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Abstract

Alex M. Brooks Doctor of Philosophy
The University of Sydney January 2007

Parametric POMDPs for Planning

in Continuous State Spaces
This thesis is concerned with planning and acting under uncertainty in partially-observable
continuous domains. In particular, it focusses on the problem of mobile robot navigation
given a known map. The dominant paradigm for robot localisation is to use Bayesian
estimation to maintain a probability distribution over possible robot poses. In contrast,
control algorithms often base their decisions on the assumption that a single state, such as
the mode of this distribution, is correct. In scenarios involving significant uncertainty, this
can lead to serious control errors. It is generally agreed that the reliability of navigation
in uncertain environments would be greatly improved by the ability to consider the entire
distribution when acting, rather than the single most likely state.

The framework adopted in this thesis for modelling navigation problems mathematically
is the Partially Observable Markov Decision Process (POMDP). An exact solution to a
POMDP problem provides the optimal balance between reward-seeking behaviour and
information-seeking behaviour, in the presence of sensor and actuation noise. Unfortu-
nately, previous exact and approximate solution methods have had difficulty scaling to real
applications.

The contribution of this thesis is the formulation of an approach to planning in the space
of continuous parameterised approximations to probability distributions. Theoretical and
practical results are presented which show that, when compared with similar methods from
the literature, this approach is capable of scaling to larger and more realistic problems.

In order to apply the solution algorithm to real-world problems, a number of novel im-
provements are proposed. Specifically, Monte Carlo methods are employed to estimate
distributions over future parameterised beliefs, improving planning accuracy without a loss
of efficiency. Conditional independence assumptions are exploited to simplify the problem,
reducing computational requirements. Scalability is further increased by focussing compu-
tation on likely beliefs, using metric indexing structures for efficient function approximation.
Local online planning is incorporated to assist global offline planning, allowing the precision
of the latter to be decreased without adversely affecting solution quality.

Finally, the algorithm is implemented and demonstrated during real-time control of a mo-
bile robot in a challenging navigation task. We argue that this task is substantially more
challenging and realistic than previous problems to which POMDP solution methods have
been applied. Results show that POMDP planning, which considers the evolution of the en-
tire probability distribution over robot poses, produces significantly more robust behaviour
when compared with a heuristic planner which considers only the most likely states and
outcomes.
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Chapter 1

Introduction

This thesis is concerned with the problem of planning and acting in uncertain, partially

observable, continuous domains. In particular, it focusses on the task of planning and acting

for mobile robot navigation when a map of the environment is available. Robot navigation

problems are particularly challenging for planners because they are inherently continuous,

uncertain, and non-linear. However, the ability to make good plans despite these conditions

is fundamental to an autonomous mobile robot’s ability to navigate reliably in real-world

environments.

Classical Artificial Intelligence (AI) planning assumes that environments are fully-observable,

deterministic, finite, static, and discrete [95]. The first major planning system for such en-

vironments was STRIPS [39], which represented the state of the environment with a set

of symbols. A set of actions were posited, each of which had a set of pre-conditions and

a set of deterministic effects on the symbolic state of the world. Given a start state, the

definitions of actions, and a goal state, a STRIPS-style planner could autonomously map

out a fixed sequence of actions which would lead to that goal.

Unfortunately, few of the assumptions of classical AI planning hold for realistic mobile

robot applications. Fixed sequences of actions are inappropriate because actions’ outcomes

are unpredictable. Real robots therefore have difficulty executing STRIPS-style plans [40].

Instead, feedback is required: an agent must observe the world and react accordingly.

A number of extensions allow classical AI planning systems to incorporate feedback, for

example by making plans conditional on the state of the world [95][12].

1



CHAPTER 1. INTRODUCTION 2

Another important omission of classical AI planning is that, rather than reaching one or

more goal states, agents in realistic scenarios are usually required to satisfy various (possibly

competing) objectives simultaneously. For example, robots should act so as to minimise the

risk of encountering hazards which might cause them harm. One way of specifying objectives

is through the use of a reward1 function [105][59], which specifies the desirability of possible

states of the world, and perhaps the desirability of particular actions in particular states.

A more sophisticated model, which accounts for unpredictable actions and general reward

functions, is a Markov Decision Process.

1.1 Markov Decision Processes

A Markov Decision Process, or MDP, provides a general mathematical model for the in-

teraction between an agent and the world. Many classical AI planning algorithms can be

formulated as special cases of MDPs [16]. An MDP assumes that the state of the world at

any time can be described by a set of continuous or discrete variables. This state evolves in

small discrete time-steps, affected by the agent’s actions. The agent chooses these actions

based on its direct and infallible knowledge of the state.

To account for un-predictability in the world, the MDP model requires that the effects

of agents’ actions can be described by stationary probability distributions. That is, from

any given state and for any given action, an MDP specifies a probability distribution over

subsequent states.

Matters are simplified considerably by the Markov assumption [111]. This asserts that the

current state is a sufficient statistic for the past. In other words, if the agent knows the

current state of the world, the details of how the world came to be in that state convey no

extra information about what will happen in the future. This is usually a fairly accurate

assumption for the real world, given a sufficiently descriptive state vector.

By framing a problem as an MDP, one gains access to a powerful arsenal of solution al-

gorithms [16][105][12]. The output of many solution algorithms is a value function, which

specifies a value for every possible state. Loosely speaking, this value is the sum of rewards

which can be obtained in the future by acting optimally (with an infinite-horizon lookahead)

1While reward is usually used in the computer science literature, cost (negative reward) is usually used
in the economics and operations research literature [10]



CHAPTER 1. INTRODUCTION 3

from that state. Armed with the value function, an agent need not plan ahead, since plans

are implicitly encoded in the value function. An agent can act optimally simply by greedily

choosing actions which will immediately lead to high-value states.

MDP solution algorithms have solved many challenging problems, particularly for board

games such as backgammon [106]. Translating this success to real-world problems can be

problematic however, because the MDP formulation assumes that the agent has perfect

knowledge of the state. A more realistic formulation assumes only partial observability.

1.2 Partial Observability

While an MDP models uncertainty in an agent’s actions, it assumes that the agent is

completely aware of the state of the world. This assumption is often invalid in real scenarios,

particularly for the kinds of problems considered in this thesis. A more realistic model is

a Partially Observable Markov Decision Process, or POMDP. A POMDP extends an MDP

by assuming that, rather than sensing the state of the world directly, an agent can make

observations which give it imperfect information about the state. The POMDP formulation

assumes that the likelihood of observations given the hidden state can be described by

stationary probability distributions.

While an MDP agent has the luxury of making decisions based on the state, a POMDP

agent must make decisions based solely on the history of actions and observations. This

history represents everything the agent knows about the world, and is often referred to as

the information-state. This dependence on history complicates matters. For MDPs, the

Markov property implies that an agent can safely ignore history. The POMDP formulation

also assumes that the state obeys the Markov property, however this state is no longer

directly observable. The entire history of actions and observations is therefore relevant as

it potentially confers information about the hidden state.

The dominant approach to avoiding this history is to use all the available information to

maintain a probability distribution, or belief, over possible states. The belief is a sufficient

statistic for history. That is, if an agent knows the current probability distribution, the

observations and actions which led to that distribution are irrelevant for predicting the

future. It will be shown in Chapter 2 that a POMDP can be seen as a special kind of MDP.

The unobservable state can be replaced by the observable information-state, which can be
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Tractable

Not Robust

Heuristics

Fine Discretisation

Intractable

Exact POMDP Solution

Robust

Figure 1.1: POMDP solution methods span a continuum. On one extreme, the combination
of a fine discretisation with exact value iteration will produce excellent plans but will be
incapable of scaling to realistic problems. On the other extreme, heuristics require little
computation but fail to take a principled approach to uncertainty. The most useful planner
lies somewhere in the middle. The figure is adapted from [94].

summarised by a belief-state. Standard MDP solution algorithms can then be applied to

the resultant MDP.

POMDPs are excellent models for many mobile robot navigation problems in which the

state is the pose (position and heading) of the robot. A typical scenario involves the use

of sensors such as cameras, laser range-finders, and wheel encoders to gather information.

The information is imperfect because sensors are noisy, cannot look everywhere at once, and

usually cannot sense the state of interest (i.e. the pose) directly. In this context, a POMDP

solution represents a plan which allows the robot to gather the information it requires while

simultaneously bringing it to its goal.

1.3 Solving POMDPs

Realistic mobile navigation problems are difficult to solve using POMDPs because their

state, action, and observation spaces are large and continuous. It will be shown in Chapter 2

that a continuous state-space implies an infinite-dimensional continuous value function.

Since this cannot be represented except in very special cases, approximations are clearly

required for the general case. Solving POMDPs for robot navigation problems is therefore a

game of approximations. One must strike the right balance between approximations which

over-simplify the problem to the point where the robot is incapable of planning effectively,

and approximations which do not simplify the problem enough, leaving it computationally

intractable. This trade-off is illustrated in Figure 1.1.

The simplest approach is to choose actions based on the assumption that the most likely
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pose is true, ignoring uncertainty. As an improvement, a number of heuristics for dealing

with uncertainty have been devised. The details are discussed in Section 2.7.1, however

suffice it to say that these approaches can only reason about the evolution of probability

distributions over a very short planning horizon. In terms of Figure 1.1 they err on the side

of over-simplification of the problem, producing plans which are not robust in the presence

of uncertainty.

Another common approximation is to discretise the state, action and observation spaces.

Having done so, a number of exact solution algorithms exist such that no further approxima-

tion is required [23]. Unfortunately, these exact algorithms are considered to be incapable

of scaling to real-world problems in general, and will certainly not scale to the kinds of prob-

lems considered in this thesis. They lie on the opposite extreme of the spectrum depicted

in Figure 1.1, representing an under-simplification of the problem.

After applying discretisation, a number of further approximations stem from the important

insight that not all probability distributions are equally relevant. Figure 1.2 shows a hypo-

thetical example of two probability distributions for a robot navigation problem. The belief

shown in Figure 1.2(a) is certainly relevant, in that it is typical of the kinds of distribu-

tions that are expected to be encountered in practice. If the robot’s poor planning has not

considered this belief, that poor planning is likely to be exposed. In contrast, Figure 1.2(b)

shows an irrelevant belief. It is impossible, or at least highly unlikely, for this belief to

occur. Hence, a robot which has specifically planned for this belief is unlikely to perform

any differently from a robot which has ignored it.

This insight has been used in two ways:

1. to focus computation on a set of likely beliefs within a class, and

2. to restrict the class of beliefs which can be considered.

The first approach includes point-based methods which generate belief sets by model simu-

lation [86][103][101]. Using some policy (e.g. random actions [103]), these methods simulate

the repeated interaction of an agent with the POMDP model in order to generate a rep-

resentative set of likely beliefs. Computation can then be focussed on these beliefs during

planning. The hope is that the plan will generalise from this representative set of beliefs to

all beliefs which are likely to be encountered in practice.
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(a) A relevant belief

(b) An irrelevant belief

Figure 1.2: A relevant and an irrelevant belief. Beliefs are represented as particle sets,
shown in blue. Particle density is proportional to probability density. The belief shown in
(a) is relevant because similar beliefs are likely to occur during plan execution. Since it is
impossible or at least highly unlikely that the belief in (b) will occur, a planner will only
waste time by considering it. The beliefs are displayed on top of an occupancy grid [37].
Black denotes an occupied cell, white denotes an empty cell, and grey denotes unknown
occupancy. Adapted from [94].

The second approach is to restrict the class of beliefs which can be considered. This includes

approaches such as belief compression [94], which is based on dimensionality reduction. The

space of all possible probability distributions over a discrete set of states is high-dimensional

and continuous. Rather than allowing arbitrary beliefs, belief compression restricts itself to

those which lie on a low-dimensional manifold embedded in that high-dimensional space.

By choosing the manifold carefully, the set of beliefs which are likely to occur in practice

will hopefully lie on or near that manifold.

The approach advocated in this thesis can be seen as a case of restricting the class of

representable beliefs. The important difference from previous work is that we do not begin
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with discretisation. Instead, we assume that beliefs can be approximated by continuous

functions described by finite sets of parameters. The space of functions prescribes the class

of beliefs to which the planner is restricted. If this space is chosen appropriately, it will

hopefully be a good approximation to the kinds of beliefs which will occur in practice.

We will show that this difference has important ramifications, allowing us to scale to real-

world problems. Most importantly, the use of parameterised continuous functions provides

a compact representation of beliefs which does not rely on an underlying discretisation.

For large problems, an underlying discrete representation is problematic. One must choose

between a fine discretisation, which introduces scalability problems, and a coarse discretisa-

tion, with which one is unable to represent smooth gradients and small shifts in distributions.

In contrast, the use of continuous parameterised functions can handle smooth gradients

and small shifts, but introduces a choice of function complexity. The use of overly complex

functions may cause a problem to be intractable, whereas simple functions may constrain

the shapes of beliefs too tightly, resulting in poor plans. We will show that for robot

navigation problems, Gaussians represent a class of functions which are sufficiently simple

to allow us to scale to large problems. At the same time they are sufficiently expressive

to closely approximate the kinds of probability distributions which are usually, but not

always, encountered during robot navigation. Section 3.1 will discuss the validity of this

approximation in detail.

1.4 Application Domain

The particular application which this thesis works towards is the reliable operation of the

autonomous mobile robot shown in Figure 1.3 in a large semi-structured outdoor environ-

ment. The robot senses the environment with a forward-looking laser range-finder, and

senses its own motion with wheel encoders. We assume that the robot is given an a priori

map of the environment.

The scenario considered here is particularly challenging for a number of reasons. Debris

and holes in the asphalt make odometry particularly poor. Since the robots are statically

unstable, they must pitch back and forth in order to balance, especially when accelerating

or decelerating. This makes sensing with a fixed laser complicated. On the edge of the

robots’ working area lies natural terrain for which an accurate geometric model would be
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Figure 1.3: A robot and its environment. The robot is dynamically stabilised. A forward-
looking scanning laser range-finder is mounted centrally, just above the wheels. A second
robot is in the background.

extremely complicated. In addition, the environment contains a number of hazards which

could cause the robots to fall. These hazards lie below the plane of the laser, and are

therefore essentially invisible to the robots.

Indeed, this is the most challenging robot navigation problem to which POMDP solution

methods have been applied, by a significant margin. We would argue that Roy’s work rep-

resents the most challenging problem previously attempted [94]. This involved a simulated

environment of a similar size. The problem was simplified by using an omni-directional

sensor and ignoring the robot’s heading. The addition of heading is more realistic but much

more challenging, adding an extra dimension to the problem. By excluding heading from the

POMDP model, the robot’s actions must be specified in absolute terms, which is unrealistic

unless the robot is somehow aware of its absolute heading during plan execution. Further-

more, the robot cannot be aware of the fact that sharp turns now increase uncertainty in the

future. The simplification of using an omni-directional sensor means that the robot needn’t

consider the fact that its ability to gather information depends on the direction in which

it is travelling. POMDP solution methods which rely on this simplification are unable to
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generalise to the arguably more common case of sensors which are not omni-directional.

In contrast, our application includes heading and uses a forward-pointing sensor, implying

that our robot must be able to account for all these details.

A solution to the decision-making problem relies on a robust solution to the localisation

problem. That is, the robot must be able to use its uncertain sensor readings to work out

where in the map it might be. While this is challenging, it is by no means unsolvable.

Excellent progress has been made in this area over the last couple of decades by casting

the problem as one of Bayesian estimation, and by applying approximations which make

the problem computationally tractable in real-time [111]. Essentially, the robot maintains a

probability distribution (or belief) over possible poses, and uses the actions and observations

at each time interval to update this probability distribution.

Unfortunately, while the agent has access to these powerful methods of maintaining proba-

bility distributions, practical systems do not generally use the entirety of those distributions

for decision-making. The standard approach is to assume that the most likely pose is in fact

the true pose. To get from a start location to a destination, one can then apply any one of

a number of deterministic path-planning algorithms which assume complete observability

and deterministic actions [63][64]. This blind faith that the most likely pose is true can lead

the robot to be overly confident, with potentially catastrophic results. POMDPs provide a

framework for overcoming this problem by using the entire probability distribution, however

the computational complexity of solving POMDPs has prohibited their widespread adop-

tion. The following section outlines the contributions this thesis makes in order to address

this issue.

1.5 Contributions

The contributions of this thesis are as follows:

• The presentation of a unifying view of several POMDP solution methods from the lit-

erature as specific instances of a more general solution method, namely the application

of fitted value iteration in a particular information-space.

• The development and analysis of a novel planning algorithm, entitled PPOMDP,

representing a specific instance of the general methodology defined above. PPOMDP
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entails the application of fitted value iteration in the space of continuous parameterised

functions.

• The formulation of an approach to estimating distributions over posterior parame-

terised beliefs using methods from the particle filtering literature. This novel ap-

proach is shown to scale independently from the size of the state-space, and hence is

applicable to large, realistic planning problems.

• The formulation of a simplification of the planning problem using a factoring based

on conditional independence assumptions. With certain approximations, this novel

approach allows algorithms based on fitted value iteration to be broken into smaller

components, reducing the total computational complexity.

• The presentation of a method for efficient function approximation for arbitrary sets

of parameterised beliefs, using data structures from the similarity search literature.

• The efficient integration of local online forward planning into the PPOMDP frame-

work, assisting offline global planning.

• The experimental evaluation of the PPOMDP approach in its various forms, and an

experimental comparison against a state-of-the-art POMDP solution algorithm, in

several simulated environments.

• The real-time implementation and experimental validation of the PPOMDP algorithm

on a real robot navigating in a challenging environment. To the author’s knowledge,

this work represents the most challenging robot navigation problem to which POMDP

solution methods have successfully been applied to date.

1.6 Thesis Structure

Chapter 2 introduces basic MDP and POMDP terminology and concepts more formally,

then reviews numerous solution algorithms which have been proposed in the literature.

Chapter 3 introduces the basic concepts and solution algorithm behind the approach in this

thesis, namely planning in the space of parameterised continuous functions. It argues for the

use of Gaussian functions to approximate beliefs encountered in robot navigation problems.

In order to compare approaches, Chapter 3 introduces BlockWorld: a simple continuous
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navigation problem. We describe the details necessary to implement our algorithm for

BlockWorld, then compare its performance against an MDP-based heuristic and a state-of-

the-art point-based algorithm [103]. The results and algorithm presented in Chapter 3 are

very similar to previously published work [19].

Chapter 3 serves as a foundation for the remaining chapters of this thesis. The algorithm

presented in Chapter 3 has a number of deficiencies, in terms of both performance and scal-

ability. Subsequent chapters maintain the same basic approach, but present improvements

to both the quality of plans and the scalability of planning, to the point where the algo-

rithm can operate competently in real environments. Each of Chapters 4 through 7 build

on the algorithm as presented in the previous chapter by improving on a specific aspect,

and present results on the BlockWorld problem to quantify that improvement.

Chapter 4 highlights some of the deficiencies of the Algorithm from Chapter 3. It suggests

an improved and more general algorithm for projecting beliefs forward in time, and describes

details of how it can be implemented efficiently. This improvement allows the algorithm to

produce significantly better plans in approximately the same amount of time.

In Chapter 5, it will be shown how planning speed can be improved dramatically by pre-

calculating the effects of observations. Essentially, the problem can be broken down into

smaller components by a factoring based on conditional independence assumptions. This

improvement produces similar results to the algorithm presented in the previous chapter,

but in a fraction of the time.

Having already restricted the space of representable beliefs, Chapter 6 focusses computation

on the important areas of that space. The algorithm requires a set of sample beliefs to plan

over. Until this point, the algorithm has required that these lie on a regular grid over

belief-space. In order to relax this requirement, a method is needed to efficiently retrieve

the set of beliefs in the vicinity of a query belief. Chapter 6 reviews data structures from the

similarity search literature and applies them to achieve this aim, resulting in a significant

increase in scalability.

Chapter 7 introduces the final improvement. It shows how real-time online planning can be

integrated with the offline planning algorithm described in previous chapters. Essentially,

this allows an online agent to locally “fill in the gaps” of an occasionally coarse pre-computed

global plan.



CHAPTER 1. INTRODUCTION 12

Chapter 8 moves beyond BlockWorld and applies the algorithm, with all its improvements,

to a real problem. It describes the environment outlined in Section 1.4 in more detail, and

explains how the algorithm presented in previous chapters can be applied to it. It presents

results first on a toy simulated world with realistic dynamics, then on a simulated version

of the real environment, and finally on a real robot operating in the real environment.

Chapter 9 concludes and discusses future work.



