar to that of Si-based glass (Suetake et al., 2019), and remain with various
88	radioactive fractions of CsMPs in the total ¹³⁴⁺¹³⁷ Cs activity (Ikehara et al., 2020, 2018).
89	Meanwhile, the sparingly soluble micro-particles of the present study are distributed in an
90	elongated zone extending north-northwest from the FDNPP. This narrow zone is contaminated mainly
91	by radionuclides released from Unit 1 (Fig. 1). The radionuclides were released by the hydrogen
92	explosion that occurred on March 12 of 2011, and were spread by the prevailing winds at that time
93	(Katata et al., 2012). The explosion at Unit 1 blew out the side wall of the fifth floor, causing collapse
94	of the ceiling. The ejecta were released horizontally at an approximate height of 50 m (Nomura, 1969;
95	TEPCO, 2017). Consequently, large particles were deposited along a north-northwest direction over a
96	short period, forming a highly-contaminated, linear zone (Fig. 1).
97	The ¹³⁴ Cs/ ¹³⁷ Cs activity ratio in these radioactive particles is 0.94 on average (Satou et al.,
98	2018), consistent with the average ratio in Unit 1 (Nishihara et al., 2012). The dispersed particles are
99	much larger (diameter 70–400 μ m) than CsMPs, and their shapes are spherical, angular, or fibrous

(Martin et al., 2020, 2017; Satou et al., 2018). Although the ¹³⁴⁺¹³⁷Cs activity of each particle is high, 100 101 the $^{134+137}$ Cs activity per unit mass (~10⁶ Bq/g) is lower than in CsMPs, and the Cs cannot be detected 102 by EDX. The low Cs concentrations can be detected by gamma spectroscopy or synchrotron micro-X-103 ray fluorescence (µ-XRF) (Martin et al., 2019; Ono et al., 2017). The main composition of the sparingly 104 soluble micro-particles (O, Si, Al, Zn and Fe) is similar to that of CsMPs except for the Al-content, 105which is much higher in the Unit-1 radioactive particles than in CsMPs. Some of the particles has been 106 shown to have a fibrous texture, and have been inferred to originate from the insulating materials used 107in the reactor building (Martin et al., 2017). Further, the uranium isotope ratio, ²³⁵U/²³⁸U, from another 108Unit-1 radioactive particle was reported to be 0.0354 ± 0.0015 (Martin et al., 2019), comparable to the 109 uranium isotope ratios in Unit 1 (Nishihara et al., 2012). Because the physio-chemical properties 110 (composition, size, texture, and radioactivity) of the FDNPP contaminants are highly variable, the 111 conditions during the accident and the environmental impacts of the released particles remain obscure 112and further study is clearly needed. Reflecting the above, in the present study, we isolated 31 radioactive particles from the 113114 surface soils of the area impacted by Unit 1. The hypotheses considered in our research were: (i) there should be radioactive particles released from Unit 1 with much higher ¹³⁴⁺¹³⁷Cs activities than that 115

116	described in the current literature, and their environmental impacts need to be evaluated based on their
117	physio-chemical properties; (ii) these radioactive particles retain evidence of conditions inside the
118	reactors / reactor buildings at the time of explosion.
119	Two of 31 particles examined emitted extremely high levels of ¹³⁴⁺¹³⁷ Cs activity (>10 ⁵ Bq
120	per particle). Radioactive particles with such a high activity have been discovered at various locations
121	where accidents and radioactive releases occurred, and such materials have been characterized using a
122	variety of standard and state-of-the-art micro-analytical techniques (e.g., Byrnes et al., 2020; Eriksson
123	et al., 2005; IAEA, 2011 and references therein; Salbu et al., 2001). Until now, they have not been noted
124	in areas impacted by FDNPP contamination. Here, through use of rigorous micro-scale analyses, we
125	elucidate the specific physio-chemical properties of the new highly radioactive particles, adding to our
126	understanding of the FDNPP and meltdown conditions at the time of the Unit-1 hydrogen explosion.
127	The potential health effects of the contaminant particles are also discussed. This work is of particular
128	importance because the environmental remediation in the vicinity of FDNPP and decommissioning of
129	the damaged reactors are ongoing and will last for decades. Any new information pertaining to the
130	distribution, abundance, type, and composition, of FDNPP-derived radioactive particles can inform both
131	of these endeavors (e.g., improve worker safety and guide clean-up / decommissioning strategies.).

133	2. Sampling and Methods
134	2.1. Sample description
135	The sampling campaign was conducted on December 10, 2017 and July 26, 2018. The
136	sampling area was Futaba Town in Fukushima Prefecture. Surface soils were collected from the top ~1
137	cm of ground surface at four sampling sites. Among the 31 radioactive particles isolated from the soils,
138	two particles labeled as FTB1 and FTB26 were highly radioactive emitting ¹³⁴⁺¹³⁷ Cs activity above 10 ⁵
139	Bq. Both particles were separated from soils located approximately 3.9 km north-northwest of the
140	FDNPP (see Fig. 1).
141	
142	2.2. Isolation of radioactive particles
143	The radioactive particles were separated from the soils as described in our previous study
144	(Furuki et al., 2017). Their locations were determined by an autoradiography technique (Fig. S1). First,
145	an imaging plate (Fuji film, BAS-SR 2025) was placed in contact with the soils. The plate exposure
146	time was 15 minutes (shorter if the activity was very high). Autoradiograph images with pixel sizes of
147	50–100 μm were recorded by an imaging-plate reader (Fuji film, FLA-5000). The positions of intensely

148	radioactive spots were identified and droplets of pure water were added to these spots. The water
149	droplets were then drawn with a pipette, forming suspensions containing small amounts of soil particles.
150	This procedure was repeated until the suspension contained negligible amounts of soil particles. In
151	contrast to CsMPs, which are isolated using pieces of double-stick carbon tape, the radioactive particles
152	derived from Unit 1 were sufficiently large for hand-picking. Therefore, they were picked up with
153	tweezers and placed on the double-stick carbon tape.
154	
155	2.3. Scanning Electron Microscopy (SEM)
156	Prior to SEM analysis, the isolated radioactive particles were coated using a carbon coater
157	(SANYU, SC-701C, Tokyo, Japan). The particles were then analyzed by SEM (HITACHI, SU3500 and
158	SU6600, Tokyo, Japan) equipped with EDX (EDAX Genesis, NJ, USA). The acceleration voltages were
159	set to 5–25 kV for surface morphology imaging and 15–25 kV for elemental analyses (area analysis and
160	elemental mapping).
161	
162	2.4. X-ray fluorescence spectroscopy (XRF)
163	The FTB26 sample was subjected to XRF elemental mapping using an X-ray analytical

164	microscope (XGT5000, HORIBA, Tokyo, Japan). The acceleration voltage and X-ray beam diameter
165	were 50 kV and 100 μm , respectively. The scan width and speed were 4.096 mm and 100 s/frame,
166	respectively, and each frame was composed of 512×512 pixels.
167	
168	2.5. Three-dimensional Visualization
169	The FTB26 sample was visualized by three-dimensional (3D) X-ray tomography using a
170	high-resolution 3D X-ray computed tomography (CT) system (Bruker, SKYSCAN1172, Kontich,
171	Belgium). The tilt ranged from 0° to 196° at 0.7°-intervals. The pixel resolution was ~0.8 μ m. The 3D
172	structure was reconstructed using Amira (Maxnet) and TEMography (System in Frontier) software.
173	
174	2.6. Preparation of cross-sectional specimen
175	One of the highly radioactive particles (FTB26) was fixed on a glass slide with epoxy
176	adhesive (Nichiban, Nagoya, Japan). The fixed particle was carefully cut by a 0.1 mm-thick diamond
177	blade (Maruto, Tokyo, Japan). The cut surface was polished using a tripod polishing system (PELCO
178	Tripod Polisher 590, Ted Pella, CA, USA) with a diamond slurry. As the polishing progressed, the gain
179	size of the slurry was reduced in steps until the final size was $<\sim 1 \mu m$.

181 2.7. Transmission electron microscopy (TEM)

182	High-resolution TEM (HRTEM) with EDX and high-angle annular dark-field scanning
183	transmission electron microscopy (HAADF-STEM) were performed using a JEOL JEM-ARM200F
184	(Tokyo, Japan) with an acceleration voltage of 200 kV. The STEM-EDX mapping was controlled by
185	JOEL Analysis Station software. To minimize the effects of sample drift, the elemental map was
186	acquired in drift-correction mode. The STEM probe size was ~ 0.13 nm, generating ~ 140 pA of current
187	after inserting a condenser lens with a 40- μ m aperture. During the data collection, the angle of the
188	HAADF detector ranged over ~97–256 mrad. Electron energy-loss spectroscopy (EELS) was completed
189	in dual EELS mode with an entrance aperture of 25 mm, a dispersion of 2.5 eV/ch, and a collection half
190	angle of β =11.3 mrad. The FWHM of the zero-loss peak was ~1 eV.
191	Thin foils were prepared from the highly radioactive particles by a focused ion beam (FIB)
192	system (FEI, Quanta 3D FEG 200i Dual Beam, MA, USA). The primary ion source was gallium and
193	the foils were deposited with tungsten to minimize radiation damage by ion bombardment. The current
194	and accelerating voltage of the ion beam were adjusted to 49 pA-30 nA and 8-30 kV, respectively,
195	depending on the thinning progress and sample properties (such as hardness and size). Each thinned

196 piece was attached to a convex-shaped Cu grid (Omniprobe FIB Lift-Out grid) in order to cut by the

197 FIB and was further thinned by an ion beam operated at 8 kV.

198

199	2.8. Gamma Spectrometry.
-----	--------------------------

The ¹³⁴Cs and ¹³⁷Cs activities of FTB1 and FTB26 were determined by gamma spectrometry. 200 201The measurements were conducted using Ge semiconductor detectors GMX35 and GMX40 (SEIKO E&G, Tokyo, Japan) at the Center for Radioisotopes in Kyushu University, Japan. The ¹³⁴⁺¹³⁷Cs activity 202 203of an additional micro-particle of size $\sim 400 \ \mu m$ was precisely determined at the radioisotope center in 204the University of Tsukuba. To eliminate the effects of peak summation for ¹³⁴Cs, the peak at 604 keV was precisely measured to obtain the detection efficiency using a ¹³⁴Cs standard solution sample that 205was purchased from the Japan Radioisotope Association (product CZ010). Following a previous study 206 207(Furuki et al., 2017), this micro-particle was employed as the in-house standard point specimen for ¹³⁴Cs and ¹³⁷Cs. As of March 12, 2011, the ¹³⁴Cs and ¹³⁷Cs activities of the point source standard were 208209 determined to be 110 and 105 Bq, respectively. In analysis of the highly radioactive particles, dead-time 210correction was employed to deduce the live-time count rate of gamma ray in the software, Gamma Studio (SEIKO E&G). 211

213 2.9. Secondary ion mass spectrometry (SIMS)

214	The isotopic ratios in FTB26 on the surface and the prepared cross-sectional specimen were
215	analyzed using SIMS (SHRIMP-II, Australian Scientific Instruments) at the National Institute of Polar
216	Research, Tokyo. Prior to analysis, both the surface and cross section were coated with a 13.5 nm-thick
217	Au layer. The FTB26 surface was sputtered with an O_2^- primary ion beam with a current of 5.30–6.87
218	nA and a beam diameter of ~25 μ m. The typical mass resolution (<i>M</i> / Δ <i>M</i> at 1% peak height) was ~4,500
219	in the Cs-Ba-isotope analysis and ~3,000 in the B-isotope analysis. The mass calibration and standard
220	specimen for quantification accorded with the National Institute of Standards and Technology (NIST)
221	SRM612. The ${}^{10}B^+$ and ${}^{11}B^+$ masses were scanned in the B-isotope analysis, and masses of 133, 134,
222	135, 137, and 138 were scanned in the Cs-Ba-isotope analysis. Note that isotopic interferences occur
223	between the Cs and Ba ions at masses 134, 135, and 137.
224	
225	2.10. Nano-focus Synchrotron XRF and XRD

