44 research outputs found

    Detailed electronic structure studies on superconducting MgB2_2 and related compounds

    Full text link
    In order to understand the unexpected superconducting behavior of MgB2_2 compound we have made electronic structure calculations for MgB2_2 and closely related systems. Our calculated Debye temperature from the elastic properties indicate that the average phonon frequency is very large in MgB2_2 compared with other superconducting intermetallics and the exceptionally high TcT_c in this material can be explained through BCS mechanism only if phonon softening occurs or the phonon modes are highly anisotropic. We identified a doubly-degenerate quasi-two dimensional key-energy band in the vicinity of EFE_{F} along Γ\Gamma-A direction of BZ which play an important role in deciding the superconducting behavior of this material. Based on this result, we have searched for similar kinds of electronic feature in a series of isoelectronic compounds such as BeB2_2, CaB2_2, SrB2_2, LiBC and MgB2_2C2_2 and found that MgB2_2C2_2 is one potential material from the superconductivity point of view. There are contradictory experimental results regarding the anisotropy in the elastic properties of MgB2_2 ranging from isotropic, moderately anisotropic to highly anisotropic. In order to settle this issue we have calculated the single crystal elastic constants for MgB2_2 by the accurate full-potential method and derived the directional dependent linear compressibility, Young's modulus, shear modulus and relevant elastic properties. We have observed large anisotropy in the elastic properties. Our calculated polarized optical dielectric tensor shows highly anisotropic behavior even though it possesses isotropic transport property. MgB2_2 possesses a mixed bonding character and this has been verified from density of states, charge density and crystal orbital Hamiltonian population analyses

    IRF4 and BATF are critical for CD8(+) T-cell function following infection with LCMV.

    Get PDF
    CD8(+) T-cell functions are critical for preventing chronic viral infections by eliminating infected cells. For healthy immune responses, beneficial destruction of infected cells must be balanced against immunopathology resulting from collateral damage to tissues. These processes are regulated by factors controlling CD8(+) T-cell function, which are still incompletely understood. Here, we show that the interferon regulatory factor 4 (IRF4) and its cooperating binding partner B-cell-activating transcription factor (BATF) are necessary for sustained CD8(+) T-cell effector function. Although Irf4(-/-) CD8(+) T cells were initially capable of proliferation, IRF4 deficiency resulted in limited CD8(+) T-cell responses after infection with the lymphocytic choriomeningitis virus. Consequently, Irf4(-/-) mice established chronic infections, but were protected from fatal immunopathology. Absence of BATF also resulted in reduced CD8(+) T-cell function, limited immunopathology, and promotion of viral persistence. These data identify the transcription factors IRF4 and BATF as major regulators of antiviral cytotoxic T-cell immunity

    Parametric POMDPs for planning in continuous state spaces

    Get PDF
    This thesis is concerned with planning and acting under uncertainty in partially-observable continuous domains. In particular, it focusses on the problem of mobile robot navigation given a known map. The dominant paradigm for robot localisation is to use Bayesian estimation to maintain a probability distribution over possible robot poses. In contrast, control algorithms often base their decisions on the assumption that a single state, such as the mode of this distribution, is correct. In scenarios involving significant uncertainty, this can lead to serious control errors. It is generally agreed that the reliability of navigation in uncertain environments would be greatly improved by the ability to consider the entire distribution when acting, rather than the single most likely state. The framework adopted in this thesis for modelling navigation problems mathematically is the Partially Observable Markov Decision Process (POMDP). An exact solution to a POMDP problem provides the optimal balance between reward-seeking behaviour and information-seeking behaviour, in the presence of sensor and actuation noise. Unfortunately, previous exact and approximate solution methods have had difficulty scaling to real applications. The contribution of this thesis is the formulation of an approach to planning in the space of continuous parameterised approximations to probability distributions. Theoretical and practical results are presented which show that, when compared with similar methods from the literature, this approach is capable of scaling to larger and more realistic problems. In order to apply the solution algorithm to real-world problems, a number of novel improvements are proposed. Specifically, Monte Carlo methods are employed to estimate distributions over future parameterised beliefs, improving planning accuracy without a loss of efficiency. Conditional independence assumptions are exploited to simplify the problem, reducing computational requirements. Scalability is further increased by focussing computation on likely beliefs, using metric indexing structures for efficient function approximation. Local online planning is incorporated to assist global offline planning, allowing the precision of the latter to be decreased without adversely affecting solution quality. Finally, the algorithm is implemented and demonstrated during real-time control of a mobile robot in a challenging navigation task. We argue that this task is substantially more challenging and realistic than previous problems to which POMDP solution methods have been applied. Results show that POMDP planning, which considers the evolution of the entire probability distribution over robot poses, produces significantly more robust behaviour when compared with a heuristic planner which considers only the most likely states and outcomes

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.