Chapter 2

Sequential Decision Making

Partially observable Markov decision processes (POMDPs) provide a general mathematical

framework for modelling problems involving sequential decision making in partially observ-

able domains. Exact solutions to POMDP problems allow an agent to act optimally in the

presence of uncertainty. Many real-world problems, including robot navigation, are well

modelled by POMDPs. This chapter begins by establishing some basic terminology and

concepts for both fully observable and partially observable Markov decision processes. It

shows how the partially observable state can be replaced with the fully observable history

of all information available to the agent. Various approaches to representing that history

compactly are discussed, and numerous algorithms for solving the resultant decision-making

problems are reviewed.

2.1 Markov Decision Processes

A Markov Decision Process (MDP) involves a decision-making agent interacting with a

fully observable stochastic environment, as shown in Figure 2.1. The environment includes

the entirety of the decision maker’s world. For robot navigation problems, this includes

the robot’s pose. Throughout this document it is assumed that time is discretised into a

set of intervals indexed by k. The state vector xk ∈ X is used to describe the state of the

environment at time k. The Markov property asserts that the state is a sufficient statistic for

history, meaning that the past conveys no extra information about the future if the present

is known [111]. At each time interval the agent chooses an action uk ∈ U which causes the

13
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k ← k − 1

rk ← R(xk,uk)

xk+1 ∼ p(xk+1|xk,uk)

rk−1

xk

MDP AGENT

uk ← π(xk)

xk+1

rk

MDP ENVIRONMENT

uk

Figure 2.1: The MDP model. At each iteration the agent produces a new action uk based on
the state. The world samples a new state xk+1 based on the agent’s action. The “k ← k−1”
box simply alters time subscripts in preparation for the next iteration.

state to transition stochastically from xk to xk+1, and results in the agent receiving reward

rk. This thesis assumes that the agent has complete knowledge of the probabilistic model

used for state transitions.

Formally, an MDP is defined by the tuple

< X,U, T,R,x0, γ > (2.1)

where

1. X is the state-space;

2. U is the space of actions;

3. T (xk,uk,xk+1) = p(xk+1|xk,uk) defines transition probabilities between states;

4. R(xk,uk) defines a reward function;

5. x0 is the initial state of the environment; and

6. γ is a discount factor.

Over an episode, the agent executes a policy π, which specifies an action for every state:

π : X → U (2.2)
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This policy can be seen as a conditional plan. After the first action is taken, subsequent

actions depend on the outcomes of stochastic state transitions.

Let Vπ(xk) denote the value of executing policy π starting from state xk. Vπ(xk) is referred

to as a value function, and is equal to the discounted sum of expected future rewards:

Vπ(xk) =
K∑

j=0

γj E
xk+j

[

R
(
xk+j, π(xk+j)

)
]

(2.3)

where γ is a discount factor ≤ 1 and K is the time remaining in the episode. This document

considers only the discounted infinite horizon case, where K =∞ and γ < 1.1 Equation 2.3

calculates the value of a policy based on all future rewards. These future rewards depend on

future states. While future states are unknown, the probabilistic model of the environment

can be used to take an expectation over future states. The discount factor γ is used to

weight rewards in the near future more heavily than rewards in the distant future. This

simplifies matters by inducing finite values.

The Bellman equation is a recursive version of Equation 2.3, defining the value function at

time k recursively in terms of the value function at time k + 1 [10][105]:

Vπ(xk) = R(xk,uk) + γ E
xk+1

[
Vπ(xk+1)|uk

]
(2.4)

= R(xk,uk) + γ

∫

xk+1

Vπ(xk+1)p(xk+1|xk,uk)dxk+1 (2.5)

That is, the value of executing a policy from a state is the immediate reward plus a dis-

counted version of the future reward. The future reward is the (possibly infinite) sum of

the values of all possible next-states, weighted by their probability.

The aim of the MDP agent is to find the optimal policy

π∗(xk) = arg max
π

Vπ(xk) (2.6)

Combining this with Equation 2.4 gives

Vπ∗(xk) = max
uk

[

R(xk,uk) + γ E
xk+1

[
Vπ∗(xk+1)|uk

]
]

(2.7)

1The case of K = ∞ and γ = 1 is the subject of ongoing research [105].
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Many decision-making algorithms find policies through exact or approximate solutions to

this equation [105]. The solution algorithm on which this thesis focusses is value iteration.

2.1.1 Solving MDPs Using Value Iteration

While solution methods for continuous MDPs remain an open problem [64], MDPs with

discrete state, action and observation spaces are in principle relatively straightforward to

solve using value iteration. Equation 2.7 can be re-written, replacing the expectation with

a summation:

Vπ∗(xk) = max
uk

[

R(xk,uk) + γ
∑

xk+1∈X

Vπ∗(xk+1)T (xk,uk,xk+1)

]

(2.8)

For relatively small discrete MDPs, a simple approach to evaluating Equation 2.8 is to

represent R, T and V explicitly, for every state and action, using a set of tables. With

this representation, the discrete MDP can be solved as shown in Algorithm 1. For larger

MDPs which cannot be represented explicitly in tables, a number of approximations to

Algorithm 1 exist [105].

Algorithm 1 A solution algorithm for relatively small discrete MDPs represented explicitly
by tables of rewards, transition probabilities and values. For each state, the algorithm
outputs both the value and the best action. A typical convergence criterion is when the
maximum change in the value function drops below a threshold.

1 Vk(xk)← 0,∀xk ∈ X
2 while not converged
3 Vk+1 ← Vk

4 forall xk ∈ X
5 forall uk ∈ U
6 Vu(uk)← R(xk,uk) + γ

∑

xk+1∈X
T (xk,uk,xk+1)Vk+1(xk+1)

7 end forall
8 ubest ← arg max

uk

[
Vu(uk)

]

9 Vk(xk)← Vu(ubest)
10 end forall
11 end while

Algorithm 1 can be seen as iteratively stepping backward in time. It assumes a value func-

tion, defined for all states. Each iteration then steps back one step in time, and constructs

a one-step policy to reach that (now future) value function. Based on this policy and the
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future value function, the agent can build a value function for the present. Convergence

occurs because the discount factor γ causes changes in the value function to diminish geo-

metrically. The MDP agent can actually execute the policy without reference to the value

function, simply by remembering the maximising actions from Step 8.

Algorithm 1 is simple but fundamental. The majority of this thesis examines efficient

methods for manipulating POMDPs such that they can be solved using Algorithm 1.

2.2 From MDPs to POMDPs

The inclusion of partial observability implies that the state of the environment is not directly

available to the agent. Instead, at each interval k the agent receives an observation zk ∈ Z
which confers incomplete information regarding the state.

More formally, a POMDP is defined by the tuple

< X,U,Z, T,O,R, c0 , γ > (2.9)

where

1. X is the state-space;

2. U is the space of actions;

3. Z is the space of observations;

4. T (xk,uk,xk+1) = p(xk+1|xk,uk) defines transition probabilities between states;

5. O(xk+1,uk, zk+1) = p(zk+1|xk+1,uk) defines observation probabilities;

6. R(xk,uk) defines a reward function;

7. c0 is the initial information available to the agent; and

8. γ is a discount factor.

It is assumed that the initial information c0 takes the form of a (possibly uniform) proba-

bility distribution over state-space.
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While many approaches exist for solving POMDPs, the most prevalent (and the one on

which this thesis focusses) is value iteration. Value iteration can be applied by viewing the

POMDP as an information-state MDP.

2.2.1 POMDPs as Information-State MDPs

An MDP agent’s environment can be considered to consist of two components: an observ-

able deterministic world model which receives an unobservable non-deterministic distur-

bance [10]. The non-deterministic disturbance, denoted wk+1, is selected from the prob-

ability distribution p(wk+1|xk,uk), which the agent is assumed to know. Given this in-

put, the world evolves according to a deterministic state transition function f , such that

xk+1 = f(xk,uk,wk+1). This interpretation is depicted in Figure 2.2(a).

As a concrete example, additive white Gaussian process noise is often assumed (e.g. in the

Kalman filtering literature). In this case, p(wk+1|xk,uk) is a Gaussian distribution. The

transition function f(xk,uk,wk+1) applies the action uk deterministically, then adds the

Gaussian perturbation wk+1 to the resultant state.

Together, p(wk+1|xk,uk) and f determine the state transition probabilities T (xk,uk,xk+1) =

p(xk+1|xk,uk):

p(xk+1|xk,uk) =

∫

wk+1

f(xk,uk,wk+1)p(wk+1|xk,uk)dwk+1 (2.10)

Similarly, for the POMDP case, the observation functionO(xk+1,uk, zk+1) = p(zk+1|xk+1,uk)

can be seen as consisting of two components: a non-deterministic observation disturbance

vk+1 drawn from p(vk+1|xk+1,uk) and a deterministic observation function h(xk+1,uk,vk+1).

Note that, while we allow for the more general case, it is usually assumed that both wk+1

and vk+1 are independent of the action.

To continue with the example, models in the Kalman filtering literature use additive white

Gaussian observation noise. Under this assumption, p(vk+1|xk+1,uk) is a Gaussian and

h(xk+1,uk,vk+1) simply adds vk+1 to the observation.

Without direct access to the state, the POMDP agent must make decisions based on the

available information. The set of all available information at time k consists of
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rk ← R(xk,uk)

xk+1 ← f(xk,uk,wk+1)

Deterministic

Observable

k ← k − 1

MDP AGENT

uk ← π(xk)

uk rk−1

xk

wk+1 ∼ p(wk+1|xk,uk)

rk

xk+1

MDP ENVIRONMENT

xk

Unobservable

wk+1

(a) The MDP Model

Unobservable

Deterministic

Observable

k ← k − 1

I-State MDP AGENT

uk ← πI(Ik)

rI,k ← RI(Ik,uk)

Ik+1 ← fI(Ik,uk, zk+1)

POMDP ENVIRONMENT

I-State MDP ENVIRONMENT

uk

Ik

POMDP AGENT

Ik+1

rI,k

wk+1 ∼ p(wk+1|xk,uk)

xk

zk+1

xk+1

rI,k−1

wk+1 vk+1

zk+1 ← h(xk+1,uk,vk+1)

xk+1 ← f(xk,uk,wk+1)

vk+1 ∼ p(vk+1|xk+1,uk)

(b) The POMDP Model

Figure 2.2: The parallel between the (a) MDP and (b) POMDP models. The I-state MDP
agent plays the same role as the MDP agent, but x and r are replaced by I and rI. Both
the MDP and I-state MDP agents’ environments consist of an observable deterministic
component which receives a stochastic input from an unobservable component. Despite
this source of randomness, planning is possible in MDPs and POMDPs because agents can
model the probabilities of future disturbances and future observations respectively.
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1. a priori knowledge of the initial state of the world, denoted c0 ∈ C0;

2. all observations up to and including time k; and

3. all actions up to and including time k − 1.

A representation for this set of information is termed an information-state, or I-state for

brevity, denoted Ik. Ik can be viewed as a point in the space of all possible I-states, termed

the information space (or I-space) I [112][64]. Particular representations of Ik are discussed

in detail later in this chapter, but by definition it is completely observable.

In order to base its decisions on I-states, the POMDP agent needs to know how actions and

observations will modify those I-states. This is specified by an I-state transition function,

denoted fI, such that

Ik+1 = fI(Ik,uk, zk+1) (2.11)

In addition, in the absence of direct access to the reward (which would give the agent clues

as to the true state of the world), the POMDP agent must use an estimate of its reward,

denoted rI, obtained through the I-state-based reward function RI:

rI = RI(Ik,uk) (2.12)

Given these functions, the POMDP can be viewed as an I-state MDP by replacing the

unobservable state of the environment x with the fully-observable I-state I, and replacing

the state-based reward r with the I-state-based reward rI, as illustrated in Figure 2.2(b).

Furthermore, there is a parallel with the view of an MDP agent’s environment as an observ-

able component receiving a stochastic disturbance from an unobservable component. In the

POMDP case, from the point of view of the I-state MDP agent, the observable determin-

istic component consists of the I-state transition and reward functions. The unobservable

component is the true environment, and the stochastic disturbance is the observation. Just

as the MDP agent has knowledge of the distribution p(wk+1|xk,uk), the POMDP agent

can construct the distribution p(zk+1|Ik,uk) based on its knowledge of the world model and

the two true sources of non-determinism, p(wk+1|xk,uk) and p(vk+1|xk+1,uk). This does

not imply that zk+1 actually depends on Ik, but that Ik tells the agent something about

the distribution over zk+1.
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The POMDP agent’s task is to optimise an information-based policy πI which specifies an

action for every point (I-state) in the I-space:

πI : I → U

Adapting Equations 2.3 and 2.6 to the new information-state MDP results in the definitions

of the value of an I-state:

VπI
(Ik) =

K∑

j=0

γj E
Ik+j

[

RI

(
Ik+j, πI(Ik+j)

)
]

(2.13)

and the optimal information-based policy:

πI
∗(Ik) = arg max

πI

VπI
(Ik) (2.14)

The information-based analogue of Equation 2.7, defining the value of the optimal information-

based policy, is then

VπI
∗(Ik) = max

uk

[

RI(Ik,uk) + γ E
Ik+1

[
VπI

∗(Ik+1)|uk

]
]

(2.15)

= max
uk

[

RI(Ik,uk) + γ E
zk+1

[
VπI

∗(fI(Ik,uk, zk+1))
]
]

(2.16)

The equivalence between MDPs and POMDPs viewed as I-state MDPs is summarised in

Table 2.1. In principle, ordinary MDP solution methods can be used to solve Equation 2.16.

The complication, as will be discussed in this chapter, is that information spaces are gen-

erally not discrete.

2.2.2 Ihist and Derived Information Spaces

An obvious way to describe the set of available information is with the history I-state

Ihist,k ∈ Ihist,k, where Ihist,k is the vector of all available information:

Ihist,k = (c0, z0, . . . , zk,u0,u1, . . . ,uk−1), Ihist,0 = (c0, z0) (2.17)
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MDP I-State MDP
Observable “State” xk Ik

Reward rk rI,k
Policy π πI

Disturbance wk+1 zk+1

Reward Model R(xk,uk) RI(Ik,uk)
Transition Function f(xk,u,wk+1) fI(Ik,uk, zk+1)
Disturbance Model p(wk+1|xk,uk) p(zk+1|Ik,uk)

Table 2.1: The equivalence between various quantities in either an MDP or a POMDP
viewed as an I-state MDP. For an I-state MDP, the quantities below the line can be derived
from the definition of the I-state and the mechanics of the underlying MDP.

The history I-space at time k, Ihist,k, is therefore the space of all possible vectors Ihist,k:

Ihist,k = C0 × Z × Z · · · × Z︸ ︷︷ ︸

k+1

×U × U · · · × U
︸ ︷︷ ︸

k

(2.18)

For problems without a finite number of time intervals, Ihist is given by:

Ihist = Ihist,0 ∪ Ihist,1 ∪ Ihist,2 ∪ · · · (2.19)

Operating on history I-states directly is clearly problematic, since the size of Ihist,k grows

linearly with k. Acting using history I-states would involve the task of constructing a policy

mapping from a history of arbitrary length to an action. Instead, it is more convenient

to operate in a derived I-space, denoted Ider, in which the available information can be

represented more compactly [64].

Derived Information Spaces

The use of derived I-spaces greatly simplifies the task of constructing a policy. Rather than

being a function of arbitrary length histories, the policy can be a function of finite-sized

summaries of histories. Ideally the derived I-space should simplify the problem as much as

possible, while retaining as much information as possible. These are often competing objec-

tives since simpler I-spaces can result in information loss and, consequently, the inability to

differentiate between distinct information histories. This is likely to cause a deterioration

in the quality of plans.
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Ik Ik+1

Ider,k Ider,k+1

fI(Ik,uk, zk+1)

fIder
(Ider,k,uk, zk+1)

κderκderI

Ider

A

B

Figure 2.3: The I-map κder is termed sufficient if both path A (via Ik+1) and B (via Ider,k)
produce the same derived state Ider,k+1.

To operate in a derived information space, an information mapping function is required [64][112][65].

Let κder : I → Ider denote an information mapping function, or I-map, which maps from an

original information space to a derived information space. I-maps may be chained together

to create new I-maps: given the I-maps κder : I → Ider and κder′ : Ider → Ider′ , an I-state

I can be transformed using Ider′ = κder′(κder(I)).

Sufficient I-Maps

The information map κder is termed sufficient [64], given an I-state transition function fI,

if a derived transition function fIder
exists such that the following holds:

∀Ik ∈ I : κder

(
fI(Ik,uk, zk+1)

)
= fIder

(
κder(Ik),uk, zk+1

)
(2.20)

This implies that for a given trajectory through I-space and a sufficient I-map, the same

final state can be reached by either (a) evaluating the trajectory in I then mapping to

Ider, or (b) mapping to Ider initially then evaluating the trajectory in Ider using fIder
, as

illustrated in Figure 2.3. If this is the case then the problem can be re-cast entirely in terms

of derived I-states, and a solution sought in the simplified information space.

Insufficient I-Maps

In practice, problems are often re-cast in terms of derived I-spaces using insufficient I-maps,

for which Equation 2.20 does not hold. While inexact results may be obtained by working
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κ−1
der

Ider,k

fI

κder

Ider,k+1

f̂Ider

Ik Ik+1

Figure 2.4: For an insufficient I-map, an approximate transition function f̂Ider
can be derived

from its counterpart in the original I-space.

in the derived information space, this is often outweighed by the benefits of simplicity.

When using an insufficient I-map, one approach to defining an approximate derived tran-

sition function f̂Ider
is to use the transition function from the original space. Suppose a

function κ̂−1
der exists which maps from a point in the derived space back to a point in the

original space. Then an approximate derived transition function can be constructed as

f̂Ider
(Ider,k,uk, zk+1) = κder

(

fI
(
κ̂−1

der(Ider,k),uk, zk+1

)
)

(2.21)

This equation maps Ider,k back into the original I-space, applies the transition function fI

to produce Ik+1, then maps Ik+1 back into the derived I-space, as illustrated in Figure 2.4.

It remains to define κ̂−1
der. Let the pre-image of Ider,k refer to the set of points in I which

κder maps to Ider,k. For sufficient I-maps, the pre-image of Ider,k may be either a single

point or a set of points. For insufficient I-maps, however, the pre-image is always a set of

points2. Equation 2.21 can be implemented by defining κ̂−1
der to simply select some point

from the pre-image.

Useful Information Spaces

Since solving POMDPs directly in Ihist is problematic, proposed POMDP solution methods

generally operate in spaces derived from Ihist. The choice of I-space has important impli-

cations for the type of solution algorithms which can be applied, the scalability of those

algorithms, and the accuracy of the resulting plans.

2If there were a one-to-one mapping between points in I and points in Ider, Equation 2.21 would not
involve an approximation and could be used to satisfy Equation 2.20.
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Iprob

Ihist

Iprobdisc

Icompdisc

IparticleIgauss

κprob

κgauss κprobdisc κparticle

κcompdisc

Figure 2.5: Important I-spaces for which solution algorithms have been proposed, and
their relationships. Ihist is discussed in Section 2.2.2, Iprob in Section 2.3, and Iprobdisc in
Section 2.4, while Iparticle, Icompdisc, and Igauss are discussed in Section 2.5.

The following sections describe a number of I-spaces which have been chosen, along with

their I-maps and derived transition and reward functions. The spaces which will be de-

scribed and the relationships between them are shown in Figure 2.5.

2.3 Belief States and Iprob

An important I-space is Iprob. κprob maps from an information history Ihist,k to a probability

distribution over state-space p(xk|Ihist,k), denoted Iprob,k. The Markov assumption asserts

that p(xk|Ihist,k) is a sufficient statistic for an entire history, implying that

p(xk+1|Ihist,k,uk, zk+1) = p(xk+1|Iprob,k,uk, zk+1) (2.22)

and that κprob is a sufficient I-map.
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xk → x
xk+1 → x+

Ik → I
Ik+1 → I+

uk → u
zk+1 → z+

Table 2.2: A summary of a simplified notation, omitting the subscript k and replacing the
subscript k + 1 with the superscript +.

In order to simplify notation, we make the following substitutions from this point onwards.

For quantities at the current time interval, the subscript k is omitted. For quantites at the

next time interval, the subscript k+1 is replaced with the superscript +. These replacements

are summarized in Table 2.2. Hence Equation 2.22 becomes

p(x+|Ihist,u, z
+) = p(x+|Iprob,u, z

+) (2.23)

The probability distribution Iprob is usually referred to as a belief, hence the words ‘belief’

and ‘I-state’ will be used interchangeably throughout this document to refer to I-states in

Iprob and any of its derived spaces, relying on context to clarify ambiguities. By working

in Iprob, the POMDP over unknown states is transformed into an MDP over known beliefs.