Nano-focus XRF and XRD measurements was performed at the Diamond Light Source I14
beamline in the U.K. A thin foil (FTB1-A) was extracted from sample FTB1 using FIB milling (see

228	section 2.7) and mounted on a convex-shaped Cu grid (Omniprobe FIB Lift-Out grid), and then placed
229	in double Kapton containment for radiological safety. XRF data from the thin foil was collected in
230	backscatter mode using a ~50 nm (horizontal) beam spot (horizontally reflecting double-crystal
231	monochromator) and a Rayspec TM 4 element Si drift detector (0.6-0.8 sr solid angle). XRF mapping
232	was performed with an incident beam energy of 6.0 keV and 19.0 keV. XRF maps were fitted,
233	background subtracted, and plotted for publication using PyMCA (Solé et al., 2007). Nano-focus XRD
234	maps were collected with an Excalibur 3M detector (Marchal et al., 2013). The sample to detector
235	distance was 366 mm (calibrated using a CeO ₂ standard), the beam spot was as per XRF data collection,
236	and the incident beam energy was 19.0 keV. Diffraction patterns from each scan position were converted
237	from 2D images to 1D spectra using DAWN for azimuthal integration before subtracting a polynomial
238	background function (Filik et al., 2017). The diffraction patterns were summed across the mapped area
239	to give a representative pattern.
240	

241Results

- 3.1. ¹³⁴Cs and ¹³⁷Cs activities 242
- Thirty-one radioactive particles were isolated from soils collected at four locations in Futaba 243

244	Town (Fig. 1, Table S1). The ¹³⁴ Cs and ¹³⁷ Cs activities of these particles after decay-correction to March
245	12, 2011, are given in Table 1. Figure 2 plots the ${}^{134}Cs/{}^{137}Cs$ activity ratio of the particles versus the
246	¹³⁷ Cs activity on a logarithmic scale. For comparison, the ¹³⁴ Cs/ ¹³⁷ Cs activity ratios of CsMPs reported
247	in previous studies (Furuki et al., 2017; Imoto et al., 2017; Kurihara et al., 2020; Ochiai et al., 2018;
248	Suetake et al., 2019) are also plotted, along with the average ${}^{134}Cs/{}^{137}Cs$ activity ratios in Unit 1 (0.945),
249	Unit 2 (1.08), and Unit 3 (1.05) calculated using ORIGEN-II code with JENDL data (Nishihara et al.,
250	2012). The ¹³⁴ Cs/ ¹³⁷ Cs activity ratios in the CsMPs were close to the calculated average ratios in Units
251	2 and 3; whereas, those of the particles in the present study are a good match for the average ratio in
252	Unit 1. This result confirms that the isolated particles in the present study were derived from Unit 1.
253	The 137 Cs activity of most of the particles in the present study ranged from 10^0 to 10^3 Bq, but the two
254	particles designated FTB1 and FTB26 showed extremely high 137 Cs activities (3.1 × 10 ⁵ and 1.3 × 10 ⁶
255	Bq, respectively; see Table 1). The total $^{134+137}$ Cs activities of FTB1 and FTB26, 6.1×10^5 and 2.5×10^6
256	Bq, respectively, far exceed the highest reported $^{134+137}$ Cs activity per particle (3.7 × 10 ⁴ Bq) released
257	from the FDNPP (Martin et al., 2020). For this reason, the following results and discussion focus on
258	these two new highly radioactive particles, FTB1 and FTB26. The activities and SEM results of the
259	other 29 particles are given in the Supplementary Information (Fig. S2, Table S2).

261 3.2. FTB1

262	Figure 3a is a secondary electron (SE) SEM image of FTB1 associated with the elemental
263	maps of the major elements. The particle is angular with an approximate size of 300 μ m. From the EDX
264	spectrum (Fig. 3b), the main elements were identified as O, Al, and Si. Ca and Fe are distributed
265	heterogeneously on the particle surface. A small Cs peak was detected over the entire surface of the
266	specimen (Fig. 3b). This sample, with a sufficiently high Cs content (>0.1 wt.%), is the first Unit 1-
267	derived particle with a recognizable Cs peak in SEM-EDX spectroscopy. The particle was subsequently
268	crushed into smaller pieces using tweezers for a detailed internal analysis. The SE image and elemental
269	maps of the separated particles are shown in Fig. S3a. Calcium and Fe were heterogeneously distributed
270	on the fractured surfaces. In an EDX point analysis of the micro-particles that adhered to the surface,
271	Cs was associated with aluminosilicate, and calcium sulfate was also present (Fig. S3b). Presence of
272	calcium sulfate micro-particles was further supported by enlarged elemental maps that reveal a
273	correlation between Ca and S (Fig. S3c).
274	Two TEM thin foils (FTB1-A and FTB1-B) were successfully prepared from a FTB1

275 fragment using the FIB system (Fig. S4). Panel (a) of Fig. 4 shows the HAADF-STEM image and

276	elemental maps of the major constituents of foil FTB1-A. The particle contained aggregations of flaky
277	nano-textures and numerous nano-pores (Fig. 4a). The matrix part was mainly composed of O, Si, Al,
278	and Fe, with trace K, Ca, Ti and Cs (EDX1 in Fig. 4a). The Cs content in the matrix (calculated as Cs ₂ O)
279	was semi-quantitatively determined as ~ 0.83 wt.% on average (Table 2). Selected area electron
280	diffraction (SAED) patterns revealed diffuse diffraction maxima confirming an amorphous structure
281	(Fig. 4a), which is also supported by nano-focus X-ray diffraction analysis of FTB1 (Fig. S5a). FTB1-
282	A also contained titanium oxides with trace Zr, in which Cs was absent (EDX2 in Fig. 4a). Nano-focus
283	X-ray analysis of FTB1 also confirmed that the Ti-oxides were associated with trace Zr and absent with
284	Cs (Fig. S5). The structure and composition of FTB1-B were similar to those of FTB1-A (Fig. 4b): flaky
285	texture, pores, and diffuse diffraction maxima. The average Cs content in the FTB1-B matrix (calculated
286	as Cs ₂ O) was determined as ~0.68 wt.%. SiO ₂ -rich inclusions, in which no Cs was detected, also
287	presented in the matrix (EDX4 Fig. 4b). Thus, the Cs in FTB1 was mainly associated with
288	aluminosilicate.
289	

290 3.3. FTB26

291

Figure 5 shows the SE image and elemental map of the major elements in FTB26. This

292	sample was also angular in shape with an approximate diameter of 3 mm (Fig. 5a). Enlarged SE images
293	revealed numerous spherical and fibrous micro-particles attached to the surface (Fig. 5b and c). The
294	elemental map confirmed the distributions of Si, O, and Na on the fibrous and spherical particles. The
295	host particle was dominated by carbon, although FTB26 was not carbon-coated prior to SEM
296	observation (Fig. 5b). According to the EDX spectra collected from the points labeled EDX 1–3 in Fig.
297	5b and c, the fibrous and spherical particles attached on the surface contained Si as a dominant
298	constituent, and trace amounts of Ca, Fe, and Pb (Fig. 5d).
299	XRF mapping of FTB26 was performed by scanning the X-ray analytical microscope over
300	the entire particle (Fig. 6a). Note that the contrast does not represent the relative concentration between
301	the elements, because it depends on the energy of the incident X-ray beam and the fluorescence
302	efficiency. The maps show that Ti, Fe, and Zn were heterogeneously distributed as discrete particulates
303	over the entire particle. At one spot, Cu was associated with Fe. The X-ray CT image of FTB26 indicated
304	high-density particles at the surfaces (Supporting Information, movie S1). A sequence of cross-sectional
305	CT images sliced at constant intervals also revealed a dense rim and a less dense core, with many pores
306	as large as several hundreds of micrometers across (Fig. 6b).

A cross section specimen was also prepared (Fig. S6a and b). Several pores appeared within

308	the particle in a back-scattered electron (BSE) image, consistent with the CT images (Fig. 7a). The
309	elemental maps revealed a carbon core and a rim with heterogeneous distributions of other elements
310	such as Si, Al, Fe, Na, Ti, Mg, and Ca (Fig. 7a). The purity of the carbon core was confirmed in the
311	EDX spectrum EDX1 (Fig. 7b). An enlarged image and the elemental maps of the rim (enclosed within
312	the dotted yellow-edged rectangle in Fig. 7a) revealed numerous fine particles composed mainly of
313	silicate, along with Na, Mg, Al, and Ca. Iron was also present with a different distribution. As clarified
314	in the elemental map, these particles are embedded within the carbon matrix rather than attached on the
315	surface.
316	The individual fine particles embedded within the rim of FTB26 were characterized in detail
317	by SEM (Fig. 8). Figure 8a shows the BSE image of a rim associated with elemental maps and the EDX
318	spectra collected from the points labeled EDX1–6. The maps reveal a silicate phase-bearing Al, Ca \pm
319	Na, Pb–(Cr–Zn–O) phase, Ca–(C–O) phase, and Fe–Cr–O phase. Most of these phases were $<50 \ \mu m$
320	in size and embedded in the carbon core. The Fe-Cr-O phase (represented by EDX1) was dominated
321	by Fe oxides with trace Cr (Fe/Cr molar ratio = 7.8). The particle indicated by EDX2 was primarily Pb
322	with small amounts of Si and O and negligible Cr and Zn, indicating a probable composition of Pb metal

324	surface, as evidenced in the Si and O elemental maps. However, a Pb-oxide composition cannot be
325	excluded. The micro-particle labeled EDX3 was predominantly Ca, in the form of calcium carbonate or
326	calcium hydroxide. Meanwhile, EDX4 was composed of silicate with Ca. The phase was difficult to
327	identify based on composition alone. The micro-particle labeled EDX5 was most likely composed of
328	SiO ₂ (quartz). The particle indicated by EDX6 was also silicate with a composition similar to that of
329	Na-rich glass.
330	Figure 8b shows the SE image, an enlarged SE image, the elemental maps, and EDX spectra
331	collected from the micro-particles at the rim of the carbon core. The micro-particle indicated by EDX7
332	was composed of Fe-Zn-oxides with an Fe/Zn molar ratio of ~3.9. The enlarged SE image revealed a
333	Pb-Sn alloy, which was confirmed in the EDX spectrum (EDX8). In a semi-quantitative area analysis
334	of the whole particle, the Pb:Sn molar ratio was deduced as 58:42. However, the elemental maps
335	clarified that Sn and Pb were chemically separated within the particle. The particle indicated by EDX9
336	was aluminosilicate with Ca and S and was seemingly a mixture of clay-like aluminosilicate and calcium
337	sulfate. A BSE image of another rim part presented angular particles of approximate size (200×100)
338	μ m ² , and main compositions of Si and O with Ca and Na-like glassy material (Fig. 8c). Figure 8d is an
339	SE image of a Pb metal particle (EDX11). A BSE image of another embedded particle and its elemental

340	map showed an aggregate of numerous particles of a few microns in size. The image displays a fractured
341	texture and the fractured particles were surrounded by a carbon matrix. Semi-quantitative EDX analysis
342	of the entire aggregate (EDX12) revealed Al and Si as the dominant constituents (Al + Si > 71 wt%),
343	with trace Ca, Na, Mg, and Fe. In the elemental maps, the Si, Al, and O were uniform; whereas, Ca, Mg,
344	Na, and Fe were heterogeneously distributed within the aggregate. An SE image and corresponding
345	elemental maps of another part of the rim revealed similar occurrences of various particles, including a
346	Ca phase, immiscible Pb-Sn metal particles, and a silicate phase. The Si phase was identified as SiO ₂
347	(quartz) (EDX13).
348	The carbon core of FTB26 was further investigated after FIB sectioning of the part indicated
348 349	The carbon core of FTB26 was further investigated after FIB sectioning of the part indicated by the arrow in Fig. 7a. The HAADF-STEM image showed a uniform structure without any inclusions
349	by the arrow in Fig. 7a. The HAADF-STEM image showed a uniform structure without any inclusions
349 350	by the arrow in Fig. 7a. The HAADF-STEM image showed a uniform structure without any inclusions (Fig. 9a). A representative SAED pattern was collected from the area enclosed by the yellow-edged
349 350 351	by the arrow in Fig. 7a. The HAADF-STEM image showed a uniform structure without any inclusions (Fig. 9a). A representative SAED pattern was collected from the area enclosed by the yellow-edged circle in Fig. 9a. The diffuse diffraction maxima in the SAED pattern indicates an amorphous structure
349 350 351 352	by the arrow in Fig. 7a. The HAADF–STEM image showed a uniform structure without any inclusions (Fig. 9a). A representative SAED pattern was collected from the area enclosed by the yellow-edged circle in Fig. 9a. The diffuse diffraction maxima in the SAED pattern indicates an amorphous structure (Fig. 9a insert). The representative EDX spectrum revealed a pure carbon core, consistent with the SEM

356 (Yao et al., 2014; Zeng et al., 2017).