    Defining the Critical Hurdles in Cancer Immunotherapy

    Get PDF
    ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer

    Targeting T Cell Activation in Immuno-Oncology

    No full text
    The years since 2009 have seen tremendous progress in unlocking the curative potential of the immune system for the treatment of cancer. Much of that revolution in immuno-oncology has been fueled by the clinical success of immune checkpoint inhibitors, particularly those targeting the PD-1 axis. Unfortunately, many patients still fail to benefit from checkpoint blockade or other immunotherapies. An inability to fully activate antitumour T cells contributes in part to the failure of those therapies. Here, we review the basic biology of T cell activation, with particular emphasis on the essential role of the dendritic cell and the innate immune system in T cell activation. The current understanding of the multiple factors that govern T cell activation and how they impinge on tumour immunotherapy are also discussed. Lastly, treatment strategies to potentially overcome barriers to T cell activation and to enhance the efficacy of immunotherapy are addressed

    Mobilizing and evaluating anticancer T cells: pitfalls and solutions.

    No full text
    Immunotherapy is a promising means to fight cancer, prompting a steady increase in clinical trials and correlative laboratory studies in this field. As antitumor T cells play central roles in immunity against malignant diseases, most immunotherapeutic protocols aim to induce and/or strengthen their function. Various treatment strategies have elicited encouraging clinical responses; however, major challenges have been uncovered that should be addressed in order to fully exploit the potential of immunotherapy. Here, we outline pitfalls for the mobilization of antitumor T cells and offer solutions to improve their therapeutic efficacy. We provide a critical perspective on the main methodologies used to characterize T-cell responses to cancer therapies, with a focus on discrepancies between T-cell attributes measured in vitro and protective responses in vivo. This review altogether provides recommendations to optimize the design of future clinical trials and highlights important considerations for the proficient analysis of clinical specimens available for research

    In vivo generation of cytotoxic T cells from epitopes displayed on peptide-based delivery vehicles

    No full text
    This article is hosted on a website external to the CBCRA Open Access Archive. Selecting “View/Open” below will launch the full-text article in another browser window

    Maturação in vitro de oócitos bovinos em meios suplementados com quercetina e seu efeito sobre o desenvolvimento embrionário

    No full text
    A quercetina é um flavonoide, amplamente encontrada em frutas, vegetais, grãos, flores, com elevada concentração no vinho tinto, e tem sido caracterizada funcionalmente pela atividade antioxidante. Para avaliação da maturação nuclear e do desenvolvimento embrionário bovino, os oócitos foram maturados por 22h na presença de quercetina (0,4, 2, 10 e 50µM), cisteamina (100µM) e na ausência dos antioxidantes. Os oócitos maturados foram corados com Hoechst para avaliação da maturação in vitro. Para avaliação do desenvolvimento embrionário, os oócitos foram fertilizados e cultivados in vitro, as taxas de desenvolvimento embrionário foram determinadas no sétimo dia de cultivo e o percentual de eclosão e o número de células dos embriões no oitavo dia. Os níveis de glutationa (GSH) dos oócitos foram mensurados por emissão de fluorescência com CMF2HC. A porcentagem de maturação nuclear (±89%) não diferiu entre os grupos. O desenvolvimento embrionário variou entre os tratamentos, o percentual de blastocisto foi superior (P0,05) entre os grupos (±63,0%). O número médio de células dos embriões também foi similar entre os grupos (±233). Os níveis intracelulares de GSH foram superiores nos oócitos maturados com cisteamina, mas similares entre os oócitos tratados com quercetina e o controle. A suplementação da maturação in vitro com antioxidantes melhora as taxas de blastocistos. A quercetina foi superior à cisteamina, que, por sua vez, foi superior ao controle. Mas os níveis de GSH foram superiores somente nos oócitos tratados com cisteamina
    corecore