The agent’s aim becomes that of selecting actions which coerce as much probability mass

as possible towards high-reward states. Shifting probability mass can equally be viewed as

shifting a point in Iprob.

In order to operate in Iprob, the I-state MDP models for rewards, transitions, and obser-

vations, referenced in Table 2.1, must be derived in terms of the underlying environment

model. The reward model is simply an expectation over state-space:

Rprob(Iprob,u) = E
x

[
R(x,u)|Iprob

]
(2.24)

=

∫

x

R(x,u)Iprob(x)dx (2.25)

Using I−prob to denote the belief after acting but before observing, given by

I−prob(x
+) =

∫

x

p(x+|x,u)Iprob(x)dx (2.26)
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the I-state transition function is

I+
prob(x

+) = fIprob
(Iprob,u, z

+) (2.27)

= Cp(z+|x+,u)I−prob(x
+) (2.28)

where C is a normalising constant which ensures that I+
prob(x

+) integrates to one. The

I-state transition function has a prediction-correction form familiar in robotics (e.g. [110]).

Equation 2.26 projects Iprob forward according to the process model p(x+|x,u) to produce

the prediction I−prob, while Equation 2.28 uses Bayes’ rule to correct that prediction using

the observation likelihood function p(z+|x+,u). The I-map κprob(Ihist) can be evaluated

using the initial conditions c0 and repeated applications of fIprob
.

The I-state observation model is

p(z+|Iprob,u) =

∫

x+

p(z+|x+,u)I−prob(x
+)dx+ (2.29)

Equation 2.29 may be unfamiliar to those with an estimation background. It represents the

likelihood of observations in the immediate future given the current belief and action (as

opposed to the current state and action). This quantity is required for planning but not

for estimation: a planner needs to know the likelihood of future observations, whereas an

estimator needs to know only how to incorporate them after they arrive.

Unfortunately, representing points in Iprob can be problematic. In the general continuous

case, Iprob is the space of arbitrary continuous distributions over X and hence can be viewed

as an infinite-dimensional vector space. To see why, consider approximating the function

p(x|Ihist) with a series expansion. An infinite number of coefficients may be required to

represent the distribution exactly [64].

In order to represent points in Iprob the space must first be transformed with further (prob-

ably insufficient) I-maps. To be useful, the transformations should allow distributions to

be represented using finite vectors. If general distributions can occur, this necessarily in-

volves reducing the set of distributions which can be represented. The following sections

describe several possible mappings. Each mapping corresponds to a different approximation

of the original continuous distributions, with different implications for the POMDP solution

methods.
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2.4 Discretised State Spaces: κprobdisc

A well-studied approach to representing probability distributions over continuous states is

to discretise the state-space, partitioning X into a set of cells s ∈ S. This approach, related

to state aggregation in MDPs [99][114], can be viewed as the application of the I-map

κprobdisc to Iprob to produce Iprobdisc, where Iprobdisc is the space of fixed-length vectors of

cell probabilities. κprobdisc transforms Iprob(x) by integrating the total probability mass in

each discrete cell, producing Iprobdisc(s). Iprobdisc(s) is a vector of discrete cell probabilities

of length |S| − 1, where the final cell probability is unnecessary due to the constraint that

the probabilities sum to one. This is clearly not a sufficient I-map for continuous underlying

state-spaces.

The discrete I-state reward, observation and transition functions are similar to their coun-

terparts in Iprob:

Rprobdisc(Iprobdisc,u) =
∑

s

Iprobdisc(s)Rs(s,u) (2.30)

I−probdisc(s
+) =

∑

s

p(s+|s,u)Iprobdisc(s) (2.31)

I+
probdisc = fIprobdisc

(Iprobdisc,u, z
+) (2.32)

= Cp(z+|s+,u)I−probdisc(s
+) (2.33)

where C is a normalising constant which ensures that I+
probdisc sums to one, and

p(z+|Iprobdisc,u) =
∑

s+

p(z+|s+,u)I−probdisc(s
+) (2.34)

Rs(s,u), p(z+|s+,u) and p(s+|s,u) refer to the discrete-state-based reward, observation

and transition functions respectively. They can be determined using integrations over the

original continuous space, assuming an inverse I-map κ̂−1
probdisc exists to map from distribu-

tions over discrete cells back to continuous distributions. Appropriate choices may be to

map to a mixture of uniform distributions over the areas defined by each cell, or to map to

a set of delta functions centred on each cell. Chapter 3 will show an example of the former

choice.
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2.4.1 Gradient-Based Solution Methods

Since discrete state-spaces are not the focus of this thesis, the discussion of gradient-based

methods is relatively brief. For a more detailed discussion, readers are referred to the

references provided. For example, a good introduction is provided in [23].

While a discrete state-space means that beliefs can be represented using vectors of length

|S| − 1, it remains to represent the value function over the resulting continuous belief-

space. Many discrete POMDP solution methods rely on the result that the value function

is piecewise-linear and convex (PWLC) [100][102]. Therefore the value function can be

represented by the supremum of a finite set of n hyperplanes over the belief simplex:

Vπ(Iprobdisc) = max
i

Iprobdisc · αi (2.35)

for some set of α-vectors Γ = α0, α1, ..., αi where αi is a |S| − 1 dimensional vector spec-

ifying the hyperplane’s axis-intercepts in belief-space. This result allows the value over a

continuum of belief points to be represented exactly with the finite set of scalars describing

Γk.

Assuming discrete action and observation spaces, a second important result is that if the

value function at time k + 1 is a PWLC function, represented by the set Γ+, then the

value function at time k is also a PWLC function and can be represented exactly by a

set of vectors Γ [102]. This update can be performed in two steps. The first generates

intermediate sets of vectors Γu,z+

, ∀u ∈ U , ∀z+ ∈ Z:

Γu,z+ ← αu,z+

i (s), ∀i ∈ {1 . . . |Γ+|} (2.36)

where

αu,z+

i (s) =
1

|Z|R(s,u) + γ
∑

s+∈S

p(s+|s,u)p(z+|s+,u)α+
i (s+) (2.37)

The second step generates a new value function by adding vectors αi to Γ. Each αi is

obtained by choosing a particular action u′, then selecting one αu′,z+

from each set Γu′,z+

and taking the sum:

αi =
∑

z+∈Z

alphaselect(u′, z+, i) (2.38)
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where the operator alphaselect(u′, z+, i) chooses the vector in Γu′,z+

used to create αi.

Defining the cross-sum operator ⊕ as

{a, b, . . . } ⊕ {p, q, . . . } = {a+ p, a+ q, b+ p, b+ q, . . . } (2.39)

a simple approach is to enumerate the complete set of possibilities:

Γcomplete = ∪
u

Γu (2.40)

where Γu is the cross-sum over observations:

Γu = Γu,z+

1 ⊕ Γu,z+

2 ⊕ · · · (2.41)

In practice the complete set is unlikely to be necessary since many vectors will be dominated

(∀Iprobdisc ∃j : αi ·Iprobdisc < αj ·Iprobdisc) and hence not contribute to the value function. A

number of algorithms perform exact value iteration by finding the minimal set of α-vectors

required at each step, either by enumerating a superset of the required vectors and pruning

the useless ones [73][36][25] or by iteratively expanding a subset until the minimal set has

been found [102][27][60]. For a more thorough review of exact algorithms, the reader is

directed to [23].

Finding the minimum set of required vectors is important because the size of Γ can grow

rapidly. In the worst case, the number of vectors required at time k is given by

|Γ| = |U ||Γ+||Z|

where |U |, |Z| and |Γ+| are the number of actions, observations, and vectors representing

the value function at time k + 1, respectively. Therefore the number of vectors required to

represent the value function after i iterations is of the order O(|U ||Z|
i−1

) [53].

Unfortunately, strategies for finding the minimal set of vectors to represent the value func-

tion exactly are usually computationally expensive and seem to make a difference only in

the constant factors rather than the order of the growth [86]. As a result, exact algorithms

are generally considered to be intractable for all but trivial problems.
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2.4.2 Approximate Gradient-Based Solutions: Point-Based Methods

Rather than generating all α-vectors required to represent the entire value function exactly, a

number of algorithms perform approximate value iteration by generating only those vectors

which maximise the value at a discrete set of belief points B [103][86][101][68][88][53].

Let backup(Iprobdisc) denote the operator which returns the α ∈ Γ which maximises the

value at belief point Iprobdisc given the vectors Γ+:

backup(Iprobdisc) = arg max
{gI

u}u∈U

Iprobdisc · gIu (2.42)

where

gIu =
∑

z

arg max
αu,z+

i ∈Γu,z+

Iprobdisc · αu,z+

i (2.43)

Point-based algorithms follow the two steps listed in the previous section. In step 1 the

sets Γu,z+

are generated using Equations 2.36 and 2.37. In step 2, vectors are added to Γ

using the backup operator and the belief set B, as illustrated in Figure 2.6. A common

approach is to update B during planning, interleaving phases of value iteration with phases

of belief set expansion [101][115][53][92][53][86]. Given the convexity of the value function,

the subset of alpha-vectors induced by B defines a lower bound to that value function.

The advantage of point-based approaches is that they avoid the double-exponential growth

in α-vectors experienced by exact algorithms. Instead, the maximum number of α-vectors

(the size of the set Γ produced by step 2) is limited to |B|. The PERSEUS algorithm reduces

the size of Γ further [103]. Since the gradient of each α-vector allows it to generalise over an

area of the belief-space, a single vector may improve the value (but not necessarily provide

the best value) at multiple belief points. This can be exploited in step 2 to produce a set Γ

containing a number of vectors much less than |B|, while still ensuring that all belief points

in B are improved. This has been shown to reduce computation time significantly.

The complexity of a single step of value iteration, using a point-based approximation, is [84]

O(|Γ+||S|2|U ||Z|+ |Γ+||S||U ||Z||B|) (2.44)

In the worst case, |Γ+| = |B|. The PERSEUS algorithm produces a set Γ+ much smaller

than |B|, but may require more iterations to converge due to the fact that belief points
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BELIEF

SET

|{Γu,z+}| = |Z||U |
|Γu,z+ | = |Γ+|

{Γu,z+}

Γ+

STEP 2

ENVIRONMENT

MODEL

R(s,u)

STEP 1p(s+|s,u)

p(z+|s+,u)

k ← k + 1

O(|A||S|2CevalAct+

|A||S||Z|CevalObs)

O(|Γ+||S||U ||Z||B|)

O(|Γ+||S|2|U ||Z|)

Γ

B

Figure 2.6: The structure of gradient-based POMDP solution methods, using a point-based
approximation. Step 1 uses the environment model to generate intermediate sets of alpha
vectors, {Γu,z+}, in time O(|Γ+||S|2|U ||Z|). Step 1 creates |Z||U | intermediate sets, each
containing |Γ+| vectors. Step 2 selects from and sums these intermediate vectors, given
the belief set B, to produce the set of α-vectors for the next iteration. The time required
for step 2 is O(|Γ+||S||U ||Z||B|). Some algorithms also update the belief set during value
iteration.

are not updated on every iteration. In Chapters 3 and 4 we compare directly against the

PERSEUS algorithm.

Porta et al. generalise the idea of point-based updates to continuous state spaces, assuming

discrete actions and observations [89]. The notion of α-vectors is generalised to α-functions

(α-vectors over an infinite number of states), and sums over states are replaced with inte-

grals. It is shown how these integrals can be evaluated in the case where the beliefs and

action, observation, and reward models are mixtures of Gaussians over state-space. One

complication is that the number of components in the mixtures representing beliefs and

α-functions increases exponentially. To prevent this, the number of components in each

function is kept constant by approximating the function, at each iteration, with a mixture

of fewer components. While this is a promising approach, it is as yet unclear whether the

computational cost of each update will scale beyond the simple one-dimensional problem
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presented, or whether the observation functions of realistic scenarios can be adequately

described by a discrete set of mixtures of Gaussians over state-space.

Hoey et al. extend point-based value iteration to continuous observation spaces, using the

fact that observations are useful only to the extent that they lead to different courses of

action [56]. The observation space can therefore be partitioned by calculating the thresholds

at which different observations require different actions. It is unclear how appropriate this

is for robot navigation problems in which the action space is fundamentally continuous, and

ideally every observation should lead to a different action.

The SPOVA algorithm uses a smooth, continuous function to approximate the set of hy-

perplanes which maximise the value function at a set of belief points [82]. By using a

differentiable function, the error between the smooth approximation and the true value

function can be minimised using gradient descent.

2.5 Beyond Iprobdisc

There are many possibilities besides Iprobdisc for representing continuous beliefs. The major

advantage of Iprobdisc is the fact that the value function is PWLC, allowing gradient-based

value iteration. For many of the other I-spaces shown in Figure 2.5, the value function is in

general not PWLC and hence gradient-based value iteration is not possible. An algorithm

that is feasible for all I-spaces in Figure 2.5, including Iprobdisc, is fitted value iteration

(FVI) [49]. Since FVI is relied upon heavily in this document, Sections 2.5.1 and 2.5.2

describe the algorithm. Section 2.5.3 then discusses the application of FVI to the various

I-spaces shown in Figure 2.5.

2.5.1 Fitted Value Iteration

Fitted Value Iteration (FVI) is an approach to solving MDPs with large or infinite numbers

of states. As shown in Sections 2.2 and 2.3, a POMDP can be converted to a continuous

belief-state MDP. FVI can therefore be applied to this resultant (infinite-state) MDP.

The central idea behind FVI is to store values explicitly at only a relatively small number

of states, using a function approximator to approximate the value function for all states in

between. In principle the value at one state may confer no information about the value at
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another state. However if the value function is sufficiently smooth and enough values are

stored explicitly, FVI is likely to provide a good approximation. At each new time-step, a

new set of explicit values can be estimated from the approximate value function of the old

time-step.

More formally, let G be a set of states of size |G|, G = {xG,1,xG,2, . . . ,xG,|G|}, and let ΨG

be the set of explicit state-value pairs

ΨG =
{(

xG,1, ψ(xG,1)
)
,
(
xG,2, ψ(xG,2)

)
, . . . ,

(
xG,|G|, ψ(xG,|G|)

)}

(2.45)

where ψ(xG,i) is the estimated value of the i’th state in G. Let V̂ (x) denote the current

estimated value of any state x ∈ X. V̂ (x) can be estimated using a function approximator

φG, based on the set ΨG

V̂ (x) = φG(x,ΨG) (2.46)

The value of the i’th state in G can then be estimated at time k from the approximate

value function at time k + 1 by replacing the true value function in equation 2.7 with its

approximate version

ψ(xG,i) = max
u

[

R(xG,i,u) + γE
x+

[
V̂ +(x+)|u

]
]

(2.47)

For clarity, the operation of Equation 2.47 is depicted in Figure 2.7.

Fitted value iteration for a discounted MDP is guaranteed to converge provided the function

approximator is not an expansion in the max norm [49]. This is the case for convex function

approximators. Loosely speaking, a convex function approximator is one which estimates

the value of a state as a weighted sum of the values of nearby states.

More formally, let λG(x, j) denote a weighting function defined for the set G, which takes

an arbitrary state x and the index j of a state in G, and returns a weighting. Then a convex

function approximation rule is given by

φG(x,ΨG) =

|G|
∑

j=1

λG(x, j)ψk(xG,j) (2.48)

where 0 ≤ λG(x, j) ≤ 1 ∀j and
∑|G|

j=1 λG(x, j) = 1 [53]. Fortunately, the family of con-

vex rules includes many commonly-used rules such as nearest neighbour, kernel regression,
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x+
G,1 x+

G,2 x+
G,3 x+

G,4

xG,3 xG,4

V̂ +ψ+(x+
G,2)

ψ+(x+
G,4)

xG,1

Value

Stage k + 1

Stage k

ψ+(x+
G,3)

ψ+(x+
G,1)

xG,2

Figure 2.7: An example demonstrating fitted value iteration in a one-dimensional state
space, using linear interpolation as the function approximator φG. The function approxima-
tion is shown as a dashed line, interpolating between the point-value pairs

(
x+

G,i, ψ
+(x+

G,i)
)

to produce V̂ +. The value of xG,2, denoted ψ(xG,2), can be calculated using Equation 2.47.

The diagram shows the calculation of the expectation term E
x+

[
V̂ +(x+)|u

]
. For the action

u, the two possible state transitions are indicated by the two arrows. The thickness of each
arrow corresponds to the probability of the transition. E

x+

[
V̂ +(x+)|u

]
is equal to the sum

of V̂ + at the arrow terminations, weighted by the transition probabilities.

linear point interpolation and others. The remainder of this document assumes the use of

convex function approximators, therefore it is assumed that a function approximator is fully

specified by a weighting function.

2.5.2 Converting a Continuous MDP to a Discrete MDP of Size |G|

It can be shown that, for a fixed set of discrete actions and a convex function approximator,

FVI can be used to convert a large or continuous MDP to a discrete MDP with a number

of states equal to |G| [49][53].

Equation 2.47 can be written

ψk(xG,i) = max
u

[

R(xG,i,u) + γ

∫

w+

p(w+|xG,i,u)V̂ +(x′)dw+

]

(2.49)

where x′ = f(xG,i,u,w
+). Substituting the definition of the estimated value function from
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Equation 2.46 gives

ψk(xG,i) = max
u

[

R(xG,i,u) + γ

∫

w+

p(w+|xG,i,u)φG(x′,Ψ+
G)dw+

]

(2.50)

Using Equation 2.48, the convexity of the function approximator allows Equation 2.50 to

be written as

ψ(xG,i) = max
u

[

R(xG,i,u) + γ

∫

w+

|G|
∑

j=1

p(w+|xG,i,u)λG(x′, j)ψ+(x+
G,j)dw

+

]

(2.51)

= max
u

[

R(xG,i,u) + γ

|G|
∑

j=1

ψ+(x+
G,j)

∫

w+

p(w+|xG,i,u)λG(x′, j)dw+

]

(2.52)

= max
u

[

R(xG,i,u) + γ

|G|
∑

j=1

ψ+(x+
G,j)T (xG,i,u,x

+
G,j)

]

(2.53)

where

T (xG,i,u,x
+
G,j) =

∫

w+

p(w+|xG,i,u)λG(f(xG,i,u,w
+), j)dw+ (2.54)

in the last step. For a fixed and discrete set of disturbances, the integral becomes a sum-

mation

T (xG,i,u,x
+
G,j) =

∑

w+

p(w+|xG,i,u)λG(f(xG,i,u,w
+), j) (2.55)

T (xG,i,u,x
+
G,j) can be interpreted as representing a probability, since 0 ≤ T (xG,i,u,x

+
G,j) ≤

1, and
∑|G|

j=1 T (xG,i,u,x
+
G,j) = 1 hold (given the definition of convexity and the fact that

the disturbance probabilities sum to one). To clarify again, Figure 2.8 depicts the example

from Figure 2.7 after conversion to a discrete MDP of size |G|.

It can be seen from Equation 2.53 that the set of transition probabilities can all be pre-

calculated before value iteration begins, and stored as a matrix T , rather than being re-

calculated at every iteration. This is a considerable computational saving: T contains

O(|G|2|U |) non-zero entries, each of which requires forward simulation of the environment

and an application of the weighting function.

After pre-calculation of T , Equation 2.53 is clearly very similar to the discrete version of

the Bellman equation given in Equation 2.8. The explicit storage of the value of each state

in ΨG implies that Algorithm 1 can be applied directly to solve the new MDP.
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Figure 2.8: The fitted value iteration example from Figure 2.7, after conversion to a |G|-state
discrete MDP. The thickness of the lines transitioning from stage k to k+1 are proportional
to T (xG,i,u,x

+
G,j). Note that V̂ +, the value function estimate obtained through function

approximation, is no longer required.

2.5.3 Application to Various I-Spaces

While they are not all presented as such, we would argue that many algorithms from the

POMDP literature can be viewed as the application of fitted value iteration to a particular I-

space, either with or without conversion to a discrete MDP. Under the view of a POMDP as

an I-state MDP, it is relatively straightforward to apply FVI after making the substitutions

listed in Table 2.1, and replacing the state set G with the belief set B. The mechanics are

described in more detail in Chapter 3.