357	The boron isotope ratio ${}^{11}\text{B}/{}^{10}\text{B}$ at the FTB26 surface ranged from 4.14 to 4.28 (average =
358	4.18, $n = 5$) (Table 4a). To obtain the average ratio, five analytical spots were arbitrarily selected on the
359	surface as shown in Fig. S6c. At all analytical points, the ¹¹ B/ ¹⁰ B isotopic ratio was slightly higher on
360	FTB26 than on SRM612 (4.049) and that of the natural isotope ratio (4.044; Foster et al., 2016)),
361	indicating that ^{10}B had been consumed through neutron absorption of ^{10}B , namely, $^{10}B(n,\alpha)^7Li$. The B
362	concentration, deduced by comparison with NIST standard SRM612, ranged from 5 to 6625 ppm. Boron
363	was below the detection limit in the carbon core of the cross-sectional sample; hence, the data are not
364	given in Table 4a. The cesium isotope distribution was investigated by measuring ¹³³ Cs. The ion counts
365	(cps) were almost nil inside the core but reached ~ 19000 at the rim (Table 5a, Fig.10a). Hence, the
366	subsequent analysis focused on spots 3-8 around the rim. The ion-count ratio of mass-135/mass-133
367	represents the $(^{135}Cs+^{135}Ba)/^{133}Cs$ ratio due to isotopic interference between ^{135}Cs and ^{135}Ba . The
368	measured ratios ranged from 0.49 to 1.2, slightly higher than that in Unit 1 (Nishihara et al., 2012) (Fig.
369	10b). Similarly, $({}^{137}Cs + {}^{137}Ba)/{}^{133}Cs$ ranged from 0.99 to 2.2, slightly higher than in Unit 1 (Fig. 10c).
370	Meanwhile, $(^{134}Cs+^{134}Ba)/^{138}Ba$ ranged from 0.037 to 0.044, much lower than in Unit 1 (Fig. 10d). The
371	ion-count ratio of mass-135/mass-137, given by (135Cs+135Ba)/(137Cs+137Ba), was nearly constant

around ~ 0.5 , which is higher than the calculated ratio in Unit 1 (Nishihara et al., 2012).

373

4. Discussion

375	4.1. Specific physico-chemical properties and isotopic signature of the new highly radioactive particles
376	The total Cs activities of FTB1 and FTB26 were 6.1×10^5 and 2.5×10^6 Bq, respectively,
377	higher than that measured for any other radioactive particles derived from Unit 1 (Fig. 2) (Martin et al.,
378	2020, 2019, 2017). These two highly radioactive particles exhibited different physio-chemical
379	properties. FTB1 consisted of aggregated submicron-sized aluminosilicates with a flaky texture and a
380	relatively high Cs content (detectable by EDX spectroscopy). In previous studies, the Cs occurrence in
381	all radioactive particles released from Unit 1 (besides CsMPs) were identifiable only through
382	synchrotron-radiation μ XRF spectroscopy. Thus, the Cs concentration in FTB1 is considered to be high
383	even at <1 wt%. Although the origin of FTB1 is uncertain, aluminosilicates can be sourced from several
384	locations in the reactor building. One possible origin is the insulating material at the exterior of the RPV
385	(Martin et al., 2020, 2017). In FTB1, this source is unlikely because the nano-texture was compacted
386	and dense in the TEM image. Another possible source is a structural component, for example, a wall.
387	Although the source material cannot be specified conclusively, the radioactive Cs was uniformly

388	distributed within the aluminosilicate, evidence that a volatilized Cs species was likely adsorbed onto
389	the aluminosilicates before the Unit's hydrogen explosion. That is, the volatilized Cs had escaped from
390	the RPV before the hydrogen explosion at 15:36 on March 12 of 2011. There is a possibility that the
391	high Cs concentration is a result of adsorption of Cs after wet deposition during rain; however, the
392	¹³⁴⁺¹³⁷ Cs activity of FTB1 and FTB26 is abnormally high as compared with all other particles, such as
393	clays in soil, indicating that the radioactive Cs in the highly radioactive particles is unlikely to be the
394	results of post-depositional adsorption of Cs.
395	Unlike FTB1, FTB26 consisted of a mainly glassy carbon core with mixed π and σ bonds.
396	Numerous fine particles were embedded in the surface around the carbon core. Based on the SIMS
397	analysis, only these fine surface particles are associated with Cs and B. No significant Cs and B contents
398	were found in the glassy carbon core; thus, the core is non-radioactive. The high concentration of surface
399	B (up to ~6625 ppm) indicates that the B content is not of natural origin, but instead derived from the
400	high concentration of volatilized B species in the ambient atmosphere inside the reactor at the time of
401	the explosion. This conclusion is supported by the slightly higher ${}^{11}B/{}^{10}B$ isotopic ratio (4.13–4.27) than
402	in SRM612 (4.049). This elevated ratio confirms the neutron capture of ¹⁰ B, meaning that B likely
403	originated from B ₄ C in the control rods as predicted by experimental studies (Miwa et al., 2020, 2016).

404	On March 12 of 2011, a mixture of sea water with boric acid was injected into the Unit 1 reactor in a
405	ratio of 20:45, after the hydrogen explosion on the same day (IAEA, 2015). Hence, the B detected in
406	FTB26 could not be derived from the injected borate water.
407	Based on the Cs and Ba isotopes concentrated in the rim of FTB26, the ion-count ratios of
408	$(^{135}Cs + ^{135}Ba)/^{133}Cs$ and $(^{137}Cs + ^{137}Ba)/^{133}Cs$ were slightly higher than the isotope ratios calculated for
409	Unit 1, despite the lower ionization efficiency of Ba than of Cs in the SIMS analysis (Imoto et al., 2017).
410	In CsMPs, the volatilized Cs was captured during their formation, so the ion-count ratios correspond to
411	the ratios of the initial Cs isotopes of averaged fuel composition of their source reactor. In contrast, the
412	ratios in the present study reflect the incorporation of the natural Ba isotopes ¹³⁵ Ba and ¹³⁷ Ba, indicating
413	that a small amount of naturally occurring Ba was either volatilized inside the reactor building during
414	the meltdown or adsorbed onto the particle surface after it was released to the environment. The amount
415	of volatilized Ba in the reactor should be negligible considering the lower volatility of Ba as compared
416	with Cs (Pontillon et al., 2010). A previous study also reported that almost no Ba was volatilized during
417	meltdowns in FDNPP (Imoto et al., 2017). In addition, the natural abundance of Ba in upper continental
418	crust is about 670 ppm (Hans Wedepohl, 1995), which is several orders of magnitude higher when
419	compared to the concentration of radioactive Cs in the soil that contained FTB1 and 26 (7.8×10^6 Bq/kg

420 / 2.3 ppb of $^{134+137}$ Cs). As a consequence, Ba detected in the FTB26 is most likely natural Ba adsorbed

- 421 after the particle was deposited in the environment.
- 422Meanwhile, limited amounts of volatilized Cs were adsorbed on the surfaces of the 423embedded micro-particles or the carbon core. In fact, the Cs concentrations were below the detection 424limit of the EDX analysis. This finding strongly suggests that the timing and compositions of the 425ambient atmosphere differed during the formation of FTB26 and CsMPs. The ion-count ratio (134Cs + ¹³⁴Ba)/¹³⁸Ba ranged from 0.03 to 0.04 in FTB26 (less than half that in Unit 1), but exceeded 100 in 426 427CsMPs (Imoto et al., 2017). The ratios measured in the present study were very close to the ¹³⁴Ba/¹³⁸Ba 428isotopic ratios of natural abundance, namely, 0.0337 (Eugster et al., 1969), strongly indicating the occurrence of natural Ba. In addition, the ion-counts ratio $(^{135}Cs + ^{135}Ba)/(^{137}Cs + ^{137}Ba)$ at the rim of 429FTB26 ranged from 0.48 to 0.53; this is clearly higher than the $(^{135}Cs + ^{135}Ba)/(^{137}Cs + ^{137}Ba)$ isotopic 430 ratio calculated in Unit 1 (0.365), and rather close to the natural abundance ¹³⁵Ba/¹³⁷Ba isotopic ratio of 4314320.619 (Eugster et al., 1969). Therefore, the ion-count ratio measured in the present study probably reflected the isotopic ratio of natural Ba. The ion-count ratio $(^{135}Cs + ^{135}Ba)/(^{137}Cs + ^{137}Ba)$ showed a 433greater deviation from the natural Ba-isotope ratio toward the calculated ratio in Unit 1 than the (134Cs 434+ ¹³⁴Ba)/¹³⁸Ba ratio, likely because the amount of volatilized ¹³⁷Cs exceeded the amount of volatized 435

¹³⁴Cs by more than one order of magnitude.

437	The texture of FTB26 was highly porous with various submicron particles, such as silica
438	fibers, attached to the surface. Radioactive particles from Unit 1 (particle number CF-01-1) were
439	characterized in a previous study (Martin et al., 2020), although no glassy carbon core has been reported
440	for these particles. Martin et al. (2020) suggested that the core material of this particle was
441	aluminosilicate insulating material, although a significant carbon signal appeared in the SEM-EDX
442	spectrum scanned over the surfaces, which may be derived from a carbon coating or carbon core. In
443	their study, the carbon signal may have been missed because the hard incident X-rays in the synchrotron
444	facility arrive at very high energy (19 keV) (Martin et al., 2020). Thus, other Unit 1-derived particles
445	reported in previous studies might have contained a carbon core. After normalization with the
446	approximately calculated volume, the ¹³⁴⁺¹³⁷ Cs activity of FTB26 was of the same order of magnitude
447	as the ¹³⁴⁺¹³⁷ Cs activity of a recently reported particle (Martin et al., 2020): 6.0×10^8 Bq/cm ³ for FTB26
448	and 2.9×10^9 Bq/cm ³ for particle CF-01-1 in Martin et al. (2020). This finding supports our hypothesis
449	of similar ¹³⁴⁺¹³⁷ Cs activity.