Fitted Value Iteration in Iprobdisc

Fitted value iteration directly in Iprobdisc, also known as a grid-based approximation, is

well studied [68][126][53][14][17]. The main problem is the high dimensionality of the belief

space. In general, the number of samples required to achieve a given sample density is

exponential in the dimensionality of the space. When beliefs are represented as vectors of

cell probabilities, the dimensionality of the belief space increases rapidly with both the size

of the state space and the resolution of the discretisation.
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Fitted Value Iteration in Iparticle

Thrun applies the idea of fitted value iteration to continuous state spaces [108]. This can be

viewed as applying the I-map κparticle which maps from a point in Iprob by sampling from

that distribution. The I-map is insufficient for a finite number of particles. Monte Carlo

methods are used to evaluate the integrals governing the dynamics of the derived I-space.

The weighting function in belief-space is k-nearest-neighbour, where the distance metric is

the KL divergence between beliefs. Since beliefs are represented by particle sets, a first

step in calculating the KL divergence is to estimate the continuous belief distribution using

kernel methods. The integration required for the KL divergence calculation is performed

using Monte Carlo methods. Due to the computational costs involved in calculating the

belief-space transition function and weighting function, it seems unlikely that this approach

will scale to very large problems.

Fitted Value Iteration in Icompdisc

The problems of the dimensionality of Iprobdisc can be avoided by using dimensionality

reduction techniques to compress the belief space. This can be viewed as employing the

I-map κcompdisc. Poupart et al. experiment with linear compression algorithms [90]. They

note that linear compression is unlikely to be lossless and present an algorithm for finding

the linear compression technique which minimises the reconstruction error. The I-map is

sufficient only in the case of lossless compression.

This idea has been extended to non-linear compression algorithms [92][66]. The non-

linearity of the compression algorithm breaks the convexity of the value function, and hence

fitted value iteration is used as a solution method. Lacking an obvious low-dimensional

model, the transition function must be calculated by mapping back and forth between

Icompdisc and Iprobdisc using equation 2.21.

Roy’s AMDP algorithm [92] bears a strong relation to the algorithm presented in this thesis.

AMDP compresses distributions by representing them using their mean and entropy. In this

case, κ̂−1
compdisc maps to the closest Gaussian distribution over discrete states. The important

difference between AMDP and the work described in this thesis is that AMDP relies on an

underlying discretisation. It will be shown in Section 4.5 that this difference has important

scalability implications.
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Fitted Value Iteration in Igauss

The I-space explored in this thesis is Igauss: the space of Gaussian approximations to

continuous distributions. Lavalle suggests the approach of planning in the space of Gaussian

approximations [65][64] but does not, to the author’s knowledge, develop the idea further.

Continuous worlds with linear dynamics, quadratic costs, and Gaussian noise (so-called

LQG problems) present a special case for Igauss. Under these conditions, the distribution

over Gaussian posterior beliefs is itself a Gaussian. FVI need not be applied because a

closed-form solution to value iteration exists [10]. Such environments are not particularly

interesting from a planning perspective, however. They are said to be separable: given the

estimate from a Kalman filter (which is optimal for linear worlds with Gaussian noise), the

optimal plan is always to minimise the cost for the mean of the belief under the assumption

of perfect state information [10].

In contrast, planning problems such as the ones considered in this thesis are interesting

because they exhibit many sources of non-linearities and may have more complicated reward

functions. In general the distribution over posterior beliefs is not Gaussian, and where the

optimal plan in a linear world is to move directly towards the goal, such an approach is

generally inapplicable in robot navigation planning problems.

2.6 Belief Set Selection

For both point-based gradient methods and fitted value iteration methods, an important

step is to select a set of belief points B at which to update the value function. As discussed

in Chapter 1, only a subset of the possible belief-space is likely to be encountered in practice.

While restricting the class of allowable beliefs can help, the probability of reaching beliefs

within that class is unlikely to be uniform over the entire I-space.

In the context of fitted value iteration, a trade-off exists between the computational cost

of applying a weighting function and freedom in choosing beliefs. A simple approach is

to sample the belief space on a regular grid [68]. While this approach does not focus

computation on likely areas of the belief space, it allows for the use of an extremely fast

linear weighting function based on Coxeter-Freudenthal-Kuhn triangulation [74] (or simply

Freudenthal triangulation). This finds an interpolation based on d+1 points rather than the
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2d points in the bounding hypercube, where d is the dimension of the space [31]. Freudenthal

triangulations are described in more detail in Section 3.3.2. Using a variable-resolution grid

allows a higher sample density in important areas of the belief space while still allowing

a fast linear interpolation scheme [126][75]. Arbitrary point sets have also been used in

the context of fitted value iteration [108][53][92], at the cost of a more expensive weighting

function.

A number of strategies have been investigated for selecting arbitrary belief sets. Strategies

for selecting B prior to planning include random selection, heuristics such as inclusion of

the corners of the belief simplex [53][88], and forward-simulation of the model using either

random actions [103] or actions from a heuristic policy [92]. Many algorithms also update

B during planning, based on the uncertainty of the value function [101][115], high-value

regions of the belief space [53], the policy generated using the current value function [92],

random policies [53] or a policy designed to explore the belief space [86].

2.7 Non-Value-Iteration-Based Approaches

While this thesis focusses on POMDP solution methods based on value iteration, a number

of other methods have been proposed. This section reviews heuristics, policy iteration,

forward search, hierarchical approaches, and solution methods based on a view of POMDPs

as graphical models.

2.7.1 Heuristic Approaches

Since POMDPs are difficult to solve, the most common approach by far (at least for real-

time applications such as mobile robot navigation) is to use a heuristic approach to planning

rather than the full POMDP solution. Heuristic approaches can be divided into three

categories: (a) those which do not consider uncertainty at all, (b) MDP-based heuristics

which consider stochastic actions but not future uncertainty, and (c) those which can act

in order to resolve uncertainty. While this section provides a brief overview, more details

are available in [24], [53], and the references therein.



CHAPTER 2. SEQUENTIAL DECISION MAKING 41

Heuristics Without Uncertainty Considerations

Replan is a simple strategy, but probably the most widely used in practice. It simply plans

under the assumption that the most likely state is true, and that the world is deterministic.

If, during plan execution, the most likely state drifts far enough from the plan, it generates

a new plan. We compare against Replan in the real robot navigation problem presented in

Chapter 8.

MDP-Based Heuristics

For a sufficiently small discrete state-space, the solution to the underlying MDP is relatively

easy to obtain. Two common heuristics based on the MDP solution are MLS and QMDP .

MLS, or Most Likely State, simply assumes that the most likely state is in fact the true

state, and takes the corresponding action from the MDP policy [79]. This is a good approxi-

mation to the full POMDP solution when distributions are compact, and the most likely

state is never far from the truth. We compare against MLS in subsequent chapters.

QMDP requires the entire MDP value function, and can be viewed as a voting system [67].

Given a belief over discrete states, each state votes on actions. The number of votes a state

si can cast is proportional to the probability that si is the true state. si casts its allotted

votes by voting on actions in proportion to their MDP value from state si. After voting,

the agent takes the action with the most votes.

QMDP effectively assumes that all uncertainty will disappear after it takes its action. Indeed,

it would be optimal if this assumption were true [24]. It can fail however when uncertainty is

large, and unlikely to disappear after a single action. In highly uncertain scenarios, QMDP

will take an action that is reasonable (in terms of reward) in most states. If this action does

not resolve uncertainty, QMDP will continue to take it forever.

Heuristics Which Can Act to Resolve Uncertainty

The problem with heuristics discussed so far is that they only ever act to seek reward,

possibly taking into consideration their current uncertainty and the uncertainty of their

actions. Unfortunately, they will never act to decrease their future uncertainty. This kind

of behaviour can be extremely important for an agent which is to operate robustly.
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Action entropy is an example of a heuristic which can act to reduce uncertainty [24]. It

switches between two distinct modes: seeking reward and seeking information. Recognising

that uncertainty is problematic only when it introduces uncertainty about the appropri-

ate action, action entropy uses the belief-optimality distribution as its switching criterion.

When the entropy of this distribution is above a threshold, and therefore the agent is un-

certain which action to take, action entropy takes the action which will best reduce its

belief uncertainty over a one-step horizon. At other times, it follows one of the MDP-based

heuristics.

Coastal navigation plans a fixed path, but considers the quality of localisation along that

path [93]. It begins by calculating the information content of each state, based on the extent

to which an observation from that state would modify a fixed prior. It then assigns a cost

to each state as a weighted sum of the information-based cost and a goal-related cost.

These uncertainty-aware heuristics can be an improvement over simpler heuristics, but have

shortcomings. Firstly, they are unable to make longer-term plans, reasoning about how

uncertainty will evolve over the course of a plan. Secondly, they rely on a human designer

to decide on the importance of certainty. This is a difficult parameter to specify, especially

because it is not constant for a given problem or environment. Sometimes uncertainty

is not problematic: uncertainty is undesirable if and only if it prevents an agent from

achieving its aim. Similarly, sometimes an agent may be forced to persist with a high level

of uncertainty, in a portion of the belief-space in which uncertainty-reducing actions are

ineffective. In contrast, the full POMDP solution provides the optimal balance, seamlessly

integrating information gathering and goal-directed behaviour, and reasoning about belief

propagation over a significant time horizon.

2.7.2 Policy Iteration

This document focusses on value-based approaches, which attempt to find a value function

over belief-space, from which a policy can be extracted. Rather than representing policies

implicitly with a value function, an alternative is to represent policies explicitly and search

the policy space directly. Given a representation for policies, policy iteration alternates

between evaluating a candidate policy and producing a new candidate by modifying that

policy. There is an equivalence between the two approaches: where value iteration extracts
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a policy from a converged value function, policy iteration calculates a value function from

a policy during each policy evaluation step.

Hansen shows how policies can be represented as finite state machines (FSMs) [52]. Each

node in the FSM dictates a particular action, while each arc corresponds to a particular

observation. Each step of policy improvement involves modifying the FSM by adding and

removing nodes, and changing the actions associated with nodes (which changes the suc-

cessor nodes associated with observations). Modifications are based on exact updates, and

hence convergence is guaranteed. Compared to exact value iteration, results show that this

approach converges in fewer iterations. However, as with exact value iteration, it fails to

scale to problems with more than a handful of states.

To improve scalability, a number of approximate approaches search for good policies within

some restricted class. By selecting a smoothly parameterised policy class, gradient-based

policy search can be applied directly to problems with continuous state-spaces, but can

suffer from problems of local optima and low-gradient plateaus [76][124][8][77][61][1][72].

Ng et al. suggest the use of reward shaping for escaping low-gradient plateaus [76], however

this requires the application of some domain knowledge. Bounded Policy Iteration [91]

utilises a strategy for escaping local optima, while keeping policies simple. It uses gradient

ascent to optimise policies represented as FSMs of a fixed size. When a local optimum is

detected, extra nodes are added to allow the controller to break out of that optimum. Belief-

based Stochastic Local Search [18] proposes another method for avoiding local optima. It

alternates between gradient-based optimisation of a fixed-size FSM and FSM expansion by

adding nodes corresponding to good but potentially un-reachable beliefs.

Policy iteration has shown strong promise. Its direct applicability to problems with large and

continuous state spaces has made it successful in real-world applications such as helicopter

control [6]. For the kinds of problems considered in this thesis, however, it is unclear whether

a relatively simple controller will be capable of making the long term plans required for robot

navigation.

2.7.3 Forward Search

The value-iteration-based approaches discussed so far work backwards in time. Each itera-

tion assumes a value function estimate in the future. This is used to create a value function
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Figure 2.9: A POMDP viewed as a game-tree, starting from belief I. Circles represent
nodes from which the agent chooses a value-maximising action from one of n = |U | choices.
Squares represent nodes from which the environment probabilistically chooses one of m =
|Z| observations. The value of each node is based on the rewards associated with belief-
action transitions and the estimated values of the unexpanded leaf nodes.

estimate for the present. Since this approach is generally both time-consuming and valid

for the entire belief-space, it lends itself to offline computation.

In contrast, a number of POMDP solution algorithms search forwards in time, starting

from the current belief [47][15][123][32][71][62][81]. The POMDP can be viewed as a game

which alternates between the agent selecting an action and nature selecting an observation.

A traditional approach to maximising performance in turn-based games is to represent the

game as a tree [95]. Figure 2.9 depicts such a tree applied to the POMDP problem: circles

represent nodes from which the agent selects an action, and squares represent nodes from

which nature probabilistically selects an observation. The value of an action node involves

a maximisation over the values of its children, where the value of an observation node

involves an expectation. Given a heuristic to estimate the values of the unexpanded leaf

nodes of the tree, a naive approach to solving the POMDP is brute-force search of this tree,

expanding every action in a breadth-first order. Since the game-tree is valid only for the

set of reachable beliefs from a known starting belief, this approach lends itself to online

computation.

Relative to methods based on value iteration, forward search has a number of advantages.

It requires no offline processing step, and can adapt to changes in the environment so long

as the model is also updated [81]. For discrete actions and observations, a continuous

belief-space does not present any particular problem because a value function needn’t be
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represented over the entire belief space, but rather the set of reachable beliefs.

The limiting factor for forward search is that, at least for naive breadth-first search, the

complexity is exponential in the planning horizon. More specifically, it scales with (|U ||Z|)d

where d is the depth to which the tree is searched. This approach is therefore unlikely to

scale to problems which require an agent to make long-term plans. Kearns et al. reduce

the dependence on |Z| by calculating the expectation over observations by sampling rather

than complete enumeration [62]. The computational complexity can be further reduced by

scaling down the number of samples for calculations further down the tree, which have less

effect on the topmost values due to the discount factor γ.

A number of authors reduce the computational complexity by expanding actions in a more

appropriate order, using a search algorithm such as AO∗ [78]. For AO∗ to be effective, a

good heuristic is required to estimate the value of un-expanded nodes. Example heuristics

include problem-specific heuristics [81], and heuristics based on the solution of the under-

lying MDP [122][123][15].

An interesting approach to developing a heuristic is to use value iteration. Davies et al.

calculate a coarse value function for the entire belief-space using value iteration [32]. This is

then used to guide forward search, which refines the value function for the set of reachable

beliefs. While the coarse value function may not provide AO∗ with an admissible heuristic

(i.e. one which always over-estimates the value), Davies et al. point out that an accurate but

inadmissible heuristic is likely to provide better performance than an admissible heuristic

with very loose bounds. A related approach is real-time dynamic programming, which

amends the value function online, based on received rewards [15][47].

While this review has focussed on game-tree search for POMDPs, a more general and

detailed review of game-tree search in AI problems is presented in Chapter 7. Chapter 7

also shows how forward planning can be incorporated into the POMDP solution method

advocated in this thesis, and presents experimental results evaluating its effectiveness.

2.7.4 Hierarchical Approaches

Hierarchical approaches aim to decrease computational requirements by decomposing a large

POMDP into a set of sub-POMDPs. The cost of solving the constituent sub-POMDPs can

be significantly less than the cost of solving the original.
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Theocharous proposes a hierarchical model for robot navigation in an office environment [107].

A set of abstract states are posited, each of which encapsulates a set of underlying states.

A macro-action from an abstract state is equivalent to a set of actions through the un-

derlying concrete state-space. Theocharous shows that the entropy of beliefs over abstract

states is significantly less than the entropy over concrete states. Therefore the assumption

of complete observability of abstract states, and the application of heuristics based on this

assumption, is a better approximation than for concrete states.

While experiments show that planning is simplified by this hierarchical approach, Theocharous’s

environment is highly structured, consisting of corridors and junctions such that the inter-

faces between abstract states are tightly constrained. It is unclear how well the approach

will generalise to problems which exhibit less structure.

Rather than specifying a hierarchy of states, Pineau specifies a hierarchy of actions [87].

A set of abstract actions are posited, each of which consists of a number of sub-tasks.

This approach is much more applicable to problems involving discrete sets of actions; it is

unclear how to build such a hierarchy for the kinds of robot navigation problems which are

the subject of this thesis.

Foka specifies a hierarchy of both states and actions for robot navigation problem [41]. The

hierarchy of states is reminiscent of a quad-tree decomposition [96]. The discretisation of

both states and actions is finer at levels deeper in the hierarchy. Individual sub-POMDPs

are solved using an MDP-based heuristic. While extensive results of the computational

requirements are presented, the effects on performance are less clear.

The most serious problem limiting the application of hierarchical approaches is the require-

ment that the hierarchy be specified by a human designer, based on the perceived structure

of the particular domain. A method for automating this process would be extremely valu-

able.

2.7.5 POMDPs as Graphical Models

POMDPs are often described using graphical models [83], as shown in Figure 2.10. At step

k, the agent has access to the information I and must select an action u. Although the next

I-state I+ is a deterministic function of I, u and z+, knowledge of only I and u induces

the probability distribution over possible next I-states p(I+|I,u). The agent must make a
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Figure 2.10: Two time slices of the POMDP problem, represented as a graphical model.
Shaded nodes are observable, while the un-shaded state nodes are hidden. Rewards are
omitted for clarity. Representing the POMDP as a graphical model shows how a joint
probability distribution over all states, actions, observations, and I-states can be factored
into smaller conditional probability distributions.

decision based on this probability distribution over future I-states. After the decision has

been made, an observation is revealed and a single I-state is selected from the distribution.

Inference in graphical models is the process of fixing certain nodes (usually the observable

variables), then applying well-known inference algorithms to determine distributions over

variables of interest. Attias proposes a novel approach to using general graphical model

theory for solving POMDPs [5]. Actions are treated as random variables. If episodes are

of a maximum length of N time-steps, the N ’th state is fixed to be the goal state, and the

first observation is fixed. Assuming a prior distribution over the (assumed random) action

variables, standard inference algorithms can then be applied to find the Maximum A Priori

(MAP) sequence of actions. Extensions are also suggested for incorporating general reward

functions rather than assuming a single goal state. The central insight is that by casting

the problem as inference in a graphical model, powerful general inference algorithms can be

brought to bear.

Verma and Rao extend this idea, noting that inference can be performed more efficiently

by computing the MAP sequence of actions, states, and observations, rather than simply

actions [119]. As the computed sequence of actions is followed, the occurrence of an unex-

pected observation causes the agent to re-plan. While the approach has shown promising

results for small toy worlds, the cost of re-planning online may impede its application to

real-world problems.
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2.8 Summary

This chapter introduced the basic concepts and terminology required to discuss problems

involving decision making under partial observability. Other than in very special cases,

acting in continuous partially observable domains requires that a set of approximations be

made in order to simplify the problem to the point where a tractable solution is available.

A number of such simplifying assumptions were reviewed, along with the algorithms for

solving the resultant problems.

Despite the rich set of solution methods available, POMDP algorithms applied to robot

navigation problems have generally failed to scale beyond fairly unrealistic scenarios. The

following chapter introduces a solution algorithm based on the simplifying assumption that

belief distributions can be well approximated by Gaussians. We show that this is usually a

reasonable approximation for continuous navigation problems and, with the addition of the

improvements described in subsequent chapters, is capable of scaling to real-world problems.



Chapter 3

Parametric Information Spaces

The previous chapter reviewed related approaches, and laid the groundwork for the Para-

metric POMDP algorithm to be defined. We use PPOMDP to refer to a POMDP solution

algorithm which maps from Iprob to an I-space in which continuous distributions can be

represented with finite-length parameter vectors. The resultant continuous I-state MDP

can be solved using fitted value iteration. This chapter discusses the general methodology

in detail. Given a model of the world, the following steps are required:

1. Define the continuous I-state MDP:

(a) Choose a parametric representation (i.e. an I-space I)

(b) Define the models in that I-space:

• reward: rI = RI(I,u)

• transition: I+ = fI(I,u, z
+)

• observation: p(z+|I,u)

2. Use FVI to discretise the resultant I-state MDP:

• Choose a belief set B and weighting function λB

• Discretise the continuous I-state MDP, producing a discrete transition function

T and reward function R.

3. Solve the discrete I-state MDP.

49
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Figure 3.1: Overview of the relationships between the steps required to define, solve and
execute the PPOMDP algorithm. The outputs of each step are shown. Note that extra
arrows could be added: a possibility which is excluded here for simplicity is to interleave
MDP solving with belief set expansion, as described in Chapter 2.

Figure 3.1 illustrates the approach and the relationships between the steps.

While the methodology as described is relatively straightforward, the accuracy of the re-

sultant algorithm and its viability for application to real problems hinges on the particular

choices made for each of the items above. As pointed out in Chapter 2, despite not all

being presented as such, a number of algorithms from the literature are specific instances

of this general methodology, or at least close variants thereof, but each has very different

properties. The aim of this Chapter is to discuss some of the motivating factors for each

step in Figure 3.1, and to make and evaluate some simple choices. The sum of these simple
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choices defines the Basic-PPOMDP algorithm, which provides a baseline upon which the

remaining chapters of this thesis can improve. Each of the individual pieces which make up

Basic-PPOMDP has at least been suggested in the literature, although perhaps not in the

context of this methodology. Rather, the contribution of this chapter is to assemble several

such pieces in a novel configuration, to experimentally validate the result, and to compare

it against the state of the art.