451 4.2. Aerosols embedded in the surface of FTB26 as a record of airborne particles during the H₂ explosion

452	The surfaces of the highly radioactive particles were not always associated with fine micro-
453	particles. The FTB1 surface revealed no embedded micro-particles; whereas, FTB26 exhibited
454	numerous micro-particles embedded into the surface of its glassy carbon core. These particles likely
455	became attached and embedded into the surface at the time of the hydrogen explosion, indicating that
456	they were airborne in the reactor building when the explosion occurred. Radioactive Cs was detected
457	only on the surface of FTB26, implying two possible scenarios: (1) Cs was associated with airborne
458	micro-particles that were subsequently embedded through the explosion, or (2) volatilized Cs was first
459	absorbed onto structural materials and was then fractionated and driven into the core of the particle
460	during the explosion. The main average composition of these airborne particles was Al, Si, S, Ca, Ti,
461	Fe, and Na, with a few wt.% of K and Mg (Table 3a). Airborne particles of various phases were
462	identified: fibrous aluminosilicates (Fig. 5c), possibly derived from insulating materials (Martin et al.,
463	2017); Ca phase (Ca carbonate) (Fig. 8a), most likely derived from concrete materials; Fe-Zn oxides
464	(Fig. 8b); Fe-Cr oxide, which is likely the composition of stainless steel; and Pb-(Sn) alloy with various
465	Sn contents (0-40%), possibly originating from solder or plating. The alloy is known to melt above
466	183 °C. Its two phases, alpha and liquid, coexist between 183 and \sim 230 °C, and Pb ₆₀ Sn ₄₀ alloy exists
467	entirely in the liquid phase (Fecht, 1991). The Sn-rich and Pb-rich domains should have phase-separated

468	during the heating and rapid cooling processes within the damaged reactor building. These airborne
469	particles differ from the inclusions in CsMPs, such as nanoparticles of various fission fragments, which
470	probably formed inside the PCV and which represent the composition of the airborne particles (Furuki
471	et al., 2017; Imoto et al., 2017). Such a difference has two possible causes: the different sizes of the
472	micro-particles embedded in the FTB26 surface and the nano-particle inclusions within CsMPs, and the
473	different particle-formation processes at different locations in the reactor building (outside the PCV for
474	FTB26 and inside for CsMPs).
475	
476	4.3. Significance of the new highly radioactive particles in the environment and their health impacts
477	The high ¹³⁴⁺¹³⁷ Cs activity per particle (for FTB1 and FTB26) poses a potential threat to
478	health and the environment. Such high ¹³⁴⁺¹³⁷ Cs activity per particle has never been reported in
479	Fukushima, and the health impacts have never been discussed, although "hot particles" derived from
480	nuclear reactor facilities in Europe have been serially reported. For instance, Charles and Harrison
481	(2007) determined the ¹³⁷ Cs content of radioactive particles at the Dounreay nuclear site in Scotland
482	(10^3-10^8 Bq) and estimated the external and internal exposures to the human body through inhalation,
483	ingestion, and skin contact (Charles and Harrison, 2007). The external dose from a fuel fragment

484	emitting 10 ⁵ Bq of ¹³⁷ Cs is extremely small at some distance from the particle, even when no radiation
485	shielding is installed. Therefore, the highly radioactive particles in the area contaminated by Unit 1 are
486	unlikely to cause acute health effects through external exposure. Regarding inhalation, particles of size
487	${<}10~\mu m$ can reach the deep lung tissue and increase the risk of lung cancer, whereas particles of size
488	$>10 \ \mu m$ can deposit higher in the respiratory tract without reaching the bronchi (Charles and Harrison,
489	2007). Because both FTB1 and FTB26 characterized in this study are too large to reach the respiratory
490	tract, the effects of inhalation are ignored. From a regression curve (Charles and Harrison, 2007), the
491	external-radiation dose rates of FTB1 and FTB26 with 137 Cs activities of $\sim 10^5$ and $\sim 10^6$ Bq respectively
492	were estimated as 0.3 and 2–4 Gy $h^{\text{-1}}$, respectively (averaged over 1 cm² at a distance of 70 μm from
493	the skin surface). As the threshold for skin damage is ~ 2 Gy (NRPB, 1997), stationary contact with
494	particles such as FTB26 (emitting $\sim 10^6$ Bq 137 Cs) can potentially cause skin lesions within 0.5–1.0 h.
495	However, dry particles sized >50 μ m do not typically adhere to dry skin (Sheppard, 1994), so the skin
496	damage caused by the highly radioactive particles is considered to be minimal. In addition, the ingested
497	dose of particles with ~ 10^5 Bq 137 Cs activity was previously estimated as 10–20 mGy (Charles, 2009;
498	Charles and Harrison, 2007), three orders of magnitude lower than the estimated threshold dose of lethal
499	damage to the colon (Stather et al., 1988). Comparing the new highly radioactive particles with the

500	particles reported in previous studies, the human health effects of the highly radioactive particles
501	discovered in the present study can be regarded as negligible. The effects of highly radioactive particles
502	on the other living organisms, such as filter feeders, may however be of particular concern due to their
503	size and high activity, and as such this may warrant further study for FDNPP impacted environments.
504	Indeed, a previous experimental study exposing a highly radioactive particle derived from the Dounreay
505	reactor site (UK) (dose rate of ~3 Gy/h; ~ 10^5 Bq of 137 Cs) to the marine mollusc <i>Mytilus edulis</i> ,
506	demonstrated increased DNA damage and necrosis in the mollusc's mantle tissue (Jaeschke et al., 2015).
507	Another study has also reported that a freshwater mussel, Limnoperna fortunei, accumulated radioactive
508	Cs released from FDNPP and the biological half-life was calculated to be much longer than the typical
509	biological half-life of Cs (Matsuzaki et al., 2014).
510	The high ¹³⁴⁺¹³⁷ Cs activity of FTB1 and FTB26 could also influence the transfer of the
511	radiation dose through the ambient environment (when placed 1 cm from the particles, the scintillation
512	survey meters of FTB1 and FTB26 read ~1 and >5 $\mu Sv/h,$ respectively). In addition, the $^{134+137}Cs$
513	activities of both particles exceeded the bulk $^{134+137}$ Cs activity per unit mass of soil samples (KU-536 =
514	1.65×10^4 Bq/g) excluding the highly radioactive particles (Table S1). This indicates that the occurrence
515	and mobility of such particles could greatly influence the local radiation dose. Therefore, removing

516	these particles would effectively reduce the ambient radiation dose in the area impacted by Unit 1. In
517	addition, the occurrence of highly radioactive particles in shallow aquatic environments (rivers and
518	ponds) would influence the distribution coefficient, K_d , of radioactive Cs between solids and waters;
519	that is, the excess amount of radioactive Cs could be distributed to the solid fraction, which would
520	impact models for radioactive Cs migration (for example, as reported in a previous study: Konoplev et
521	al., 2016).
522	
523	4.4. Implications of radioactive particles released during meltdowns
524	As with other radioactive particles, such as CsMPs and Unit 1-derived particles, highly
524 525	As with other radioactive particles, such as CsMPs and Unit 1-derived particles, highly radioactive particles can be rigorously characterized to better understand the conditions inside the
525	radioactive particles can be rigorously characterized to better understand the conditions inside the
525 526	radioactive particles can be rigorously characterized to better understand the conditions inside the nuclear reactor building during meltdown. In particular, FTB26 records the composition of the airborne
525 526 527	radioactive particles can be rigorously characterized to better understand the conditions inside the nuclear reactor building during meltdown. In particular, FTB26 records the composition of the airborne particles in the reactor building at the moment of H_2 explosion. This "frozen" explosion evidence is
525 526 527 528	radioactive particles can be rigorously characterized to better understand the conditions inside the nuclear reactor building during meltdown. In particular, FTB26 records the composition of the airborne particles in the reactor building at the moment of H_2 explosion. This "frozen" explosion evidence is valuable for elucidating the progression of catastrophic events in the reactor building, because such

532	recording medium of the phenomena inside the power plant. Such information is crucial when particles
533	are released from "ground zero", where the extremely high radiation field blocks access to the site. This
534	information can be retrieved from particles that are sparingly soluble in ambient environments, such as
535	those characterized in our present and previous studies (Furuki et al., 2017; Imoto et al., 2017; Ochiai
536	et al., 2018).
537	
538	Acknowledgements
539	The authors are grateful to Dr. Watanabe for her assistance on SEM analyses at the Center
540	of Advanced Instrumental Analysis, Kyushu University. This study is partially supported by JST
541	Initiatives for Atomic Energy Basic and Generic Strategic Research and by a Grant-in-Aid for
542	Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (16K12585,
543	16H04634, No. JP26257402). The findings and conclusions of the authors of this paper do not
544	necessarily state or reflect those of the JST. We thank Diamond Light Source for beamtime NT21246-
545	9, U.K.
546	

547 CRediT authorship contribution statement

548	Kazuya Morooka: Formal analysis, Data curation, Writing - original draft. Eitaro Kurihara:
549	Formal analysis. Masato Takehara: Formal analysis. Ryu Takami: Formal analysis. Kenij Horie: Formal
550	analysis. Shinya Yamasaki: Investigation. Toshihiko Ohnuki: Resources. Bernd Grambow: Data curation,
551	Writing – original draft. Gareth T.W. Law: Writing – original draft. Joyce W. L. Ang: Writing – original draft,
552	Formal analysis. William R Bower: Formal analysis. Rodney C Ewing: Writing - original draft. Satoshi
553	Utsunomiya: Conceptualization, Investigation, Writing – original draft.
554	
555	
556	
557	
558	
559	

560 Figure captions

561	Figure 1. Maps showing the location of Fukushima Daiichi Nuclear Power Plant (FDNPP) and sampling
562	sites on the map of ¹³⁴⁺¹³⁷ Cs activity. Red filled circles indicate the locations of the present samples. The
563	red star represents the location of the soil sample containing FTB1 and FTB26. This map was modified
564	with permission from the Extension Site of Distribution Map of Radiation Dose/GSI Maps.
565	
566	Figure 2. ¹³⁴ Cs/ ¹³⁷ Cs activity ratio versus ¹³⁷ Cs activity. Filled red circles indicate the radioactive
567	particles isolated in the present study. Green, red and blue dotted lines represent the $^{134}Cs/^{137}Cs$ activity
568	ratios in Units 1, 2, and 3, respectively, at the time of the accident. For comparison, the ${}^{134}Cs/{}^{137}Cs$
569	activity ratios of CsMPs reported in previous studies (Furuki et al., 2017; Imoto et al., 2017; Kurihara
570	et al., 2020; Ochiai et al., 2018; Suetake et al., 2019) are plotted for comparison. The green triangle
571	indicates the highest ¹³⁴⁺¹³⁷ Cs activity and the ¹³⁴ Cs/ ¹³⁷ Cs activity ratio reported in radioactive particles
572	released from the FDNPP (Martin et al., 2020).
573	
574	Figure 3. (a) Secondary electron (SE) image of FTB1 prior to crushing, accompanied by EDX elemental

575 maps of the major elements; (b) EDX spectrum of the area indicated by the yellow labels in the SE

576 images; (c) and (d) enlarged SE images. White arrows indicate smaller micro-particles adhered to the
577 surface.

579	Figure 4. (a) HAADF-STEM image of the FIB-TEM specimen of FTB1-A associated with the
580	elemental maps. The FIB sampling position is shown in the supporting information (Fig. S4). SAED
581	pattern of flaky nanoparticles within the matrix. EDX spectra were collected from the areas indicated
582	by the yellow labels in the HAADF-STEM image. (b) HAADEF-STEM image of FIB-TEM specimen
583	of FTB1-B associated with the elemental maps and the SAED pattern of the matrix. EDX spectra of
584	EDX3 and EDX4 are also shown.
585	
586	Figure 5. (a) Secondary electron (SE) image of FTB26, (b) enlarged SE image of the surface of FTB26
587	associated with the elemental maps of its major constituents, (c) SE image of the fibrous structure of the
588	FTB26 surface, and (d) EDX spectra of the points indicated by the yellow crosses in (b) and (c). Note
589	that only EDX3 was obtained after SIMS analysis and coated with Au.
590	

591 Figure 6. (a) X-ray fluorescence spectroscopy elemental mapping of FTB26, along with the optical

592	image. The contrast of the maps does not correspond to the concentration of each element but reveals
593	the heterogeneous distribution of each element within the particle. (b) A captured image of the three-
594	dimensional X-ray tomography image of FTB26 at the position of the sliced surface, and three sliced
595	images in different planes. The colors indicate the relative densities of components within the particle.
596	A movie is given in the supplementary material (movie S1).
597	
598	Figure 7. (a) Back-scattered electron (BSE) image of the cross section of FTB26 (prepared by mounting
599	in epoxy resin and polishing), accompanied by elemental maps of its major constituents. (b) EDX
600	spectra: EDX1 collected from the area in the core enclosed by the yellow-edged square, and EDX2
601	averaged over the entire particle collected from the area enclosed by the yellow-dotted line. (c) A BSE
602	image enlarging the area outlined by the yellow-dotted square in (a) accompanied by elemental maps of
603	the major constituents
604	
605	Figure 8. SEM analyses of individual micro-particles embedded within the carbon-core surface: (a)
606	BSE image showing the phases (e.g., Pb-rich phase) of the micro-particles associated with the elemental
607	maps and the EDX spectra of the individual particles labeled EDX1-6 in the BSE image. (b) SE image

608	of micro-particles in the rim of FTB26 and an enlarged SE image of the area enclosed by the yellow-
609	dotted square in (a), along with the elemental maps of the major elements. EDX7-EDX9 are the EDX
610	spectra of three areas enclosed by the yellow-edged squares in the two SE images. (c) BSE image
611	showing a relatively large micro-particle fragment embedded in the surface, accompanied by the EDX
612	spectrum (EDX10) of the area enclosed by the yellow-edged square in that image. (d) SE image of a
613	micro-particle enriched in Pb only, and the EDX spectrum (EDX11) of the point indicated by the yellow
614	cross in that image. (e) BSE image of a large fractured micro-particle embedded in another part of the
615	rim, accompanied with the elemental maps of its major elements and the EDX spectrum of the entire
616	fragment outlined by the yellow dotted lines. (f) SE image of another rim part near a pore, accompanied
617	by elemental maps and the EDX spectrum (EDX13) of the point indicated by the yellow cross in that
618	image.
619	
620	Figure 9. (a) HAADF-STEM image of the FIB specimen prepared from the carbon core at the cross
621	section of FTB26. The insert is a SAED pattern obtained from the area enclosed by the yellow-edged
622	circle in the HAADF image. (b) STEM-EDX spectrum of the area indicated by the yellow-edged square
623	in (a). (c) Electron energy-loss spectrum (EELS) of the C K-edge collected from the thin area.

625	Figure 10. (a) Reflective light micrograph of the cross section of FTB26. Red labels indicate the
626	positions of the SIMS analysis. (b)–(e) Isotope ratios of at the spots indicated by the red numbers in (a):
627	(b) mass-135 ($^{135}Cs + ^{135}Ba$) to ^{133}Cs , (c) mass-137 ($^{137}Cs + ^{137}Ba$) to ^{133}Cs , (d) mass-134 ($^{134}Cs + ^{134}Ba$)
628	to 138 Ba, and (e) mass-135 (135 Cs + 135 Ba) to mass-137 (137 Cs + 137 Ba). The green lines in (b)–(e) are the
629	ratios calculated in Unit 1 of the FDNPP (Nishihara et al., 2012), plotted for comparison.
630	
631	
632	
633	
634	
635	
636	
637	
638	
639	

640 **Reference**

- 641 Auvinen, A., Lehtinen, K.E.J., Enriquez, J., Jokiniemi, J.K., Zilliacus, R., 2000. Vaporisation rates of
- 642 CsOH and CsI in conditions simulating a severe nuclear accident. J. Aerosol Sci. 31, 1029–1043.
- 643 https://doi.org/10.1016/S0021-8502(00)00027-6
- Buesseler, K., Dai, M., Aoyama, M., Benitez-Nelson, C., Charmasson, S., Higley, K., Maderich, V.,
- 645 Masqué, P., Morris, P.J., Oughton, D., Smith, J.N., 2017. Fukushima Daiichi-derived radionuclides
- 646 in the ocean: transport, fate, and impacts. Ann. Rev. Mar. Sci., Annual Review of Marine Science 9,
- 647 173–203. https://doi.org/10.1146/annurev-marine-010816-060733
- 648 Byrnes, I., Lind, O.C., Hansen, E.L., Janssens, K., Salbu, B., 2020. Characterization of radioactive particles
- from the Dounreay nuclear reprocessing facility. Sci. Total Environ. 727, 138488.
- 650 https://doi.org/10.1016/j.scitotenv.2020.138488
- 651 Charles, M.W., 2009. Health Effects of Dounreay Hot Particles: A Benchmark for the Evaluation of Doses
- and Risks, in: Radioactive Particles in the Environment. pp. 235–248. https://doi.org/10.1007/978-90-
- 653 481-2949-2_16
- 654 Charles, M.W., Harrison, J.D., 2007. Hot particle dosimetry and radiobiology—past and present. J. Radiol.
- 655 Prot. 27, A97–A109. https://doi.org/10.1088/0952-4746/27/3A/S11

656	Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., Yamazawa, H., 2011. Preliminary Estimation
657	of Release Amounts of 131 I and 137 Cs Accidentally Discharged from the Fukushima Daiichi
658	Nuclear Power Plant into the Atmosphere. J. Nucl. Sci. Technol. 48, 1129–1134.
659	https://doi.org/10.1080/18811248.2011.9711799
660	Eriksson, M., Osán, J., Jernström, J., Wegrzynek, D., Simon, R., Chinea-Cano, E., Markowicz, A.,
661	Bamford, S., Tamborini, G., Török, S., Falkenberg, G., Alsecz, A., Dahlgaard, H., Wobrauschek, P.,
662	Streli, C., Zoeger, N., Betti, M., 2005. Source term identification of environmental radioactive Pu/U
663	particles by their characterization with non-destructive spectrochemical analytical techniques.
664	Spectrochim. Acta Part B At. Spectrosc. 60, 455-469. https://doi.org/10.1016/J.SAB.2005.02.023
665	Eugster, O., Tera, F., Wasserburg, G.J., 1969. Isotopic analyses of barium in meteorites and in terrestrial
666	samples. J. Geophys. Res. 74, 3897-3908. https://doi.org/10.1029/JB074i015p03897
667	Fecht, H.J., 1991. Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys. Acta
668	Metall. Mater. 39, 1003–1009. https://doi.org/10.1016/0956-7151(91)90301-G
669	Filik, J., Ashton, A.W., Chang, P.C.Y., Chater, P.A., Day, S.J., Drakopoulos, M., Gerring, M.W., Hart,
670	M.L., Magdysyuk, O. V., Michalik, S., Smith, A., Tang, C.C., Terrill, N.J., Wharmby, M.T.,
671	Wilhelm, H., 2017. Processing two-dimensional X-ray diffraction and small-angle scattering data in

- 672 DAWN 2. J. Appl. Crystallogr. 50, 959–966. https://doi.org/10.1107/S1600576717004708
- 673 Foster, G.L., Lécuyer, C., Marschall, H.R., 2016. Boron Stable Isotopes. pp. 1–6.
- 674 https://doi.org/10.1007/978-3-319-39193-9_238-1
- Furuki, G., Imoto, J., Ochiai, A., Yamasaki, S., Nanba, K., Ohnuki, T., Grambow, B., Ewing, R.C.,
- 676 Utsunomiya, S., 2017. Caesium-rich micro-particles: A window into the meltdown events at the
- 677 Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 7, 42731. https://doi.org/10.1038/srep42731
- Hans Wedepohl, K., 1995. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–
- 679 1232. https://doi.org/10.1016/0016-7037(95)00038-2
- 680 IAEA, 2015. Technical Volume 1 of 5: Description and Context of the Accident, The Fukushima Daiichi
- 681 Accident. Vienna, Austria.
- 682 IAEA, 2011. Radioactive particles in the Environment: Sources, Particle Characterization and Analytical
- 683 Techniques. IAEA in Austria, Vienna, Austria.
- 684 Ikehara, R., Morooka, K., Suetake, M., Komiya, T., Kurihara, E., Takehara, Masato, Takami, R., Kino, C.,
- 685 Horie, K., Takehara, Mami, Yamasaki, S., Ohnuki, T., Law, G.T.W., Bower, W., Grambow, B.,
- 686 Ewing, R.C., Utsunomiya, S., 2020. Abundance and distribution of radioactive cesium-rich
- 687 microparticles released from the Fukushima Daiichi Nuclear Power Plant into the environment.

688	Chemosphere 241, 125019. https://doi.org/10.1016/j.chemosphere.2019.125019
689	Ikehara, R., Suetake, M., Komiya, T., Furuki, G., Ochiai, A., Yamasaki, S., Bower, W.R., Law, G.T.W.,
690	Ohnuki, T., Grambow, B., Ewing, R.C., Utsunomiya, S., 2018. Novel Method of Quantifying
691	Radioactive Cesium-Rich Microparticles (CsMPs) in the Environment from the Fukushima Daiichi
692	Nuclear Power Plant. Environ. Sci. Technol. 52, 6390-6398. https://doi.org/10.1021/acs.est.7b06693
693	Ikenoue, T., Takehara, M., Morooka, K., Kurihara, E., Takami, R., Ishii, N., Kudo, N., Utsunomiya, S.,
694	2020. Occurrence of highly radioactive microparticles in the seafloor sediment from the pacific coast
695	35 km northeast of the Fukushima Daiichi nuclear power plant. Chemosphere 128907.
696	https://doi.org/10.1016/j.chemosphere.2020.128907
697	Imoto, J., Ochiai, A., Furuki, G., Suetake, M., Ikehara, R., Horie, K., Takehara, M., Yamasaki, S., Nanba,
698	K., Ohnuki, T., Law, G.T.W., Grambow, B., Ewing, R.C., Utsunomiya, S., 2017. Isotopic signature
699	and nano-texture of cesium-rich micro-particles: Release of uranium and fission products from the
700	Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 7, 5409. https://doi.org/10.1038/s41598-017-
701	05910-z
702	Iwata, H., Shiotsu, H., Kaneko, M., Utsunomiy, S., 2012a. Nuclear Accidents in Fukushima, Japan, and

703 Exploration of Effective Decontaminant for the 137Cs-Contaminated Soils, in: Advances in Nuclear

- 704 Fuel. InTech. https://doi.org/10.5772/33540
- 705 Iwata, H., Shiotsu, H., Kaneko, M., Utsunomiya, S., 2012b. Nuclear Accidents inFukushima, Japan, and
- 706 Exploration of Effictive Decontaminant for the 137Cs-Contaminated Soils, in: Revankar, S. (Ed.),
- 707 ADVANCES IN NUCLEAR FUEL. INTECH, pp. 123–174.
- Jaeschke, B.C., Lind, O.C., Bradshaw, C., Salbu, B., 2015. Retention of radioactive particles and associated
- rog effects in the filter-feeding marine mollusc Mytilus edulis. Sci. Total Environ. 502, 1–7.
- 710 https://doi.org/10.1016/j.scitotenv.2014.09.007
- 711 Kaneko, M., Iwata, H., Shiotsu, H., Masaki, S., Kawamoto, Y., Yamasaki, S., Nakamatsu, Y., Imoto, J.,
- Furuki, G., Ochiai, A., Nanba, K., Ohnuki, T., Ewing, R.C., Utsunomiya, S., 2015. Radioactive Cs in
- the Severely Contaminated Soils Near the Fukushima Daiichi Nuclear Power Plant. Front. Energy
- 714 Res. 3, 37. https://doi.org/10.3389/fenrg.2015.00037
- 715 Katata, G., Terada, H., Nagai, H., Chino, M., 2012. Numerical reconstruction of high dose rate zones due to
- the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 111, 2–12.
- 717 https://doi.org/10.1016/j.jenvrad.2011.09.011
- Konoplev, A., Golosov, V., Laptev, G., Nanba, K., Onda, Y., Takase, T., Wakiyama, Y., Yoshimura, K.,
- 719 2016. Behavior of accidentally released radiocesium in soil-water environment: Looking at