Section 3.1 discusses factors influencing the choice of I-space. Section 3.2 argues for the

use of Igauss, explaining why this choice is likely to be successful for robot navigation

problems. Section 3.3 describes the choice of belief set and a weighting function based on

a Freudenthal triangulation. The algorithm for solving the POMDP, including derivation

of the I-space models and discretisation of the continuous I-state POMDP, is described

in Section 3.4, while Section 3.5 outlines how plans are executed. Section 3.6 describes a

relatively simple environment, BlockWorld, which is used in this and subsequent Chapters

to compare algorithms, and explains how Basic-PPOMDP, an MDP-based algorithm, and

the PERSEUS algorithm [103] are applied to that world. The results are presented and

compared in Section 3.7. PERSEUS was chosen for a comparison because it is a recent

algorithm which has shown superior scalability to previous gradient-based methods, and

has code available online. Section 3.8 concludes.

3.1 Choosing an Information Space

There are many options for parametric representations, including all the I-spaces deriving

from Iprob shown in Figure 2.5. Technically, Iprobdisc can be considered a parametric repre-

sentation of continuous distributions: the set of probability distributions which are piecewise

constant over the areas defined by each discrete state. PPOMDP applied to Iprobdisc is es-

sentially equivalent to the grid-based methods described in Section 2.5.3. Other parametric

representations include the coefficients of series approximations and (possibly mixtures of)

any statistical distribution. A good choice of parameterisation is one in which

1. the number of parameters is relatively small; and

2. the class of beliefs likely to occur during plan execution can be well approximated by

the chosen parametric form.
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The first requirement is important because the dimensionality of the belief space is equal to

the number of parameters. Assuming that likely beliefs are uniformly spread over the belief

space, the number of beliefs required to achieve a given belief density is exponential in the

number of dimensions: the so-called “curse of dimensionality”. In practice, of course, the

assumption of uniformly likely beliefs is not generally true. This idea is explored further in

Chapter 6.

The second requirement is clearly important. The POMDP agent’s plans will be useless if

they do not consider the types of beliefs which are likely to occur in practice.

These two requirements usually represent competing objectives. Choosing too complex a

parametric form, with many parameters, allows likely beliefs to be accurately approximated

but will result in onerous computational requirements. Choosing too simple a parametric

form will result in a fast planner, but one which produces poor plans. The following section

argues that a Gaussian approximation provides a good balance.

3.2 Gaussian Information Spaces

This section argues that Gaussians provide a good approximation for beliefs likely to occur

most often during robot navigation, while providing a representation sufficiently compact

to make planning tractable.

3.2.1 Quality of a Gaussian Approximation

Beliefs need to be represented and updated for two purposes: firstly for planning, and

secondly for online belief tracking (or localisation). This section argues for the use of a

Gaussian approximation for planning. It makes the following points, which will be justified

below:

1. Gaussians are good approximations for the kinds of beliefs which usually occur during

localisation;

2. in realistic long-term localisation problems, the period of time during which an agent

holds multimodal beliefs is likely to be relatively short; and
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3. isolated instances of multimodal beliefs are far more serious for localisation than for

planning.

Under these assumptions, Gaussians are a sensible choice. A disadvantage is their inability

to represent multimodal beliefs. We argue that it is critical for a localiser be able to

accurately track all beliefs which may occur, even if they are unlikely, because catastrophic

localisation failure can occur otherwise. In contrast, non-representable beliefs for a planner

may result in sub-optimal behaviour. Occasional sub-optimality can be justified if it results

in tractable planning which out-performs simpler heuristic planners.

Gaussians for Localisation

Gaussian distributions have proven to be a good model for probability distributions which

occur in practical robot navigation systems [35][7][57]. In a linear world with additive

white Gaussian process and observation noise models, the application of a Bayesian belief

transition function fI to a Gaussian prior induces a Gaussian posterior. In nonlinear worlds,

an approximation to the Bayesian update, based on linearisation about the mean, produces

a Gaussian approximation to the true posterior. This is the basis for Extended Kalman

Filter (EKF) based robot navigation algorithms, which have been implemented in many

real environments (see for example the survey paper [35]) and have been in use for many

years in industrial applications [34].

Occurrence of Multimodal Beliefs

We argue that multimodal beliefs are relatively infrequent in extended robot navigation

tasks. Robot navigation tasks are often initialised with a uniform (or at least broad) prior

belief. The usual course of events is that the localisation filter undergoes a period of

convergence to a unimodal belief, from which the robot proceeds to carry out its task.

There are therefore two scenarios in which multimodal beliefs can occur: during or after

this global localisation phase.

In any kind of long term robot navigation task, this initialisation phase represents a small

fraction of the entire time spent navigating. While the time required to complete the global

localisation problem depends on the environment, sensors, and actions, it can certainly be
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completed in less than five minutes in domains where robust localisation has been shown1.

For the real-world application domain introduced in Chapter 1, a particle filter requires

on the order of a few seconds to collapse to a single mode, as compared with a desired

operating duration of up to eight hours. This application will be developed in more detail

in Chapter 8.

The second scenario where multimodal beliefs can occur is after global localisation, due to

a unimodal belief diverging into separate modes. While the problem is slightly different

from localisation, the extensive literature on successful EKF-based SLAM [35] provides

evidence that this occurrence is relatively infrequent and short-lived. The SLAM problem

begins from a unimodal belief, and the EKF formulation requires that this belief remains

unimodal. One potential problem for SLAM is uncertain data association, which could

be handled by maintaining multimodal beliefs. The success of batch association methods

for EKF-based systems [7] is evidence that uncertain associations (and hence multimodal

beliefs) can be resolved quickly in most environments.

The Effects of Multimodal Beliefs

In order to guarantee a unimodal posterior, an EKF-based localiser must associate each

observation with exactly one candidate feature. If even a single observation is fused ac-

cording to an incorrect hypothesis, the filter can fail catastrophically [7][50]. Therefore in a

reasonably complicated environment, the ability to track multimodal beliefs can be critical.

Even if such beliefs are rare in practice, the fact that such a rare event can cause total

failure demands that the belief tracker be prepared.

In contrast, an occasional multimodal belief is not catastrophic in the same way for Gaussian-

based planning. Rather than total failure, the occurrence of multimodal beliefs may result

in behaviour which is occasionally sub-optimal. This can be justified if it results in planning

being tractable. A heuristic approach to dealing with multimodal beliefs may be helpful,

especially during global localisation. Chapter 9 discusses possible heuristics.

1Two examples from the literature quote the distance of travel required for the completion of global
localisation, using sonar sensors indoors, as 2m [44] and 55m [42]. The latter was around a featureless loop.
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Unimodal Non-Gaussian Beliefs

While we argue that multimodal beliefs are relatively rare, unimodal non-Gaussian beliefs

are more common. However, results will be presented to show that Gaussians provide a

sufficiently close approximation to allow good policies.

If the environment and sensor suite is such that the ability to represent multimodal beliefs

is deemed necessary, more complex functions can be approximated arbitrarily accurately by

mixtures of Gaussians [3][58]. The problem with this approach is that the dimensionality

of the sufficient statistics increases linearly with the number of Gaussians, and therefore

the number of belief samples required to achieve a given density increases exponentially,

as described previously. The potential to represent sums of Gaussians will be discussed in

Section 9.2.

3.2.2 Dimensionality of the Belief-Space

For a robot whose pose is described by a reasonably low-dimensional vector, the dimen-

sionality of the Gaussian describing its belief distribution will be fixed and relatively low.

This is in contrast to algorithms relying on a discretisation of the state-space, which have

a relatively high-dimensional representation which scales with the physical size of the envi-

ronment.

To illustrate, consider a one-dimensional toy POMDP problem. Discretising the space into

|S| cells requires the evaluation of a value function in the |S|-dimensional continuous space

of distributions over those cells. This becomes expensive for large |S|. Instead, one could

represent the distribution as a Gaussian with parameters (µ, σ), resulting in a problem of

computing a value function over a two-dimensional continuous space.

In terms of computation, this reduction in dimensionality comes at the cost of the inabil-

ity to apply gradient-based solution methods. However, FVI may be more appropriate for

robot navigation problems. It will be shown in Section 3.4.1 that FVI-based approaches

have certain advantages when faced with continuous high-dimensional observation spaces.

Assuming an FVI-based solution method is adopted, the reduction in dimensionality sug-

gests that a Gaussian approximation will be capable of scaling to physically larger state

spaces.
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3.3 Function Approximation and Belief Set Selection

As mentioned in Section 2.6, a trade-off exists between the computational cost of applying a

function approximator, and freedom in being able to choose the makeup of B. This chapter

accepts a rigid constraint on B, namely that the beliefs must lie on a fixed-resolution axis-

aligned grid. The function approximation scheme can therefore take advantage of the fact

that the belief-space can be split into a grid of boxes, with a datapoint on each corner of

each box. The constraint of a fixed-resolution grid will be relaxed in Chapter 6.

The function approximator should make two guarantees: firstly that the approximated value

at each corner is equal to the value explicitly stored by the datapoint at that corner, and

secondly that the interpolated surface is globally continuous. The second guarantee pre-

cludes discontinuous jumps at the junctions between boxes, for example. Two approaches

to implementing such a function approximator are multilinear interpolation and an inter-

polation based on a Freudenthal triangulation [74], discussed in Sections 3.3.1 and 3.3.2

respectively. Chapter 6 extends regular grids to arbitrary belief sets.

3.3.1 Multilinear Interpolation

In a d-dimensional space, each box has 2d corners. A multilinear interpolation estimates the

value of each point in the continuous belief-space as a weighted average of these 2d points.

In the one-dimensional case, multilinear interpolation is equivalent to linear interpolation.

In a d-dimensional space, a simple algorithm for performing multilinear interpolation is as

follows [31]:

1. pick an arbitrary axis;

2. project the query point along that axis to the two opposing faces of the box, producing

two new points;

3. perform two (d− 1)-dimensional multilinear interpolations to find the values of these

points, using the 2(d−1) points on each face;

4. set the value of the query point by performing a one-dimensional linear interpolation

between the interpolated values of those two points.
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The problem with multilinear interpolation is that it requires the examination of every one

of the 2d bounding datapoints.

3.3.2 Freudenthal Triangulation

A Freudenthal triangulation allows an interpolation to be performed in O(d log d) time,

examining only d+ 1 of the datapoints, while providing the two guarantees above (namely

global continuity and fitting the datapoints exactly). It is based on the division of each box

into d! hyper-triangles, or simplices. Figure 3.2 shows the Freudenthal triangulation of two

and three-dimensional spaces.

The triangulation of each box can be performed as follows. First, translate and scale

the box such that it is the unit hypercube, with diagonally opposite corners lying on

(x1, x2, . . . , xd) = (0, 0, . . . , 0) and (1, 1, . . . , 1). Second, consider all possible paths from

(0, 0, . . . , 0) to (1, 1, . . . , 1) along the (axis-aligned) edges of the box. There are d! such

paths, each consisting of d + 1 points. The convex hull of each path defines one of the d!

hyper-triangles making up the triangulation. Note that each hyper-triangle corresponds to

one possible permutation p of (1, 2, . . . , d), and bounds the set of points satisfying

0 ≤ xp(1) ≤ xp(2) ≤ · · · ≤ xp(d) ≤ 1 (3.1)

In other words, each hyper-triangle is defined by a permutation of the order in which

dimensions are traversed in paths between opposing corners, and bounds the set of points

whose coordinates obey a particular inequality relationship. Figure 3.2(a) illustrates this

with a two-dimensional example. Finally, re-scale and translate the set of hyper-triangles

back to their original positions.

It is possible to perform an interpolation using this triangulation without ever explicitly

generating all d! simplices [31]. Assuming a query point q defined by the coordinates

(x1, . . . , xd), this interpolation can be performed as follows:

1. translate and scale q’s bounding box such that it is the unit hypercube, transforming

the coordinates of q to (x′1, . . . , x
′
d);

2. sort the coordinates x′1 though x′d from largest to smallest. This identifies the bounding

simplex, or hyper-triangle (using Equation 3.1);
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(a) Freudenthal triangulation of a two-
dimensional space

(xG,3, ψ(xG,3))

(xG,1, ψ(xG,1)) (xG,2, ψ(xG,2))

(xG,4, ψ(xG,4))

(b) A query point q

(c) Freudenthal triangulation of a 3-dimensional hypercube

Figure 3.2: Freudenthal triangulation. (a) shows the Freudenthal triangulation of a two
dimensional space. The thick lines show the original hypercubes. Each hypercube contains
two hyper-triangles, or simplices, corresponding to the ordering of the two dimensions in
paths from the lower-left to upper-right corners. Focussing on the shaded hyper-cube, the
upper triangle (the path traverses y then x) contains all points for which y > x, while the
lower triangle (the path traverses x then y) contains all points for which x > y. The value of
the two-dimensional query point q shown in (b) can be expressed as a convex combination
of the values ψ(xG,1), ψ(xG,3), and ψ(xG,4), stored at xG,1, xG,3, and xG,4. (c) shows
how a three-dimensional hyper-cube is decomposed into 3! = 6 hyper-triangles (adapted
from [75]).
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3. produce a set of coefficients by expressing (x′1, . . . , x
′
d) as a convex combination of the

coordinates of the bounding simplex’s (d+ 1) corners; and

4. use the coefficients determined in the previous step as the weights for a weighted sum

of the data values stored at the corresponding corners.

For a detailed explanation of the third step, see [75]. The computational cost of this

algorithm is dominated by the sorting in the second step, which can be achieved in O(d log d)

time, a significant improvement on multilinear interpolation’s cost of O(2d).

3.4 Solving Parametric POMDPs

This section describes how to derive the I-state MDP models, and how to discretise and

solve the MDP. In order to give the high-level view first, it begins with the assumption

that the I-state MDP models are already defined. Section 3.4.1 will discuss the derivation

of these models, and Section 3.4.2 will analyse the computational complexity of solving

PPOMDPs.

Assuming the I-state MDP is defined, two steps are required to solve it:

1. Use FVI to discretise the continuous I-state MDP:

(a) Calculate the discrete transition function T

(b) Calculate the discrete reward function R

2. Solve the discrete I-state MDP.

The second step, of solving the discrete I-state MDP, is relatively simple. The POMDP

problems considered in this document give rise to discrete I-state MDPs small enough to

be represented explicitly, and hence can be solved straightforwardly using Algorithm 1. It

will be shown that this represents a small fraction of the total computational cost. The first

step, of converting to a discrete MDP, is much more demanding.

The fitted value iteration discussion from 2.5.1 defined the state transition probabilities

using Equation 2.55, reproduced here:

T (xG,i,u,x
+
G,j) =

∑

w+

p(w+|xG,i,u)λG(f(xG,i,u,w
+), j) (3.2)
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Applying this to an I-state MDP simply involves replacing x with I, r with rI, w with z, f

with fI, and the state set G with B:

T (IB,i,u, I
+
B,j) =

∑

z+

p(z+|IB,i,u)λB(fI(IB,i,u, z
+), j) (3.3)

where T is an explicit table of transition probabilities representing p(I+
B|IB ,u), for each

I-state in B.

The discrete transition and reward functions can be calculated using Algorithms 2 and 3

respectively. Algorithm 2 can be seen as an agent exercising a mental simulator of the

world. For each belief IB in B, it resets the simulator to IB, then considers the actions and

observations. For each action-observation pair, it simulates the world forward one step to

see which other beliefs in B are (approximately) reachable, then resets the simulator back

to IB.

Algorithm 2 Discretising the transition function of a Parametric POMDP. This algorithm
outputs the discrete conditional probability table T , representing p(I+

B|IB,u), for all I-states
in B.

1 T (IB,u, I
+
B)← 0, ∀IB ∈ B, ∀u ∈ U, ∀I+

B ∈ B
2 foreach i ∈ 1 . . . |B|
3 foreach u ∈ U
4 foreach z+ ∈ Z
5 calculate the probability p(z+|IB,i,u)
6 calculate I+ ← fI(IB,i,u, z

+)
7 foreach j ∈ 1 . . . |B|
8 T (IB,i,u, I

+
B,j)← T (IB,i,u, I

+
B,j) + p(z+|IB,i,u)λB(I+, j)

9 end foreach j
10 end foreach z+

11 end foreach u
12 end foreach i

Algorithm 3 Discretising the reward function of a Parametric POMDP. This Algorithm
outputs the discrete reward function R for all I-states in B.

1 foreach i ∈ 1 . . . |B|
2 foreach u ∈ U
3 R(IB,i,u)← RI(IB,i,u)
4 end foreach u
5 end foreach i
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3.4.1 Deriving the I-State MDP

The implementation of Algorithms 2 and 3 requires the I-state reward, transition and ob-

servation functions. This Section describes the derivation of these functions and the com-

putational complexity of Algorithms 2 and 3.

Reward Function

The reward for the I-state I and action u, used in step 3 of Algorithm 3, can be calculated

by an integration over state-space:

RI(I,u) =

∫

x

p(x|I)R(x,u)dx (3.4)

In the absence of an analytic solution, this Equation can be evaluated using Monte Carlo

methods.

Transition Function

The I-state transition function, used in step 6, is in principal based on the Bayesian update

given in Equation 2.28. However, the constraint of remaining in the parametric I-space

means that some approximation to these Equations is required. Additionally, since step 6

is inside a loop that will be executed many times, ideally it should be possible to calculate

fI efficiently. In this Chapter, we take advantage of the specifics of the example problem to

implement an efficient fI, as described in Section 3.6.3. Chapter 4 describes a more general

approach.

Observation Function

In the case of large discrete or continuous observation spaces, a complete summation over

all possible observations in step 4 may not be possible. One possible solution, as suggested

by Roy [92], is to condition on the current and next state:

p(z+|IB,i,u) =

∫

x+

p(z+|x+,u)

∫

x

p(x+|x,u)p(x|IB,i) dxdx
+ (3.5)
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Equation 3.5 can be evaluated using Monte Carlo methods, as follows. First, sample a state

x from p(x|IB,i). Second, given the current state, sample a predicted state x+ from the

process model, p(x+|x,u). Third, given the predicted state, sample from the underlying

observation model p(z+|x+,u).

This approach produces a set of equally-likely observation samples, rather than a complete

enumeration of observations with different probabilities. Recognising this, and using N to

denote the number of observation samples, Algorithm 2 can be replaced with Algorithm 4,

for use with continuous or large discrete observation spaces.

Algorithm 4 This Algorithm represents a modification of Algorithm 2, for use with con-
tinuous or large discrete observation spaces. N denotes the number of observation samples.

1 T (IB,u, I
+
B)← 0, ∀IB ∈ B, ∀u ∈ U, ∀I+

B ∈ B
2 foreach i ∈ 1 . . . |B|
3 foreach u ∈ U
4 foreach n ∈ 1...N
5 sample a state x from p(x|IB,i)
6 sample a predicted state x+ from p(x+|x,u)
7 sample an observation z+ from p(z+|x+,u)
8 calculate I+ ← fI(IB,i,u, z

+)
9 foreach j ∈ 1 . . . |B|
10 T (IB,i,u, I

+
B,j)← T (IB,i,u, I

+
B,j) + 1

N λB(I+, j)
11 end foreach j
12 end foreach n
13 end foreach u
14 end foreach i

Conditioning on the set of likely states in this way has the effect of focussing computation

on the set of likely observations given the belief. This is in contrast to gradient-based

methods, which must define a set of per-state observation probabilities for a fixed global

set of observations (p(z+|s+,u) in Equation 2.37). Figure 2.6 makes the distinction clear:

the first step of the gradient-based approach uses the world model to generate α-vectors,

while particular beliefs are not exposed until a second step which selects α-vectors. This

represents both a strength and a weakness of gradient-based approaches. The linearity of

the value function means that α-vectors generalise over the belief-space, and hence FVI’s

iteration over beliefs is not required. However, in order to generalise over the entire belief-

space, conditioning on particular beliefs (and hence focussing on likely observations) is not

possible.
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3.4.2 Computational Complexity

The following discussion assumes that Algorithm 4 is used, hence the number of iterations

over observation-space is given by N . For a discrete observation-space, N can be replaced

by |Z|.

When analysing complexity, note that steps 9-11 of Algorithm 4 needn’t iterate over every

belief in B. Rather, they need iterate over only those for which λB(I+, j) is non-zero.