720	Fukushima from a Chernobyl perspective. J. Environ. Radioact. 151, 568-578.
721	https://doi.org/10.1016/j.jenvrad.2015.06.019
722	Koo, YH., Yang, YS., Song, KW., 2014. Radioactivity release from the Fukushima accident and its
723	consequences: A review. Prog. Nucl. Energy 74, 61–70.
724	https://doi.org/10.1016/j.pnucene.2014.02.013
725	Kurihara, E., Takehara, Masato, Suetake, M., Ikehara, R., Komiya, T., Morooka, K., Takami, R.,
726	Yamasaki, S., Ohnuki, T., Horie, K., Takehara, Mami, Law, G.T.W., Bower, W., W. Mosselmans,
727	J.F., Warnicke, P., Grambow, B., Ewing, R.C., Utsunomiya, S., 2020. Particulate plutonium released
728	from the Fukushima Daiichi meltdowns. Sci. Total Environ. 743, 140539.
729	https://doi.org/10.1016/j.scitotenv.2020.140539
730	Marchal, J., Horswell, I., Willis, B., Plackett, R., Gimenez, E.N., Spiers, J., Ballard, D., Booker, P.,
731	Thompson, J.A., Gibbons, P., Burge, S.R., Nicholls, T., Lipp, J., Tartoni, N., 2013. EXCALIBUR: a
732	small-pixel photon counting area detector for coherent X-ray diffraction - Front-end design,
733	fabrication and characterisation. J. Phys. Conf. Ser. 425, 062003. https://doi.org/10.1088/1742-
734	6596/425/6/062003

735 Martin, P.G., Jones, C.P., Cipiccia, S., Batey, D.J., Hallam, K.R., Satou, Y., Griffiths, I., Rau, C., Richards,

736	D.A., Sueki, K., Ishii, T., Scott, T.B., 2020. Compositional and structural analysis of Fukushima-
737	derived particulates using high-resolution x-ray imaging and synchrotron characterisation techniques.
738	Sci. Rep. 10, 1636. https://doi.org/10.1038/s41598-020-58545-y
739	Martin, P.G., Louvel, M., Cipiccia, S., Jones, C.P., Batey, D.J., Hallam, K.R., Yang, I.A.X., Satou, Y., Rau,
740	C., Mosselmans, J.F.W., Richards, D.A., Scott, T.B., 2019. Provenance of uranium particulate
741	contained within Fukushima Daiichi Nuclear Power Plant Unit 1 ejecta material. Nat. Commun. 1–7.
742	https://doi.org/10.1038/s41467-019-10937-z
743	Martin, P.G., Satou, Y., Griffiths, I., Richards, D., Scott, T., 2017. Analysis of External Surface
744	Irregularities on Fukushima-Derived Fallout Particles. Front. Energy Res. 5.
745	https://doi.org/10.3389/fenrg.2017.00025
746	Matsuzaki, S.S., Satake, K., Tanaka, A., Ueno, R., Nakagawa, M., Nohara, S., 2014. The fate,
747	concentration factors and ecological half-life of cesium-137 in a freshwater snail and a freshwater
748	mussel in Lake Kasumigaura after the Fukushima Nuclear Accident. Japanese J. Limnol.
749	(Rikusuigaku Zasshi) 76, 25-34. https://doi.org/10.3739/rikusui.76.25
750	Miwa, S., Takase, G., Imoto, J., Nishioka, S., Miyahara, N., Osaka, M., 2020. Boron chemistry during
751	transportation in the high temperature region of a boiling water reactor under severe accident

752	conditions. J. Nucl. Sci. Technol. 57, 291-300. https://doi.org/10.1080/00223131.2019.1671913
753	Miwa, S., Yamashita, S., Osaka, M., 2016. Prediction of the effects of boron release kinetics on the vapor
754	species of cesium and iodine fission products. Prog. Nucl. Energy 92, 254-259.
755	https://doi.org/10.1016/j.pnucene.2016.02.023
756	Nakajima, T., Misawa, S., Morino, Y., Tsuruta, H., Goto, D., Uchida, J., Takemura, T., Ohara, T., Oura, Y.,
757	Ebihara, M., Satoh, M., 2017. Model depiction of the atmospheric flows of radioactive cesium
758	emitted from the Fukushima Daiichi Nuclear Power Station accident. Prog. Earth Planet. Sci. 4, 2.
759	https://doi.org/10.1186/s40645-017-0117-x
760	Nishihara, K., Iwamoto, H., Suyama, K., 2012. Estimation of fuel compositions in Fukushima-Daiichi
761	Nuclear Power Plant, JAEA Technical Report. Japan Atomic Energy Agency, JAEA 2012-018,
762	Ibaraki, Japan.
763	Nomura, A., 1969. Fukushima Nuclear Power Station, Tokyo Electric Power Co. J. At. Energy Soc. Japan /
764	At. Energy Soc. Japan 11, 306–314. https://doi.org/10.3327/jaesj.11.306

- 765 NRPB, 1997. Assessment of skin doses, Volume 8, No.3. Chilton, UK.
- 766 Ochiai, A., Imoto, J., Suetake, M., Komiya, T., Furuki, G., Ikehara, R., Yamasaki, S., Law, G.T.W.,
- 767 Ohnuki, T., Grambow, B., Ewing, R.C., Utsunomiya, S., 2018. Uranium Dioxides and Debris

768	Fragments Released to the Environment with Cesium-Rich Microparticles from the Fukushima
769	Daiichi Nuclear Power Plant. Environ. Sci. Technol. 52, 2586–2594.
770	https://doi.org/10.1021/acs.est.7b06309
771	Ono, T., Yushin, I., Abe, Y., Nakai, I., Terada, Y., Satou, Y., Sueki, K., Adachi, K., Igarashi, Y., 2017.
772	Investigation of the Chemical Characteristics of Individual Radioactive Microparticles Emitted from
773	Reactor 1 by the Fukushima Daiichi Nuclear Power Plant Accident by Using Multiple Synchrotron
774	Radiation X-ray Analyses. Bunseki Kagaku 66, 251–261.
775	https://doi.org/10.2116/bunsekikagaku.66.251
776	Pontillon, Y., Ducros, G., Malgouyres, P.P., 2010. Behaviour of fission products under severe PWR
777	accident conditions VERCORS experimental programme-Part 1: General description of the
778	programme. Nucl. Eng. Des. 240, 1843-1852. https://doi.org/10.1016/j.nucengdes.2009.06.028
779	Salbu, B., Krekling, T., Lind, O.C., Oughton, D.H., Drakopoulos, M., Simionovici, A., Snigireva, I.,
780	Snigirev, A., Weitkamp, T., Adams, F., Janssens, K., Kashparov, V.A., 2001. High energy X-ray
781	microscopy for characterisation of fuel particles. Nucl. Instruments Methods Phys. Res. Sect. A
782	Accel. Spectrometers, Detect. Assoc. Equip. 467-468, 1249-1252. https://doi.org/10.1016/S0168-
783	9002(01)00641-6

784	Satou, Y., Sueki, K.	, Sasa, K.,	Yoshikawa, H.,	Nakama, S.,	, Minowa,	H., Abe,	Y., Nakai, I.,	Ono, T.,
-----	----------------------	-------------	----------------	-------------	-----------	----------	----------------	----------

- Adachi, K., Igarashi, Y., 2018. Analysis of two forms of radioactive particles emitted during the early
- stages of the Fukushima Dai-ichi Nuclear Power Station accident. Geochem. J. 52, 1–7.
- 787 https://doi.org/10.2343/geochemj.2.0514
- 788 Sheppard, S.C., 1994. Contaminant Enrichment and Properties of Soil Adhering to Skin. J. Environ. Qual.
- 789 604–613. https://doi.org/10.2134/jeq1994.00472425002300030029x
- Solé, V.A., Papillon, E., Cotte, M., Walter, P., Susini, J., 2007. A multiplatform code for the analysis of
- real energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B At. Spectrosc. 62, 63–68.
- 792 https://doi.org/10.1016/j.sab.2006.12.002
- 793 Stather, J.W., Muirhead, C.R., Edwards, A.A., Harrison, J.D., Lloyd, D.C., Wood, N.R., 1988. Health
- effects models developed from the 1988 UNSCEAR report, NRPB-R-226. Chilton, UK.
- 795 Steinhauser, G., Brandl, A., Johnson, T.E., 2014. Comparison of the Chernobyl and Fukushima nuclear
- accidents: A review of the environmental impacts. Sci. Total Environ. 470–471, 800–817.
- 797 https://doi.org/10.1016/j.scitotenv.2013.10.029
- Suetake, M., Nakano, Y., Furuki, G., Ikehara, R., Komiya, T., Kurihara, E., Morooka, K., Yamasaki, S.,
- 799 Ohnuki, T., Horie, K., Takehara, M., Law, G.T.W., Bower, W., Grambow, B., Ewing, R.C.,

800	Utsunomiya, S., 2019. Dissolution of radioactive, cesium-rich microparticles released from the
801	Fukushima Daiichi Nuclear Power Plant in simulated lung fluid, pure-water, and seawater.
802	Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.05.248
803	TEPCO, 2017. The 5th Progress Report on the Investigation and Examination of Unconfirmed and
804	Unresolved Issues on the Development Mechanism of the Fukushima Daiichi Nuclear Accident.
805	Tsuruta, H., Oura, Y., Ebihara, M., Ohara, T., Nakajima, T., 2015. First retrieval of hourly atmospheric
806	radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution
807	monitoring stations. Sci. Rep. 4, 6717. https://doi.org/10.1038/srep06717
808	Utsunomiya, S., Furuki, G., Ochiai, A., Yamasaki, S., Nanba, K., Grambow, B., Ewing, R.C., 2019.
809	Caesium fallout in Tokyo on 15th March, 2011 is dominated by highly radioactive, caesium-rich
810	microparticles.
811	Yao, M., Xiao, J., Fan, X., Liu, R., Liu, B., 2014. Transparent, superhard amorphous carbon phase from
812	compressing glassy carbon. Appl. Phys. Lett. 104, 021916. https://doi.org/10.1063/1.4861929
813	Zeng, Z., Yang, L., Zeng, Q., Lou, H., Sheng, H., Wen, J., Miller, D.J., Meng, Y., Yang, W., Mao, W.L.,
814	Mao, H., 2017. Synthesis of quenchable amorphous diamond. Nat. Commun. 8, 322.
815	https://doi.org/10.1038/s41467-017-00395-w

Sample No.	¹³⁷ Cs (Bq)	¹³⁴ Cs (Bq)	Total activity $(^{134}Cs + ^{137}Cs)$	¹³⁴ Cs/ ¹³⁷ Cs activity ratio
FTB1	$3.10 \times 10^5 (\pm 92)$	$3.01 \times 10^5 (\pm 348)$	6.11×10^{5}	0.971
FTB26	$1.27 \times 10^{6} (\pm 107)$	$1.21 \times 10^{6} (\pm 543)$	$2.48 imes 10^6$	0.954

Table 1. Decay-corrected activities (as of March 12, 2011) of ¹³⁴Cs and ¹³⁷Cs in FTB1 and FTB26. The standard deviations are given in parentheses.

wt %	MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	Fe ₂ O ₃	Cs ₂ O
FTB1-A	0.30	29.10	68.38	0.05	0.09	0.35	0.98	0.83
n = 14	(±0.15)	(± 0.80)	(±1.38)	(±0.02)	(± 0.03)	(±0.77)	(±0.15)	(±0.31)
FTB1-B	0.19	27.46	70.51	0.07	0.09	0.09	0.95	0.68
n = 7	(±0.17)	(±2.81)	(± 3.00)	(±0.02)	(±0.04)	(±0.04)	(±0.29)	(±0.15)

Table 2. Average composition of FTB1 (wt.%) based on semi-quantitative STEM-EDX analysis. Numbers in parentheses are the standard deviations.