In other words, steps 9-11 need examine only the set of beliefs reachable from IB,i. If T

is sparse, this set will be much smaller than B. Therefore, let C(λB) denote the cost of

calculating the weighting function, and let |λB | denote the average number of non-zero

weightings returned. Letting C(fI) denote the complexity of the belief transition function

and C(RI) denote the complexity of the I-state reward function, the total computational

complexity of Algorithm 2 is

O
(
|B||U |N(C(fI) + C(λB) + |λB |)

)
+O(|B||U |C(RI)) (3.6)

Unless the reward function is particularly expensive, the complexity of discretising an I-

state MDP will be dominated by the first term, which generates T . If, in addition, it is

assumed that the cost of calculating the transition function is significantly larger than the

cost of calculating weights or updating T , this cost can be approximated by

O
(
|B||U |NC(fI)

)
(3.7)

Note that this complexity is only dependent on the size of the state-space through |B|, the

number of belief points required to cover that state-space.

In comparison, an update of a discrete gradient-based method with a point-based approxi-

mation has complexity

O(|Γ+||S|2|U ||Z|+ |Γ+||S||U ||Z||B|) (3.8)

(see Section 2.4.2). The dependence on |S|2 represents the cost of applying the transition

matrix T , and can often be closer to |S| with the use of sparse matrix methods. Regardless,

the important thing to note is that algorithms such as PBVI [86] and PERSEUS [103] scale

with the size of the state-space in addition to scaling with the number of beliefs required to
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cover that state-space. Section 3.7.2 will demonstrate the effect of this experimentally by

comparing PPOMDP planning against PERSEUS on progressively larger state-spaces.

3.5 Plan Execution

Plan execution requires two components: belief tracking and action selection. While a

belief transition function fI is required to perform belief updates during planning, there

is no reason in principle why online belief tracking should be performed with the same

function. In fact, there may be good reasons to use a different algorithm. fI operates

entirely in a particular I-space, which was chosen for the reasons outlined in Section 3.2.

Considerations such as the number of parameters are important for planning, but of minor

importance for online belief tracking. A better approach may be to track beliefs online in a

more complicated I-space (such as the space of sums of Gaussians), mapping to the closest

belief in the planning I-space whenever a decision is required.

Even when the planning and online belief-tracking I-spaces are identical, the efficiency

concerns of the online tracker are different from the planner. It may be appropriate to

make different approximations in the two scenarios. For the BlockWorld problem which will

be presented in Section 3.6, however, the same belief transition function is used for both

planning and belief tracking. In Chapter 8, when executing plans in a real environment, a

more sophisticated belief tracker is used.

Actions are selected during plan execution based on the value function. The value function

gives the expected discounted cumulative reward, over an infinite horizon, for every possible

belief. Armed with a value function, an agent need not plan ahead when encountering a

belief online, since that value function implicitly encodes the results of prior planning.

Instead, it is sufficient to simply ‘surf’ the value function with a one-step lookahead. That

is, it is sufficient from belief I to apply the policy

πI(I) = arg max
u

RI(I,u) + γE
z+

[
V (fI(I,u, z

+))
]

(3.9)

Equation 3.9 entails some online computational cost, since the agent must calculate the

belief transition function |U ||Z| times in order to choose an action. A cheaper alternative is

to perform zero-step lookahead. Since value iteration requires a maximisation over actions
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(see Algorithm 1), one can store the maximising action for each belief and simply apply it

online during plan execution. The only complication arises from the fact that the belief-

space is continuous. In the context of PPOMDP, value iteration produces maximising

actions for every belief in B, but I may lie anywhere in the continuous belief-space. A

simple approach is to select the maximising action for the belief in B which is nearest to

the current belief (as determined by λB). Unless otherwise stated, this is the approach

taken for the PPOMDP algorithm throughout this document. The quality of control using

this zero-step lookahead, as compared to one-step lookahead, or even n-step lookahead as

suggested in Section 2.7.3, will be discussed in detail in Chapter 7.

3.6 BlockWorld: A Simple Continuous Navigation Problem

Since many of the benchmark POMDP problems from the literature assume a discrete

state space, comparison against the state of the art is difficult. Rather than invent an

entirely new problem, a comparison is performed by modifying the continuous navigation

problem to which the PERSEUS algorithm was applied in [103]. Section 3.6.1 describes

the rules of BlockWorld, then Sections 3.6.2 and 3.6.3 outline the application of three

planning algorithms to those rules: PPOMDP, PERSEUS, and an MDP-based heuristic.

The performance of all three algorithms is evaluated using a simulator which implements

the continuous version of the world defined in Section 3.6.1.

3.6.1 The Rules of BlockWorld

The continuous state space is the 20m×10m hallway shown in Figure 3.3. The action space

of the simulated robot is the continuous set of (d, θ) pairs, where the travel distance d and

heading θ parameters are in the ranges [0,2] metres and (−π,π] radians respectively. In the

absence of obstacles, the transition function p(x+|x,u) is a Gaussian distribution whose

mean is determined by translating the previous pose d metres in the direction θ, and whose

standard deviation is given by 0.2× dI, where I in this case refers to the identity matrix. If

the path from the previous pose to the next pose would collide with an obstacle, the robot

remains stationary. For the purposes of calculating collisions, the robot is considered to be

a point mass.
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Figure 3.3: The basic continuous navigation environment: a 20m×10m hall, with obstacles
shown in black. The goal region is indicated by the 1m×1m dark cyan square in the central
open area. The robot, to the right of the hall, has four sensors which noisily detect the
ranges to obstacles in each of the four compass directions. The noisy outputs of the north
and south sensor ranges are shown. The 1m×1m grid shows the state space discretisation
used to evaluate the MDP and PERSEUS algorithms.

The robot is equipped with four range sensors, with one pointed in each of the four absolute

compass directions. Each sensor will detect an obstacle if it is within the sensor’s maximum

range of 2m. The range reported by the sensor is determined by a Gaussian distribution,

centred on the true range, with variance 0.5m. In addition, the robot has a collision sensor

which indicates whether or not the previous action was blocked by an obstacle.

The robot’s performance is evaluated in a series of episodes. Each episode begins from

a random valid state. The robot is given an initial belief with a variance in both the x

and y position estimate of 1m. The mean of this initial belief is sampled from a Gaussian

distribution, with a variance in x and y of 1m, centred on the initial state. The episode

ends after 100 actions have been taken or after the goal has been reached, whichever occurs

first. The goal region is the 1m×1m square area shown in Figure 3.3. The robot receives a

reward of +10 for an action which brings it to the goal, and −0.1 for any other action. The

reward attainable over an episode is therefore in the range [−10, 10]. All algorithms were

evaluated using the same continuous world simulator.

For all solution algorithms the action space is discretised. 33 actions are allowed: the

agent can choose from 16 headings spaced equally over the range (−π, π], combined with a

distance of either one or two metres. The 33rd action is (0.1, 0), allowing the robot to make

small (noisy) motions in the vicinity of the goal. The fineness of this discretisation should

allow an effective planner to generate a good policy.
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3.6.2 Discrete Solutions

Of the three solution algorithms (MDP, PERSEUS, and PPOMDP), this section describes

MDP and PERSEUS. To apply these solution algorithms, the state space was first parti-

tioned with a regular two-dimensional grid as in Figure 3.3. When discretising the observa-

tion space, the number of observations is equal to 2×4n+1 where the leading 2 is the number

of distinct outputs from the (binary) collision sensor, 4 is the number of range sensors, n

is the number of bins into which the range of each sensor is discretised, and the +1 in the

exponent accounts for the fact that the range sensors may sense no range. All experiments

used n = 1 (giving 32 discrete observations), which essentially meant ignoring the range

information. A finer discretisation would improve results, but at the cost of an exponential

increase in the number of observations and hence in running time. The validity of ignoring

the range information will be discussed shortly, in comparison with the parametric solution.

The discrete versions of the transition and observation functions, namely p(s+|s,u) and

p(z+|s+,u), were determined by sampling. For each discrete cell s and action u, 50 con-

tinuous state samples were drawn from a uniform distribution over the area of that cell.

For each continuous state sample, 5 samples were drawn from the distribution p(x+|x,u).

This procedure gives a continuous distribution p(x+|s,u) which was then mapped back

into discrete space, by counting the number of samples within each cell, to give p(s+|s,u).

p(z+|s+,u) was evaluated similarly. The reward for a state, R(s,u), is action-independent

and was determined by integrating the continuous reward function over the discrete state’s

area.

Discrete MDP Solution

The MDP version of the discretised problem is relatively simple to solve. The state is

assumed to be fully observable and equal to the maximum-likelihood state (this is technically

the MLS heuristic, as presented in Section 2.7.1). The observation probabilities are therefore

ignored for planning, but are still useful for tracking the discrete belief-state during plan

execution. The MDP policy π∗ can be found from the transition and reward matrices,

p(s+|s,u) and R(s,u), by value iteration performed using Algorithm 1. The running time

of the algorithm was measured by adding the CPU time spent calculating the transition

matrices to the time spent during value iteration.
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PERSEUS Solution

While the PERSEUS algorithm is described briefly in Section 2.4.2, readers are directed

to [103] for the detailed mechanics of the algorithm. Given the discrete transition, observa-

tion, and reward matrices described earlier in this section, the only remaining free parameter

is the number of belief points and the algorithm by which they are selected. 10000 belief

points were chosen by forward simulation of the model using random actions from random

initial conditions.

Again, running times were measured as the sum of the time spent calculating transition

matrices and the time spent during value iteration. The former was constant and relatively

small, taking 3.7 seconds for a 20×10 discretisation of the state space. Note that the time

spent establishing a belief set by forward simulation of the model is not included. This

is in contrast to subsequent chapters, in which the time spent establishing a belief set for

PPOMDP is included in overall running times.

3.6.3 Parametric Solution

Basic-PPOMDP represents beliefs as two-dimensional Gaussians with diagonal covariance

matrices, giving rise to a four-dimensional belief space (two for the mean, two for the

diagonal covariance matrix). Belief points were chosen on a regular grid. The means of the

belief points were chosen on a 21×11 grid, while the diagonal elements of the covariance

matrix were discretised into six levels from 0.1 to 4.0 inclusive, giving a total of 8316 belief

points. Linear interpolation using a Freudenthal triangulation was chosen as a function

approximation scheme, as described in Section 3.3.

The belief transition function fI(I,u, z
+) was relatively simple. If the collision sensor does

not register a collision, the mean is shifted and the covariance expanded according to the

transition function described earlier in this section. When introducing range information

from one of the four range sensors, the problem is treated as two de-coupled one-dimensional

estimation problems. For each sensor, a reading can only have come from one of four known

features in the world: the edge of one of the three obstacles or the far wall. After solving a

relatively simple data association problem, the range can be viewed as a direct observation

of the robot’s position in one dimension. The robot’s mean µR and uncertainty σ2
R in the
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dimension along which the sensor can sense is updated using

µR′ = (σ2
R + σ2

S)−1(µRσ
2
S + µSσ

2
R) (3.10)

σ2
R′ = (σ2

R + σ2
S)−1(σ2

Rσ
2
S) (3.11)

where µS is the robot’s position as estimated by the sensor and σ2
S is the sensor’s variance.

This sensor update scheme clearly ignores some information, since an observation of one of

the central obstacles with the north-pointing sensor should constrain the distribution over

east-west poses, and a missing observation should confer some information. However it is

not entirely clear how to incorporate this information while preserving the Gaussian form

and the efficiency of the update, and the update as described is a reasonable approximation

most of the time. Section 3.7 shows an example where the sub-optimality of the belief

update function results in the robot failing to reach the goal.

In order to calculate T during planning, Equation 3.5 was evaluated using sampling, with

N = 50 samples. The sampling scheme may seem sparse, however the number of samples is

directly related to the computation time and an increase was found, empirically, to have little

effect on the quality of plans. It may seem unfair to take the actual values of the ranges into

account for the PPOMDP algorithm but not for the discrete versions. However, as pointed

out in Section 3.4.1, this is due to a fundamental difference between the algorithms: the

discrete versions must calculate the effects of observations without reference to any specific

belief point, and therefore fix a set of globally representative observations. Accounting for

different ranges would cause an exponential expansion in the size of this set, and therefore

in computational requirements. In contrast, the PPOMDP algorithm can choose a different

set of representative observations for every belief point considered.

Finally, the reward function, RI(I,u), is independent of the action. It is

RI(I,u) = rgG+ rḡ(1−G) (3.12)

where rg = 10 is the reward for reaching the goal, rḡ = −0.1 is the reward associated

with any other state, and G is the volume integral of the belief distribution over the goal,

evaluated by sampling.
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PPOMDP PERSEUS MDP

Number of Discrete States n/a 200 200
Number of Discrete Beliefs 8316 10000 n/a
Number of Discrete Actions 33 33 33

Table 3.1: A summary of the parameters used for the three algorithms.

Of the steps involved in generating the Basic-PPOMDP solution, the computational cost

of evaluating Algorithm 4, involving repeated application of the belief transition function,

dominates. This highlights the need for an efficient belief transition function. Actual value

iteration consumed only 3% of the total running time, with discretisation of the MDP

requiring the majority. This is in contrast to the PERSEUS algorithm, whose running time

is dominated by value iteration.

3.6.4 Parameter Summary

The parameter settings are summarised in Table 3.1. 200 states and 10000 beliefs were

chosen for PERSEUS because these numbers were used for the original problem from which

BlockWorld is derived [103]. While the original problem selected states by clustering train-

ing data, states were selected on a regular grid in this problem for simplicity. PPOMDP’s

discretisation of the belief-space in x and y was chosen to match the discretisation of the

state-space used for PERSEUS. The discretisation of the variances was chosen to give

PPOMDP and PERSEUS a similar number of beliefs.

The discretisation of the observation space cannot be compared directly. As explained

in Section 3.4.1, PERSEUS’s discretisation of the observation-space must be fixed before

running the algorithm, whereas PPOMDP can sample observations based on each belief.

3.7 Basic BlockWorld Experiments

The algorithms were compared in two scenarios. In the first, the standard BlockWorld

problem from Section 3.6.1 was solved. In the second the environment from Figure 3.3 was

expanded to test scalability with the size of the state space. All results in this thesis were

produced on the same 2.0GHz Pentium M laptop with 1Gb of RAM.
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Experimentation showed that the results are particularly sensitive to the precise location of

the goal. If the discrete states (or the means of discrete belief points) happen to be aligned

with the goal region, the problem is significantly simplified. All comparisons were therefore

performed under four conditions: with the centre of the goal located at (8, 7), (8.5, 7),

(8, 7.5) and (8.5, 7.5). The first location is perfectly aligned with the discrete state-space,

the last is perfectly mis-aligned, while the other two are aligned in one dimension.

3.7.1 Comparison in the Standard World

Results on the standard world are shown in Figures 3.4 and 3.5. For PERSEUS, the figures

show how the policy improves over time. This is done by remembering the intermediate

value functions generated at each stage of value iteration, and evaluating a policy based

on each one. This is possible because PERSEUS’s running time is dominated by the value

iteration process. In contrast, value iteration represents a small component of the running

times of MDP and PPOMDP. For these algorithms, the quality of plans undergoes a single

step change: no plan is available before value iteration commences, and the time between

the beginning of value iteration and its convergence is minimal. Therefore Figures 3.4

and 3.5 show only a single datapoint for MDP and PPOMDP.

Figure 3.4 shows the CPU time required for each algorithm to calculate a value function

versus the mean reward attained using the policy based on that value function. The figure

shows that both PPOMDP and PERSEUS are capable of producing reasonable plans, and

that they are able to out-perform MDP by considering and planning for the uncertainty in

their state estimate. The time required for PERSEUS to produce a good plan is approxi-

mately the same as the time required for Basic-PPOMDP to generate its plan. It should

be noted however that the algorithms’ running times are subject to the details of their

implementations.

Closer examination of the results showed that the agent tends to either reach the goal fairly

quickly or become trapped in a state from which it cannot escape for the entire episode.

Figure 3.5 shows, for each algorithm, the percentage of episodes in which the robot was

unable to reach the goal.

The major cause of becoming trapped for the Basic-PPOMDP agent is the sub-optimality

of the belief transition function. Figure 3.6 shows an example. Given the pictured belief,
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(a) Goal centred on (8,7)
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(b) Goal centred on (8,7.5)
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(c) Goal centred on (8.5,7)
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(d) Goal centred on (8.5,7.5)

Figure 3.4: Comparison of the three algorithms using the environment from Figure 3.3,
showing the mean total reward per episode versus the time required to calculate a pol-
icy. Each algorithm is tested under the four slightly different goal configurations. Since
PERSEUS’s running time is dominated by value iteration and a valid plan is available af-
ter each iteration, the mean reward attained by every plan is shown. Since the running
time of both MDP and PPOMDP is dominated by the pre-computation stage, only a sin-
gle datapoint, indicated by the marker, is shown for each. The horizontal lines through
these markers are simply to facilitate comparison. Each datapoint is the average of 10000
episodes.

the agent tries to move north-west towards the goal. However since the true state is in the

tail of the belief distribution, behind an obstacle, the action is almost certain to fail. Since

neither the range sensor nor the collision sensor causes the agent to update its belief along

the x-axis, the agent will continue to try exactly the same action.
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(b) Goal centred on (8,7.5)
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(c) Goal centred on (8.5,7)
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(d) Goal centred on (8.5,7.5)

Figure 3.5: Comparison of the three algorithms using the environment from Figure 3.3,
showing the percentage of episodes in which the robot failed to reach the goal, versus the
time required to calculate a policy. The four plots show the four different goal configura-
tions. As for Figure 3.4, results for all of PERSEUS’s intermediate plans are shown. Each
datapoint is the average of 10000 episodes.

Figure 3.6: A case in which Basic-PPOMDP fails. The belief is indicated by the covariance
ellipse with the blue robot at its centre. The true state is indicated by the cyan robot. If
the action is blocked by an obstacle, the belief will be updated only along the y-axis.
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Figure 3.7: An expanded version of the world from Figure 3.3, of size 40m×20m, produced
by tiling 2×2 copies of the original world.

3.7.2 Comparison in a Tiled World

To evaluate scalability with respect to the size of the state space, the environment was

enlarged by “tiling” the world as illustrated in Figure 3.7. Due to memory restrictions, the

action-space was reduced to only nine actions. Eight were at 2m, spread uniformly over

heading-space, while the ninth was (0.1, 0). Only one goal configuration was tested, centred

on (8, 7). While more actions and goals would provide better estimates of the rewards, the

aim of the experiment was to test scalability. When using an n × m tiling the number

of belief points per tile was held constant, giving a total of 10000mn for PERSEUS and

8316mn for Basic-PPOMDP. For the discrete algorithms, the size of a discrete cell remained

constant. The number of discrete cells was therefore 200mn.

The results are shown in Figure 3.8. As the number of tiles is increased, the mean reward

of all algorithms decreases. This is expected since the world is physically larger and it

therefore takes longer to reach the goal, even for an optimal plan.

The time taken for PPOMDP to generate a plan is both small and linear in the number of

belief points (and therefore the number of tiles). While PERSEUS can eventually generate

a superior plan for larger worlds, the time required to do so increases rapidly with the

number of tiles. While the planning time can be reduced by using a coarser discretisation

of the state space, this is likely to result in decreased rewards.
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3.8 Summary

This chapter introduced the Basic-PPOMDP algorithm. Section 3.2 argued for planning in

the space of Gaussian approximations to arbitrary continuous beliefs, on the basis that they

are a good approximation for beliefs which are usually encountered during plan execution,

while requiring a relatively small number of sufficient statistics.

The simple weighting function introduced in Section 3.3 uses a Freudenthal triangulation.

This allows the examination of far fewer beliefs than a scheme such as multilinear inter-

polation, however both schemes require that the set of beliefs B lie on a regular grid over

belief-space.

Section 3.4 described how to derive the continuous I-state MDP model, and how to use the

belief set and weighting function to discretise that model. The algorithm for solving that

discrete model was given in Chapter 2. Section 3.5 showed how an agent can select actions

when given this solution.

BlockWorld was introduced in Section 3.6. This is a simulated navigation problem on which

various algorithms can be compared. It was shown how Basic-PPOMDP and two other

algorithms, MDP (which ignores uncertainty) and PERSEUS (a discrete POMDP solution

algorithm) can be applied to BlockWorld. A comparison showed that Basic-PPOMDP

produced good results when compared to MDP, and reasonable results when compared

to PERSEUS. The size of the world was then increased, showing how the planning time

required by Basic-PPOMDP scales linearly with the physical size of the world, unlike the

time required by PERSEUS.