Table 3. Compositions (wt%) of (a) the whole FTB26 and (b) fine particles embedded in the FTB26 surface, based on semi-quantitative SEM-EDX analyses. *The elemental composition was calculated because of lack of oxygen in the EDX spectrum.

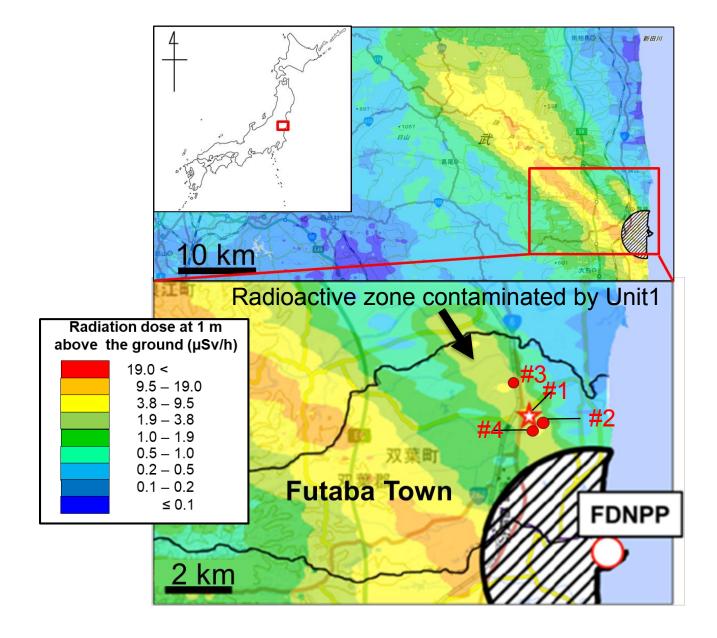
(a)														
Na ₂ O	Mg	gO	Al ₂ O	3	SiO ₂	S	O ₃	K_2C) CaO	Т	iO ₂	Fe ₂ 0)3	
5.79	2.4	49	8.62		44.5	1	0.9	1.29	9 8.90	8	.41	9.0	9	
(b)														
Wt. %	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	PbO	SO_3	K ₂ O	CaO	TiO ₂ Cr ₂ O	₃ Fe ₂ O ₃	CuO	ZnO	NiO	SnO ₂
EDX1	2.75		0.61	4.19	4.63			1.34	8.72	71.28		4.60	1.87	
EDX2*					100									
EDX3								100						
EDX4	0.31	2.59	8.76	39.82				24.15		24.36				
EDX5				100										
EDX6	13.95	3.11	3.49	70.25				9.20						
EDX7			1.01	4.33	0.98			0.62		73.88		19.19		
EDX8*					55.72									44.28
EDX9		5.28	10.00	32.85		7.39		30.07		14.41				
EDX10	11.01	3.50	2.33	75.10				8.05						
EDX11*					100									
EDX12	2.12	2.75	17.14	53.94		2.79	1.86	5.76	3.31	7.13	1.77	1.42		
EDX13				100										

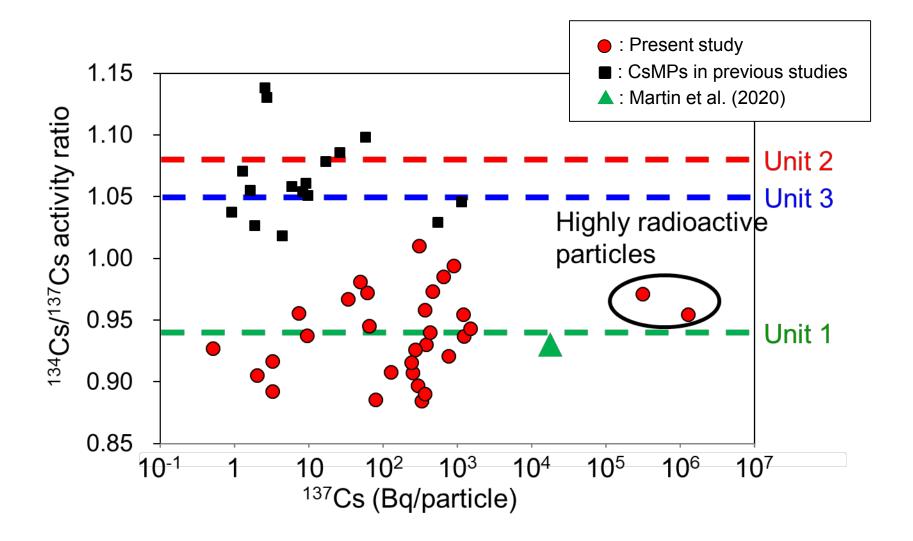
Table 4. (a) Summary of B-isotope analysis and quantification on the surface of FTB26. The B concentration was deduced by comparing the ion counts of FTB26 with those in the NIST standard SRM612. Numbers in parentheses are the standard deviations. Spot numbers correspond to those in Fig. S6c. (b) ¹¹B/¹⁰B isotope ratio collected for the NIST standard reference material SRM612. The numbers in parentheses are the standard deviations of six scans.

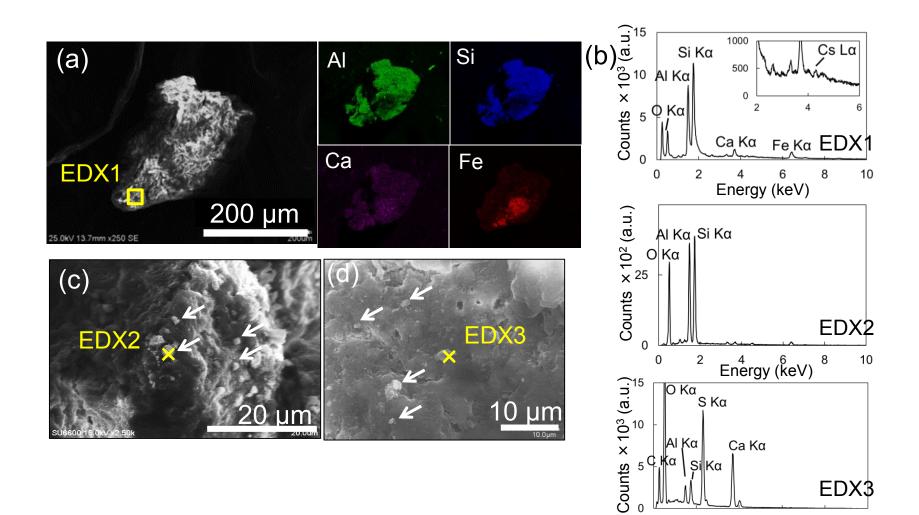
(a)								
Spot No.	¹¹ B/ ¹⁰ B isotopic ratio	B (ppm)						
1	4.137 (±0.016)	3056						
2	4.275 (±0.027)	246.6						
3	4.196 (±0.015)	888.2						
4	4.144 (±0.014)	6625						
5	4.156 (±0.191)	5.322						

(b)

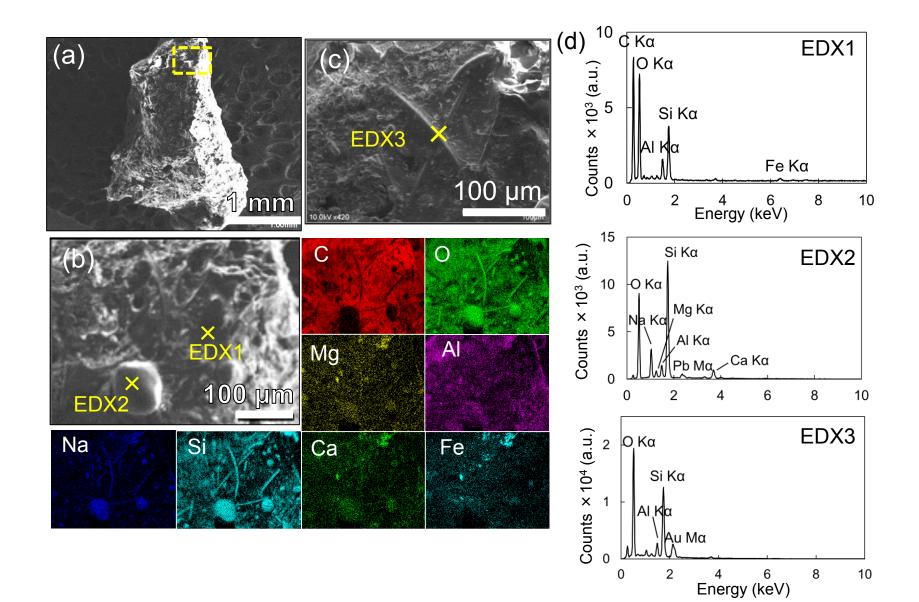
	¹¹ B/ ¹⁰ B isotopic ratio (n=6)
SRM612	4.049 (±0.007)

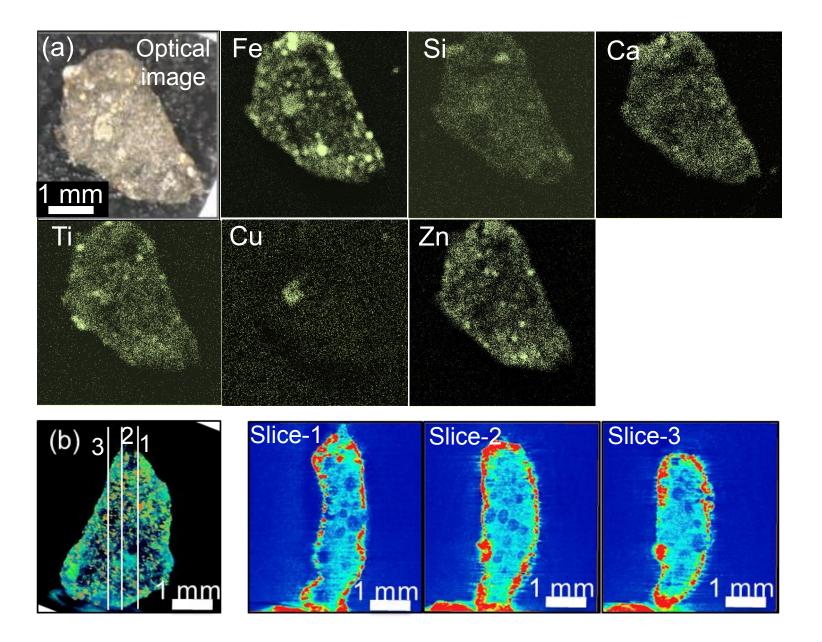

Table 5. SIMS analysis results on the cross section of FTB26. (a) ¹³³Cs ion counts per second analyzed at spots No. 1–8 in Fig. 10a. (b) Ion-count ratios of masses 133, 134, 135, 137, and 138. All values are given with their standard deviations. Note that the ion-count ratios and isotope ratios are not equivalent, as Cs and Ba have different ionization efficiencies. The spot numbers correspond to the positions labeled in Fig. 10a.