The following chapters make incremental improvements to Basic-PPOMDP, with each im-

provement being validated using BlockWorld. The first such improvement, discussed in

Chapter 4, addresses problems with Basic-PPOMDP’s belief transition function, as high-

lighted in Section 3.7.1.
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Figure 3.8: Comparison of the PPOMDP and PERSEUS algorithms for different sized
worlds. For clarity, results are shown for only one goal configuration. Each datapoint is
the average of 10000 episodes. Note that the results for a 1×1 tiling do not match previous
results due to the different discretisation of the action space.



Chapter 4

An Improved Belief Transition

Function

While the Basic-PPOMDP algorithm performed adequately on the versions of BlockWorld

presented in Chapter 3, it has serious deficiencies. These deficiencies are highlighted in

Section 4.1, by experimentally applying Basic-PPOMDP to progressively more challenging

versions of BlockWorld, showing how performance degrades. The reasons for this degrada-

tion are identified in Section 4.2.

Section 4.3 proposes a solution for this problem. It begins by presenting a slightly different

view of the PPOMDP algorithm presented in the previous chapter. For each belief point

and action, the algorithm presented in the previous chapter can be seen as generating a dis-

tribution over posteriors, then approximating that distribution with a set of discrete I-state

transitions. Section 4.3.1 presents an improved approach to generating those posteriors,

based on particle filtering. While this approach is likely to be more accurate, certain issues

are introduced. Firstly, it introduces certain stochastic effects which will be discussed in

Section 4.3.2. Secondly, the new belief transition function is not particularly efficient. Sec-

tion 4.4 presents two approaches to improving its efficiency, based on re-using predictions

and re-using likelihood calculations.

Section 4.6 performs an experimental comparison of the improved algorithm with the al-

gorithms evaluated in the previous chapter (MDP, PERSEUS, and Basic-PPOMDP). It

shows that planning accuracy is improved significantly over Basic-PPOMDP, while the

77
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Figure 4.1: A version of the original BlockWorld from Figure 3.3, but with obstacles con-
tracted to reduce obstacle density, thereby making navigation more difficult.

time required for planning is approximately the same. The computational requirements

and scalability of the algorithm are analysed in Section 4.5, and a comparison is made with

FVI-based algorithms which rely on an underlying discrete representation. It is shown that,

in contrast to algorithms which rely on an underlying discretisation, the cost of the belief

transition function proposed in this chapter is independent from the size of the state-space,

and hence the algorithm is applicable to large, realistic planning problems. Section 4.7

concludes.

4.1 Experiments on Different Worlds

This section demonstrates how Basic-PPOMDP’s performance degrades in more challenging

environments. Experiments were carried out in four similar worlds:

1. the original 20× 10m BlockWorld from Chapter 3;

2. a modified 20× 10m BlockWorld with smaller obstacles, as shown in Figure 4.1;

3. a larger version of the original BlockWorld, created by scaling Figure 3.3 to 30×15m;

and

4. a 30× 15m version of the world in Figure 4.1.

Intuitively, the four worlds, in the order listed, should increase in navigational difficulty.

Both increasing the size of the world and decreasing the density of obstacles create larger

open spaces, making it more difficult for the agent to reach the goal with any certainty.
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Figure 4.2: Performance of the MDP and Basic-PPOMDP algorithms on four worlds of
approximately increasing navigational difficulty. Each datapoint is the mean of four trials
(using the four goal configurations), where each trial is the mean of 1000 episodes.

As in Chapter 3, each world was tested with four goal configurations separated by 0.5m.

The lower-left goal configuration was set to (8, 7) for the smaller worlds and (10, 9) for the

larger worlds. For a world of size x × y, MDP and PERSEUS partitioned the state-space

into an x× y grid, while variants of the PPOMDP algorithm used belief points with means

on an x+ 1× y + 1 grid (in the centres of the cells used by the discrete algorithms).

Results

The results of comparing Basic-PPOMDP against MDP are shown in Figure 4.2. While

Basic-PPOMDP performs reasonably on smaller worlds, its performance clearly degrades

as the environment becomes more challenging. The most common cause of failure on larger

worlds is that the Basic-PPOMDP agent becomes trapped in cycles. From a well-localised

position near an obstacle, the agent moves into a more open space near the goal. Out

of sensor range of the obstacle, its uncertainty grows. Before reaching the vicinity of the

goal, however, it turns back, returning to the obstacle in order to improve its localisation.

Cycling in this way for the entire episode, it never reaches the goal. The following section



CHAPTER 4. AN IMPROVED BELIEF TRANSITION FUNCTION 80

Figure 4.3: A case in which Basic-PPOMDP fails. The belief is indicated by the covariance
ellipse with the blue robot at its centre. The true state is indicated by the cyan robot. If
the action is blocked by an obstacle, the belief will be updated only along the y-axis.

will show how this behaviour results from Basic-PPOMDP’s inability to accurately predict

the likelihood of future observations.

4.2 The Requirement to Anticipate Future Observations

Basic-PPOMDP’s parametric belief transition function, presented in Section 3.6.3, is fast

but unable to anticipate future observations with sufficient accuracy. This has two obvious

manifestations: when the agent becomes trapped in a cycle near an obstacle, as described

in the previous section, and when the agent becomes trapped behind an obstacle, as shown

in Figure 3.6 and reproduced in Figure 4.3.

The problem when trapped behind an obstacle is the clearer of the two. From the belief

shown in Figure 4.3, a move towards the north-west is appropriate. Based on the belief,

the chances of a collision are low. However, due to the fact that the true state is in the

tail of the distribution, the move is in fact almost certain to fail. The agent will therefore

receive a positive observation from the collision sensor, plus range observations from the

north and south range sensors. Unfortunately, the sub-optimal belief transition function

cannot incorporate this information, and will update the belief only along the y-axis. In

other words, the belief will be approximately the same for the next iteration.

Since the agent predicts the likelihood of future observations purely based on its belief, it has

no way of knowing that the same thing is likely to happen on the next iteration. The agent

will therefore continue to take the same action, and the situation will persist forever. The

only way for the agent to realise that the previous collision implies an increased likelihood
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a

b

Goal

Figure 4.4: An example of the deficiencies of Basic-PPOMDP’s estimator. Uncertainty
ellipses are represented with dashed lines, and the border of the region from which the
walls can be sensed is indicated with a dotted line. Basic-PPOMDP considers the shaded
probability mass to be feasible in the absence of observations of the wall to the west, and
hence over-estimates the probability of such observations.

of future collisions is if the belief were updated to reflect the previous collision.

The cause for the agent becoming trapped in cycles is its inability to utilise negative in-

formation. In other words, it becomes trapped because it is unable to incorporate the

information conferred by an observation which was considered possible but did not occur.

Figure 4.4 illustrates an example. After becoming well localised at position a, the agent

moves towards the goal. Suppose its true path is directly from a to b. As the agent moves

outside sensor-range of the western wall, it will be unable to observe any obstacles. In the

absence of observations, the agent’s uncertainty will grow to a large, approximately circular

ellipse centred on b. Unfortunately this ellipse is a poor approximation to the belief which

would result from applying the full Bayesian belief update, given in Equation 2.28. To see

why the approximation is poor, consider the shaded probability mass in Figure 4.4, which

is within sensor-range of the western wall. This probability mass is invalid. If the true pose

were within that area, the western wall would have been observed. Since the wall was not

observed, the agent cannot be in that area.
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The result of this poor approximation is that the agent cannot accurately predict the

probabilities of future observations. As it continues to move towards b in Figure 4.4, it

over-estimates the probability of future observations of the western wall. If one were to

anthropomorphise the agent, one could say that by the time it reaches b, it considers itself

particularly unlucky to have moved so far but not observed the wall. It therefore decides

that the best strategy is to return to a in order to re-localise, before trying again in the

hope that next time it will not be so unlucky. Of course in reality it was not unlucky, it

just has a bad model.

The core of the problem is that the belief transition function picks and chooses which pieces

of information to apply, and which to ignore. Both observations of obstacles and non-

observations of obstacles potentially confer information, however the belief update function

incorporates only the former. More precisely, the strategy is to apply only those pieces

of information which result in a Gaussian posterior. While this is a common tactic in

EKF-based localisation or SLAM systems [35], the requirements for planning are more

stringent: in addition to being able to track its belief, a planning agent must be able to

accurately estimate the likelihood of future observations. Clearly then, PPOMDP requires

a belief transition function which is efficient, uses all available information, and produces a

Gaussian posterior. The following section attempts to provide this.

4.3 An Improved Belief Transition Function

For each belief and action, Algorithm 4 generates a set of discrete transition probabilities.

This can be broken into two distinct steps: a first which generates a distribution over

posteriors, and a second which uses the weighting function to map that distribution over

posteriors to a set of discrete transitions. Let ∆ denote a set of equally likely posterior

beliefs, and let ∆l to denote the l’th possible posterior. Algorithm 4 can then be replaced

by Algorithms 5 and 6, where Algorithm 5 calls Algorithm 6 to generate each ∆, then

translates that ∆ into a set of discrete transitions.

4.3.1 A Belief Transition Function Using Monte Carlo Methods

The problems identified in Section 4.2 stem from the fact that the belief transition function

fI, in step 6 of Algorithm 6, ignores certain types of information. The alternative proposed
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Algorithm 5 A different view of Algorithm 4. For each belief and action, first generate
a distribution over posteriors ∆, then translate those posteriors into discrete transition
probabilities.

1 T (IB,u, I
+
B)← 0, ∀IB ∈ B, ∀u ∈ U, ∀I+

B ∈ B
2 foreach i ∈ 1 . . . |B|
3 foreach u ∈ U
4 ∆← generateDistributionOverPosteriors(IB,i,u)
5 foreach l ∈ 1 . . . |∆|
6 foreach j ∈ 1 . . . |B|
7 T (IB,i,u, I

+
B,j)← T (IB,i,u, I

+
B,j) + 1

|∆|λB(∆l, j)
8 end foreach j
9 end foreach l
10 end foreach u
11 end foreach i

Algorithm 6 The version of generateDistributionOverPosteriors(I,u) used in Sec-
tion 3.4.1. N is a free parameter specifying the number of observation samples, and hence
the number of posteriors.

1 ∆← ∅
2 foreach n ∈ 1 . . . N
3 sample a state x from p(x|I)
4 sample a predicted state x+ from p(x+|x,u)
5 sample an observation z+ from p(z+|x+,u)
6 add the posterior I+ = fI(I,u, z

+) to ∆
7 end foreach n

in this section is to approximate fI using sequential Monte Carlo methods [2][4], which

have become popular for mobile robot localisation [110]. A distinct advantage of Monte

Carlo Localisation (MCL) is its ability to handle arbitrary process and observation models,

including the use of negative information and information which produces non-Gaussian

posteriors.

MCL involves using sampling to approximate the belief update given in Equations 2.26

and 2.28, repeated here:

I−prob(x
+) =

∫

x

p(x+|x,u)Iprob(x)dx (4.1)

I+
prob(x

+) = Cp(z+|x+,u)I−prob(x
+) (4.2)

where C is a normalising constant which ensures that I+
prob(x

+) integrates to one. Again,

Equations 4.1 and 4.2 have a prediction-correction form familiar in robotics: the first pre-
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dicts the belief forward according to the action, while the second corrects the belief using

the observation. Particle-based localisers usually perform Sampling Importance Resampling

(SIR) filtering [111]. This involves representing the prior with a weighted set of samples Q.

qj ∈ Q denotes the tuple < xj , wj >, where wj is the weighting of the j’th particle. The

prediction step samples a new set of predicted particles according to the process model,

while the correction step re-weights each particle according to the observation likelihood

function, producing Q+.

Applying SIR filtering to the belief transition operator fI involves two extra steps: mapping

from Igauss to a set of particles before the update, and mapping from the particle set back

to Igauss after the update. The steps involved are:

1. sample from the parametric representation I to produce a set of particles Q;

2. apply the action and observation, using Equations 4.1 and 4.2, to produce a new set

of samples Q+; then

3. estimate the parameters of the resultant parametric representation, I+, from Q+.

The final step, of mapping back to Igauss, is clearly an approximation since Q+ will not in

general be a true Gaussian. We will show that, at least for the problems considered in this

thesis, the approximation is sufficiently close to the truth to generate good policies while

keeping the dimensionality of the belief-space low.

Using this approach, Algorithm 7 can replace Algorithm 6 for generating ∆. Algorithm 7

requires the specification of one extra free parameter to define the number of particles

representing each distribution, denoted NQ.

Algorithm 7 consists of several distinct parts. Steps 3-5 produce a distribution over expected

observations, given the action and prior belief. Steps 7-10 swap representations, producing

a set of samples from the parametric representation. Steps 12-16 update the belief using

SIR filtering: step 13 predicts and step 14 corrects. Finally, steps 17-18 map back to a

parametric representation.

The Algorithm can also be seen to consist of two nested loops: a planner which makes use

of an estimator. Steps 3-5 and 17-18 involve forward prediction for planning: predicting

which observations are likely to arise for the given belief and action, and seeing which belief
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Algorithm 7 A version of generateDistributionOverPosteriors(I,u) which improves
on Algorithm 6, by using Monte Carlo methods to allow the incorporation of different kinds
of information. The outer loop produces samples in belief-space. The inner loops produce
samples in state-space. The purpose of steps 3-5 is simply to sample an observation, while
the purpose of steps 6-16 is to calculate the posterior belief resulting from that observation.

1 ∆← ∅
2 foreach n← 1 . . . N
3 sample a state x from p(x|I)
4 sample a next-state x+ from p(x+|x,u)
5 sample an observation z+ from p(z+|x+,u)
6 Q← ∅
7 foreach j ← 1 . . . NQ

8 sample a state xj from p(x|I)
9 add qj =< xj , wj > to Q, where wj = 1

NQ

10 end foreach j
11 Q+ ← ∅
12 foreach j ← 1 . . . NQ

13 sample a next-state x+
j from p(x+|xj ,u)

14 calculate the weight w+
j = p(z+|x+

j ,u)wj

15 add q+j =< x+
j , w

+
j > to Q+

16 end foreach j
17 calculate the mean µ and covariance Σ of Q+

18 add I+ =< µ,Σ > to ∆
19 end foreach n

results from each observation. This is implemented using the estimator in steps 6-16: given

a known prior, action, and observation, steps 6-16 calculate the resultant posterior belief.

Algorithm 7 is very similar to the core belief projection algorithm in [108]. The major

difference is that the input and output of Algorithm 7 are Gaussian distributions rather

than sets of particles.

4.3.2 Stochastic Effects

One consideration for Algorithm 7 is the effect of sampling from the parametric distribution

and re-estimating the parameters from those samples. Consider taking a one-dimensional

Gaussian, N (µ, σ2), sampling a set of particles Q from it, then re-estimating the parameters

of a new distribution, N (µ+, (σ+)2), from Q. The new parameters, µ+ and (σ+)2, can be

calculated using the estimators

µ̂(Q) =
∑

wixi (4.3)
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and

σ̂2(Q) =
s

s− 1

∑

[wi(xi − µ+)2] (4.4)

where s is the effective sample size, given by

s =
1

∑
(wi)2

(4.5)

µ+ and (σ+)2 can be considered to be random variables, given the non-deterministic nature

of Q. In general they are unlikely to match the originals exactly (technically the probability

is zero), however normalising the variance calculation by s
s−1 ensures that they are unbiased

estimates. This means that, for a number of random sample sets Q drawn from the original

distribution, the expected values of the estimates are equal to the originals:

E[(σ+)2|µ, σ2] =

∫

(σ+)2
(σ+)2p((σ+)2|µ, σ2)d(σ+)2 (4.6)

=

∫

Q

σ̂2(Q)p(Q|µ, σ2)dQ (4.7)

= σ2 (4.8)

and similarly,

E[µ+|µ, σ2] = µ (4.9)

However, while the estimates are unbiased, the distribution p((σ+)2|µ, σ2) is skew1. Fig-

ure 4.5 shows the distributions p((σ+)2|µ, σ2) and p(µ+|µ, σ2), evaluated numerically by

conditioning on Q as in Equation 4.7. Since p((σ+)2|µ, σ2) has a longer tail to the right,

more of the probability mass must lie below σ2 than above in order for Equation 4.8 to

hold. In other words, it is more likely that (σ+)2 will under-estimate σ2 than over-estimate

it, but over-estimates are likely to be further from the truth.

From the planner’s point of view, the estimator is used sequentially. That is, at each time

step a distribution is sampled, the samples are possibly modified, then a new distribution

is re-estimated and used as the input to the next iteration. Assuming no modification to

the samples, the symmetry of p(µ+|µ, σ2) means that, while µ+ undergoes a random walk

during repeated sequential re-estimations, the result is as likely to be too small as too large.

1For a discussion of the skewness of the likelihood p(Q|σ2), see Section 24.1 of [69].
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Figure 4.5: The distributions over (a) estimated mean, and (b) estimated variance, given
the mean and variance from the previous iteration. Distributions are evaluated by drawing
2×106 particle sets of size 10 from N (0, 1). Only 10 samples were used in order to make the
skewness of p((σ+)2|µ, σ2) clear. 56% of the probability mass of p((σ+)2|µ, σ2) lies below
σ2. p(µ+|µ, σ2) is symmetric.

The skewness of p((σ+)2|µ, σ2), however, means that the estimate of the variance is likely

to become gradually smaller. This is demonstrated in the simulation shown in Figure 4.6.

At each iteration of the simulation 200 samples are drawn from a Gaussian distribution.

A new Gaussian is then re-estimated from those samples to provide the input for the next

iteration. The simulation begins with the distribution N(0, 1).

In addition to the average behaviour of the estimator, the variation in its behaviour is
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Figure 4.6: 50 trials of a simulation where each iteration involves sampling from a Gaussian
distribution then re-estimating new parameters from those samples, showing the evolution
of the estimate of (a) the mean and (b) the variance. A sample size of 200 was used. The
estimated variance tends to drift downwards. Starting from a variance of 1, after 2000
iterations the mean estimated variance is 0.0078. The stabilisation of the estimate of the
mean is due to the fact that the variance is changing simultaneously. As the variance
becomes smaller, the mean becomes more stable. Note that the y-axis of plot (a) is linear,
while the y-axis of plot (b) is logarithmic.

of concern. If Algorithm 7 leads the planner to believe that certain action sequences are

likely to reduce its uncertainty, it has no way of knowing whether this is really the case,

or whether this is simply an artefact of the process of sampling and re-estimating. It will

produce bad plans, attempting to take advantage of the expected but unattainable reduction

in uncertainty.
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In an attempt to combat uncertainty under-estimates in both the average and worst case, we

multiply the estimated covariance matrix by the factor ω. For the BlockWorld experiments,

ω = 1.1 was used. This value is clearly too large to offset the fact that uncertainty decreases

in the average case, and too small to correct the absolute worst case, however it was found

empirically to produce reasonable results. The severity of these problems decreases with the

size of the sample set. Chapter 8 will discuss the use of PPOMDP in the application domain

introduced in Chapter 1. Since more samples are used for this more realistic problem, a

factor of ω = 1.0 was used.

4.4 Efficient Calculation of the Belief Transition Function

The previous section presented an algorithm for transitioning beliefs, capable of incorpo-

rating all available information. This section improves the efficiency of that algorithm by

re-using predictions and reducing likelihood calculations.

4.4.1 Re-use of Predictions

Algorithm 7 can be calculated more efficiently by noting that the process model p(x+|x,u)

is invoked in two places. The first (step 4) generates a predicted distribution from which

to sample observations. The second (step 12) generates a predicted distribution which is

re-weighted by an observation to produce a posterior.

Instead, the predicted distribution used to generate observations can be re-used for gen-

erating posteriors. Algorithm 8 modifies Algorithm 7 by using this idea. Note that this

introduces the requirement that the number of observation samples, and hence the number

of samples used to represent distributions over posteriors, be equal to the number of state

samples used to represent each posterior. If N denotes this number, the total number of

particle predictions in Algorithm 8 is N , compared with N(1 +NQ) in Algorithm 7.

To help clarify Algorithm 8, Figure 4.7 shows a simple example. An agent is navigating

in a one-dimensional world. It can localise by sensing the distance to the wall to its right.