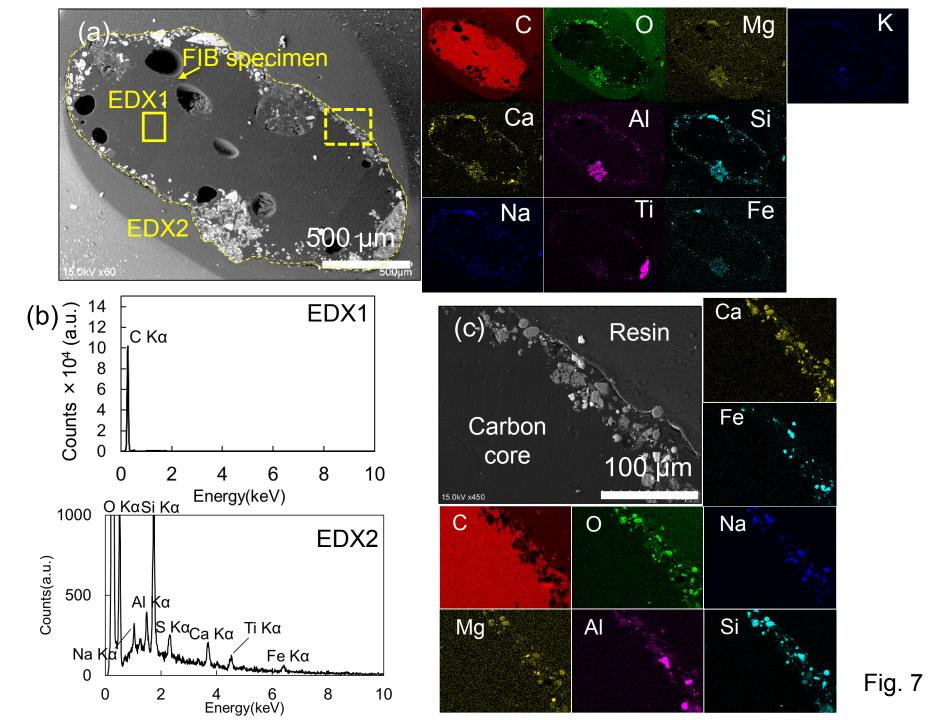

Spot No.	¹³³ Cs ions (cps)
1	1
2	1
3	17253
4	14336
5	19371
6	3599
7	8739
8	1443

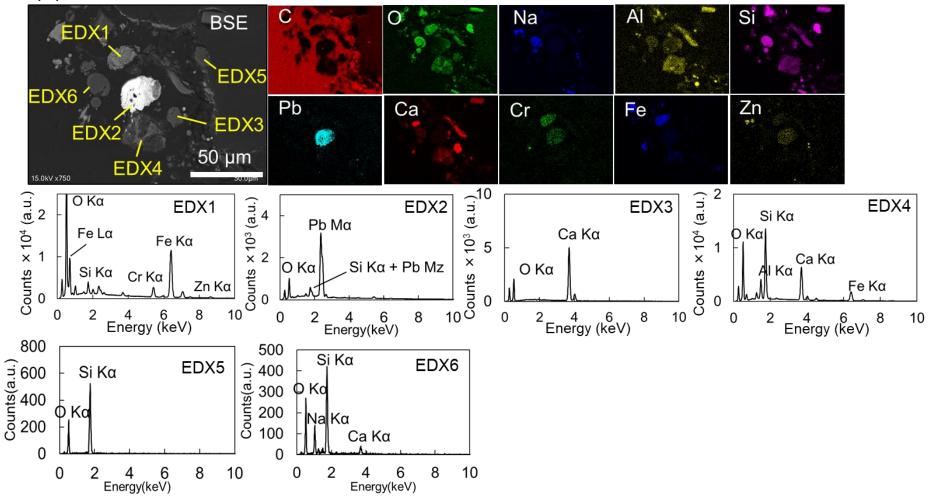

(b)

Spot No.	¹³⁵ (Cs+Ba)/ ¹³³ Cs	¹³⁷ (Cs+Ba)/ ¹³³ Cs	¹³⁴ (Cs+Ba)/ ¹³⁸ Ba	¹³⁵ (Cs+Ba)/ ¹³⁷ (Cs+Ba)
3	1.0738 ± 0.0100	2.071 ± 0.0193	0.0371 ± 0.0001	0.5185 ± 0.0005
4	0.7469 ± 0.0027	1.5431 ± 0.0054	0.0397 ± 0.0001	0.4840 ± 0.0004
5	0.4902 ± 0.0019	0.9920 ± 0.0035	0.0442 ± 0.0004	0.4942 ± 0.0009
6	1.1826 ± 0.0236	2.2426 ± 0.0447	0.0367 ± 0.00004	0.5273 ± 0.0008
7	0.7855 ± 0.0154	1.5426 ± 0.0301	0.0390 ± 0.0001	0.5092 ± 0.0007
8	0.8223 ± 0.1084	1.6193 ± 0.2134	0.0410 ± 0.0003	0.5078 ± 0.0016


8


⁴ ⁶ Energy (keV)


0


Fig.4

(a)

(b)

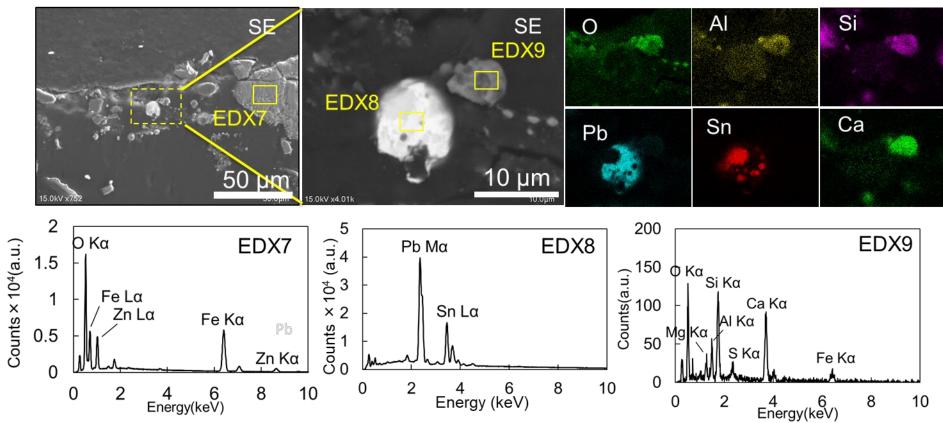


Fig. 8 (continued)

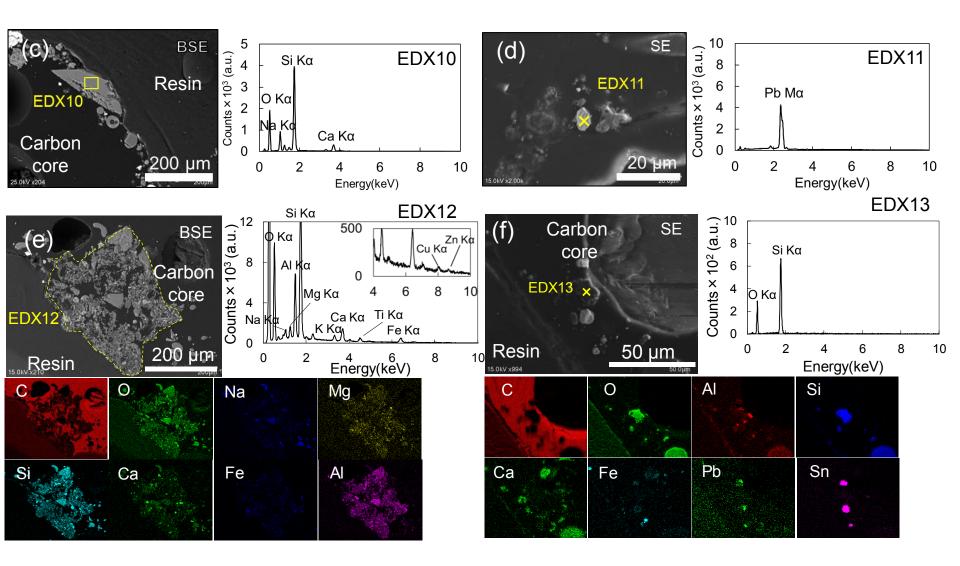
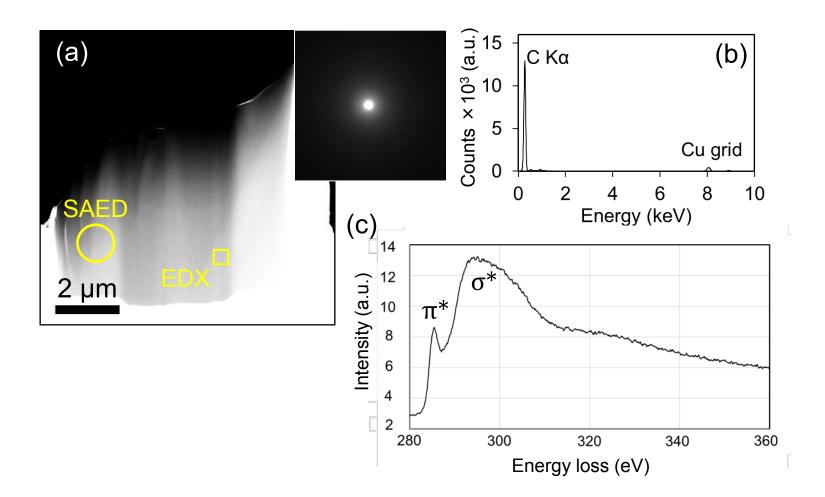



Fig. 8 (continued)

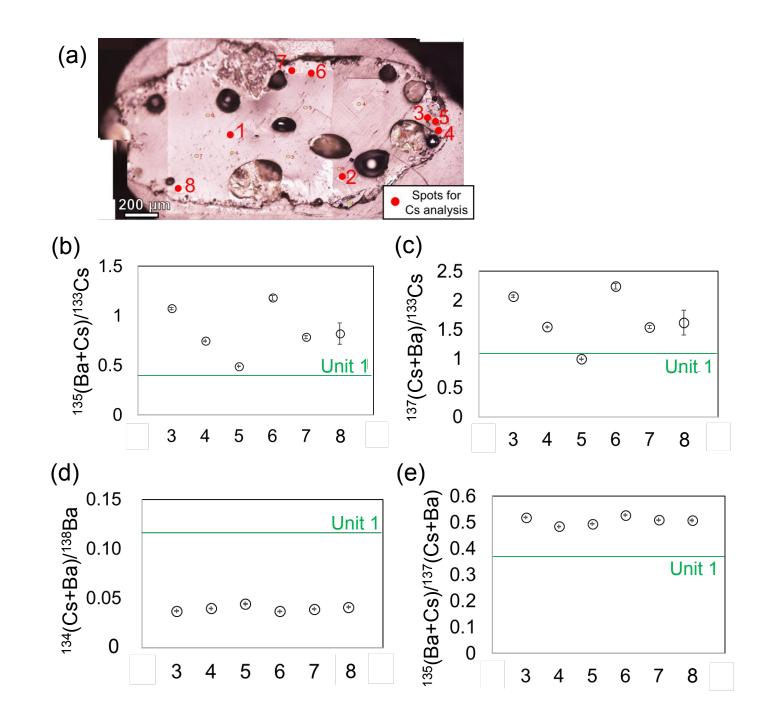


Fig. 10

Supplementary material for on-line publication only

Click here to access/download Supplementary material for on-line publication only Morooka2020STOTEN SI revision final.pdf

Video

Click here to access/download Video Moroka2020STOTEN SI movie S1.avi

1 CRediT authorship contribution statement

2	Kazuya Morooka: Formal analysis, Data curation, Writing – original draft. Eitaro Kurihara:
3	Formal analysis. Masato Takehara: Formal analysis. Ryu Takami: Formal analysis. Kenij Horie: Formal
4	analysis. Shinya Yamasaki: Investigation. Toshihiko Ohnuki: Resources. Bernd Grambow: Data curation,
5	Writing – original draft. Gareth T.W. Law: Writing – original draft. Joyce W. L. Ang: Writing – original draft,
6	Formal analysis. William R Bower: Formal analysis. Rodney C Ewing: Writing - original draft. Satoshi
7	Utsunomiya: Conceptualization, Investigation, Writing – original draft.
8	
9	
10	
11	
12	
13	