The prior at time k is shown in Figure 4.7(a). Steps 3 and 4 of Algorithm 8 sample from

that prior (using only four samples) and predict according to the process model, as shown

in Figures 4.7(b) and (c) respectively. In step 5, noisy observations of the range to the
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Algorithm 8 A version of generateDistributionOverPosteriors(I,u) which extends
Algorithm 7 by re-using predictions. Steps 2-6 map the prior from a parametric represen-
tation to a set of samples, predict those samples forward, and generate a distribution over
observations. Steps 9-14 calculate the posterior, in parametric form, resulting from each
observation.
1 ∆← ∅
2 foreach i ∈ 1 . . . N
3 sample a state xi from p(x|I)
4 sample a next-state x+

i from p(x+|xi,u)
5 sample an observation z+

i from p(z+|x+
i ,u)

6 end foreach i
7 foreach i ∈ 1 . . . N
8 Q+ ← ∅
9 foreach j ∈ 1 . . . N
10 calculate the likelihood w+

j = p(z+
i |x+

j ,u)

11 add q+j =< x+
j , w

+
j > to Q+

12 end foreach j
13 calculate the mean µ and covariance Σ of Q+

14 add I+ =< µ,Σ > to ∆
15 end foreach i

wall are sampled from the observation model, as depicted in Figure 4.7(d). The set of

sampled observations is an approximation to the distribution over observations. For each

observation, steps 10-11 (Figure 4.7(e)) calculate an associated posterior by weighting the

particles according to the likelihood function. Finally, step 13 maps the posterior back into

parametric form, as shown in Figure 4.7(f).

Note that re-using the prediction in this way is likely to have a small effect on the resultant

posteriors. Strictly speaking, the set of particles used to generate the distribution over

observations and the set of particles used to calculate the posterior resulting from an obser-

vation should be independent. Using the same set of particles for both enforces a relation

between one particle and each observation. This effect can be avoided by omitting the

particle that generated the observation from the set of particles representing that posterior.

In practice however, for a large enough set of particles the effect should be negligible.

4.4.2 Reducing Likelihood Calculations

Steps 5 and 10 in Algorithm 8, which sample observations and calculate likelihoods respec-

tively, are particularly computationally demanding. An observation sample z+
i is usually
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Figure 4.7: A simple one-dimensional example illustrating the mechanics of Algorithm 8
with only four particles.
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Figure 4.8: p(z+
i |x+

j ,u) is usually approximated by p(z+
i |ẑ+

j ,u): the likelihood of observing

z+
i based on the expected observation from state x+

j , denoted ẑ+
j . A Gaussian sensor noise

model is often assumed for p(z+
i |ẑ+

j ,u), as shown here.

drawn from p(z+
i |x+

i ,u) by calculating the expected observation from state x+
i , given action

u, and perturbing it according to a sensor model. Calculation of the expected observation

is potentially expensive. For example, when localising using a range-bearing sensor in an

occupancy grid, this calculation requires a costly ray-trace through that occupancy grid to

find the expected ranges.

The cost of each likelihood calculation (step 10) is also high. The likelihood of making

observation z+
i from state x+

j , given action u, is denoted p(z+
i |x+

j ,u). It is usually approxi-

mated by p(z+
i |ẑ+

j ,u), the likelihood of observing z+
i based on ẑ+

j , the expected observation

from state x+
j given action u [44]. To take the occupancy grid example again, p(z+

i |x+
j ,u)

can be obtained by using ray-tracing to compute the expected range ẑ+
j , then assuming a

Gaussian sensor noise model for p(z+
i |ẑ+

j ,u), as shown in Figure 4.8. This approximation

allows the likelihood function to be defined purely in observation-space, independently from

the state. It requires the calculation of an expected observation followed by a comparison

of observations.

Algorithm 8 therefore calculates a total of N2 + N expected observations, plus N2 obser-

vation comparisons. Step 5 requires N observation calculations (one per particle). Since

step 10 is inside a double-loop, it requires N2 observation calculations and observation com-

parisons. The computational cost of this is potentially crippling. Under certain assumptions

it can be reduced in two ways: (a) by reducing the number of required observation calcula-

tions, and (b) by using symmetry to reduce the number of likelihood calculations.

Reducing Observation Calculations

Let Wij denote the weighting of the j’th particle in the i’th posterior. It is proportional

to the likelihood Lij = p(z+
i |ẑ+

j ,u). Under the assumption that the uncertainty in the
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observation is small relative to the uncertainty in the state distribution, one can make the

approximation that

Lij = p(z+
i |ẑ+

j ,u) (4.10)

≃ p(ẑ+
i |ẑ+

j ,u) (4.11)

That is, the likelihood of the j’th particle given an observation sampled from state x+
i is

approximately equal to the likelihood given the expected observation from state x+
i . Let

this approximate likelihood be denoted L̃ij. The accuracy of the approximation relies on

the state uncertainty being large relative to the sensor noise, as is often the case for example

when using laser range finders for mobile robot localisation. This approximation was used

successfully for planning by Roy [92].

Given this assumption, rather than computing N2 +N observations, only N need be com-

puted: the expected observation from each predicted state sample. The weighting of the

j’th particle in the i’th posterior is then given by

Wij =
1

C
L̃ij (4.12)

where C =
∑N

j=1 L̃ij is a normalising factor.

It can be helpful to think of W as a weight matrix, as illustrated in Figure 4.9: the i’th ob-

servation corresponds to a row of W , where the j’th element of that row gives the weighting

of the j’th particle for the posterior resulting from that observation. W can be constructed

by calculating L̃ij for all i and j, then normalising each row. As stated in Section 4.4.1,

the particle that generated an observation should technically be omitted when calculating

the posterior corresponding to that observation. This corresponds to omitting the diagonal

elements of W . For simplicity of implementation however, the results presented in this work

were generated without omitting the diagonal elements.

Exploiting Likelihood Function Symmetry

In addition to the reduction in the number of observations which must be computed, the

number of likelihood calculations can be reduced under some circumstances. In general,

calculating the elements of W requires N2 observation comparisons. However if the matrix
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sible posterior (resulting from the i’th
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Figure 4.9: A graphical depiction of the operation of Algorithm 9. (a) shows the generation
of the weight matrix W . From a set of samples of the current belief, a set of predicted
samples and a distribution over future observations is generated. Under the symmetry
condition described in Section 4.4.2, only the upper-triangular (shaded) entries in the weight
matrix need to be calculated by comparing observations. These values can then be copied
to the lower triangle. Finally, each row of the matrix is normalised. The entries on the
main diagonal should technically be ignored, however for implementational simplicity we
do not. (b) To calculate the posterior resulting from the i’th observation, the i’th row of W
is used to weight the predicted particles. Calculating the statistics of the weighted particles
produces the parametric posterior.

is symmetric then only the upper-triangular portion needs to be calculated. This will be

the case when the likelihood function is symmetric, namely

p(zi|zj ,u) = p(zj|zi,u) (4.13)

When this condition holds,

L̃ij = p(ẑ+
i |ẑ+

j ,u) (4.14)

= p(ẑ+
j |ẑ+

i ,u) (4.15)

= L̃ji (4.16)
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where the first and third lines follow from the definition of L̃, and the second from Equa-

tion 4.13. The assumption of likelihood function symmetry is often made for robot local-

isation problems. In this case it approximately halves the required number of likelihood

calculations.

Algorithm 9 describes the addition of these two optimisations. To try to help develop

intuition for the problem, Figure 4.9 illustrates the operation of Algorithm 9 graphically.

Algorithm 9 A version of generateDistributionOverPosteriors(I,u) which optimises
Algorithm 8 by re-using the calculation of expected observations and likelihoods.

1 ∆← ∅
2 foreach i ∈ 1 . . . N
3 sample a state xi from p(x|I)
4 sample a next-state x+

i from p(x+|xi,u)
5 calculate the expected observation ẑ+

i from state x+
i , given u

6 end foreach i
7 foreach i ∈ 1 . . . N
8 foreach j ∈ i . . . N
9 calculate L̃ij = p(ẑ+

i , ẑ
+
j )

10 end foreach j
11 end foreach i
12 copy the upper triangle of L̃ to the lower triangle
13 normalise each row of L̃ to produce W
14 foreach i ∈ 1 . . . N
15 Q+ ← ∅
16 foreach j ∈ 1 . . . N
17 add q+j =< x+

j ,Wij > to Q+

18 end foreach j
19 calculate the mean µ and covariance Σ of Q+

20 add I+ =< µ,Σ > to ∆
21 end foreach i

4.5 Scalability

Algorithm 9 is executed once for every belief-action combination, and makes a nested loop

over samples. Ignoring the cost of the weighting function and updates to T for simplicity,

the cost of the particle-based PPOMDP algorithm is therefore

O

(

|B||U |N
(
C(z+) +NC(L)

)
)

(4.17)
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where C(z+) and C(L) are the costs of calculating expected observations and likelihoods,

respectively. Ignoring these constants, the cost is given by

O(|B||U |N2) (4.18)

There are strong parallels between the algorithm presented in this chapter and Roy’s Belief

Compression and AMDP algorithms [92]. These algorithms operate in the space of restricted

classes of distributions over discrete states. In order to transition beliefs, they map to that

underlying discrete space, transition the belief there, then map back. Our approach is

similar: we operate in a restricted class of beliefs. In order to transition we map to the

space of particles, perform the transition, then map back.

An important distinction is that the particle-based PPOMDP algorithm does not rely on an

underlying discrete representation. The cost of transitioning a belief over discrete states, for

a given prior, action and observation, scales quadratically with the number of discrete states

(although this can be minimised using sparse matrix methods). Assuming the observation

space is represented with N samples, methods based on FVI and an underlying discrete

state-space therefore scale according to

O(|B||U |N |S|2) (4.19)

The advantage of the algorithm advocated in this thesis is that the cost of each transition

is independent of the physical size of the environment. We will show in subsequent chap-

ters that this allows PPOMDP to scale to complex real-world problems such as the one

introduced in Chapter 1. The distinction is related to the difference between grid-based

Markov localisation [79][98][21] and particle filters [109]. The former must spread compu-

tation evenly over the entire state-space, regardless of which areas are more relevant. This

approach has problems scaling to larger physical environments, because it must constantly

update areas of the state-space which are relatively unlikely. Particle filters have been

more successful. A particle filter can use a high density of particles in areas of relevance,

producing accurate results. To attain similar accuracy, a grid-based Markov localisation

scheme must use a fine grid over the entire state-space, which cannot scale. Furthermore, a

particle filter need not choose a constant number of particles. For example, a KLD particle

filter [42] selects the number of particles based on the uncertainty of the distribution. While
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this extension has not been implemented, a similar approach applied to the PPOMDP belief

transition function would further improve accuracy and scalability.

4.6 Results

The particle-based PPOMDP algorithm described by Algorithm 9 was compared against the

three previously-compared algorithms on the worlds from Section 4.1. The particle-based

version used the same parameters as the basic version. The only additional free parameter

is the number of samples, which was set to 50. Informal experiments showed that increasing

this number had little effect on performance.

As in the previous chapter, the estimator for belief tracking uses the same belief update

function as the planner. In other words, the belief tracker maps from a Gaussian to particles

and back again at every iteration. This is clearly unnecessary and will adversely affect the

accuracy of the belief tracker. A better approach would be to use a standard particle filter,

mapping to a Gaussian at each iteration solely in order to generate a Gaussian belief from

which the policy can produce an action. If such an approach were implemented, it would

be likely to improve results.

The results are shown in Figure 4.10. The particle-based PPOMDP algorithm clearly

produces excellent results on all four worlds, while taking a similar length of time to converge

as the basic PPOMDP algorithm. Furthermore, the dysfunctional behaviours identified at

the beginning of this chapter seem to have disappeared. When the agent is behind an

obstacle, an action which causes a collision results in the belief being updated, such that

the agent tries a different action on the subsequent time step. The behaviour of repeating

endless cycles also seems to have gone. Instead, the agent appears to commit to a strategy.

Since the particle-based PPOMDP algorithm outperforms PERSEUS on this world, we

cease comparing against PERSEUS for improvements discussed in later chapters.

4.7 Summary

This chapter presented an approach to constructing an accurate and efficient belief tran-

sition function, capable of incorporating information (such as negative information) which
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(a) Comparison on 20×10 dense world
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(b) Comparison on 20×10 sparse world
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(c) Comparison on 30×15 dense world
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(d) Comparison on 30×15 sparse world
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Figure 4.10: (a-d) show the mean reward per episode for each goal configuration on each
world. Each datapoint in (a-d) is the average of 1000 episodes. (e) shows the mean reward
per episode, averaged over goal locations, for each world.
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would produce non-Gaussian posteriors. After demonstrating and analysing the need to

incorporate such information, a basic approach based on Monte Carlo methods was pre-

sented. A number of optimisations for this approach were then described, in order to ensure

its suitability for practical application. The improved algorithm was empirically evaluated

on several different versions of BlockWorld. When compared against MDP, PERSEUS and

Basic-PPOMDP, it demonstrated excellent performance, with low computational require-

ments similar to Basic-PPOMDP’s. The scalability of the algorithm was then analysed and

discussed, showing how the particle-based PPOMDP algorithm has fundamental differences

which make it better able to scale to large environments than algorithms with underlying

discrete state-spaces.

While the particle-based PPOMDP algorithm produces good results, it still requires a

significant amount of planning time on the larger of the toy worlds. In its current form, it

is unlikely to scale to a more realistic problem. The following chapter presents an approach

to improving the algorithm’s scalability.



Chapter 5

Factoring Observations

While the algorithm presented in the previous chapter is capable of generating good plans,

the time required for planning is still considerable. While adequate for BlockWorld, it is

unlikely to be directly applicable to more realistic scenarios.

The POMDP problem can be represented using a graphical model, as was shown in Sec-

tion 2.7.5. Figure 5.1 reproduces a single time slice of that model. In general, the sizes

of the conditional probability tables (CPTs) in graphical models are determined by the

number of parents of each node, called their fan-in [83]. The bottleneck for the PPOMDP

algorithm is the node labelled I+. The fan-in of this node results in a large CPT which is

expensive to calculate, especially for high-dimensional observations

This chapter describes how the bottleneck can be alleviated. Conditional independence

x x+

u

I I+

z+

Figure 5.1: Graphical model showing one update of the POMDP.

100
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assumptions can be exploited by adding extra states, allowing a factoring of the problem

which permits the partial effects of observations to be pre-calculated. With certain approx-

imations, this novel approach allows algorithms based on fitted value iteration to be broken

into smaller components, reducing the total computational complexity.

The remainder of this chapter proceeds as follows. Section 5.1 presents a slightly different

view of fitted value iteration, and Section 5.2 shows how the POMDP problem can be

factored. Section 5.3 brings the two previous sections together, showing how this factoring

can be exploited using the view of FVI presented in Section 5.1. A modified PPOMDP

solution algorithm, based on these insights, is described in Section 5.4. Section 5.5 applies

the modified solution algorithm to the BlockWorld problem, Section 5.6 presents results

which show a significant improvement in planning speed, and Section 5.7 concludes.

5.1 A Different View of the FVI Approximation

For each belief and action, Algorithm 4 from the previous chapter performs two steps. It

first calculates a distribution over posteriors, then uses this distribution, together with a

weighting function, to calculate transition probabilities between discrete beliefs in B. This

section shows how this can be viewed as approximating a continuous distribution by a set

of Dirac delta functions. This view will be used subsequently to improve the efficiency of

the PPOMDP algorithm.

This discussion assumes a continuous observation space. When considering a particular

action u from a particular belief I, the agent is aware of a continuous distribution over

possible next-I-states, as illustrated in Figure 5.2(a). This distribution is denoted p(I+|I,u)

and is obtained by integrating over all possible next-observations z+. The integral can

be approximated by sampling from the observation space (Section 3.4.1 showed how to

perform this sampling efficiently, by conditioning on the current belief). Given a discrete

set of observation samples, p(I+|I,u) can be approximated by a set of Dirac delta functions:

p(I+|I,u) ≃
∑

z+

p(z+|I,u)p(I+|I,u, z+) (5.1)

=
∑

z+

p(z+|I,u)δ(fI(I,u, z
+)) (5.2)

as illustrated in Figure 5.2(b).
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I
(a) The distribution p(I+|I, u)

I
(b) An approximation to (a), based on sampling

IB,5 IB,6 IB,7 IB,8IB,2 IB,3 IB,4IB,1

I

(c) An approximation to (b), made by weighting B

Figure 5.2: An example of a hypothetical one-dimensional belief-space, showing approx-
imations to the continuous distribution over posteriors p(I+|I,u) in (a). (b) illustrates
∑

z+ p(z+|I,u)p(I+|I,u, z+), an approximation to (a) based on sampling observations. In
this case only 12 samples are drawn. The heights of the samples show their weights (which
are uniform in (b)). (c) illustrates an approximation to (b) based on weighting the set of
beliefs B. In this case linear interpolation is used. Each sample in (b) induces a weight for
the two nearby beliefs in B. The summation of these weights produces (c).

When evaluating the merit of taking the action u, the agent must know the value of each

next-I-state on which a delta is centred. The problem is that, since the I-space is continuous,

one cannot store the values of all possible next-I-states. As described in Section 2.5.2, the

solution offered by fitted value iteration can be seen as approximating p(I+|I,u, z+) by a

mixture of delta functions centred on a set of I-states B whose values are explicitly stored:

p(I+|I,u, z+) ≃
|B|
∑

j=1

λB

(
fI(I,u, z

+), j
)
δ(I+

B,j) (5.3)

where λB is a weighting function defined over the set B, as used in previous chapters. λB

interpolates the I-state I+ = fI(I,u, z
+) onto nearby beliefs in B. This approximation is

illustrated in Figure 5.2(c).

Substituting Equation 5.3 into Equation 5.1, and assuming that the current I-state is the
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i’th member of B, denoted IB,i, gives

p(I+|IB,i,u) ≃
∑

z+

p(z+|IB,i,u)

|B|
∑

j=1

λB

(
fI(IB,i,u, z

+), j
)
δ(I+

B,j) (5.4)

This expresses the transition probabilities from IB,i purely in terms of future beliefs in B.

The transition probability from the i’th to the j’th belief in B, denoted T (IB,i,u, I
+
B,j), is

T (IB,i,u, I
+
B,j) =

∑

z+

p(z+|IB,i,u)λB(fI(IB,i,u, z
+), j) (5.5)

which is identical to Equation 3.3. Equation 5.4 defines a distribution over next-I-states

from IB,i, and Equation 5.5 gives the value of that distribution for the next-I-state I+
B,j.

The previous chapter showed how the set of transition probabilities T could be calculated

using a nested sum over all possible combinations of IB ,u and z+. This chapter explores

approaches to mitigating the cost of this nested sum.

5.2 Factoring Conditionally-Independent Observation Com-

ponents

The computational burden can be reduced if p(I+|I,u, z+) can be factored in some way

based on conditional independence assumptions. Suppose the observation vector can be

split into components, such that z+ = {z+
α , z

+
β , z

+
γ , . . . }, where all components are condi-

tionally independent given the state. Furthermore, suppose that some subset is conditionally

independent of the action given the state. The particular manner in which the distribution

can be factored depends on the specifics of the problem, however the conditional indepen-

dence assumption is not unreasonable. It is often assumed in robot navigation and data

fusion problems that individual sensors are conditionally independent from each other and

from the action, given the state [35][113]. The remainder of this discussion will consider

two components, z+
α ∈ Zα and z+

β ∈ Zβ, only one of which is action-dependent, as shown

in Figure 5.3.
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x x+

I I+

z+
α z+

βu

Figure 5.3: Graphical model showing the observation split into two conditionally-
independent components, z+

α and z+
β , one of which is also independent from the action.

x x+

I

u z+
α z+

β

I+

I+
α

Figure 5.4: A factored version of Figure 5.3, postulating an intermediate state, I+
α , repre-

senting the belief after acting and incorporating the observation component z+
α .

5.2.1 Conditioning on the Belief after Acting and Partial Observation

To simplify the calculation of p(I+|I,u), Figure 5.4 postulates an extra I-state I+
α ∈ Iα,

representing the belief after acting and observing z+
α . Technically, Iα is not in the same

I-space as I or I+, which are in a space derived from Ihist: the space of histories of actions

and complete observations. When dealing with Iprob however, the space is the same: both

are distributions over state-space.

Let fIα and fIβ
denote the deterministic functions mapping to and from I+

α :

I+
α = fIα(I,u, z+

α ) (5.6)

I+ = fIβ
(I+

α , z
+
β ) (5.7)
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The following probability distributions can then be defined:

p(I+
α |I,u, z+

α ) = δ(fIα(I,u, z+
α )) (5.8)

p(I+|I+
α , z

+
β ) = δ(fIβ

(I+
α , z

+
β )) (5.9)

These distributions can be used to expand p(I+|I,u) according to the total probability

theorem:

p(I+|I,u) =

∫

I
+
α∈Iα

p(I+|I+
α )p(I+

α |I,u)dI+
α (5.10)

where

p(I+|I+
α ) =

∑

z
+

β

p(I+|I+
α , z

+
β )p(z+

β |I+
α ) (5.11)

p(I+
α |I,u) =

∑

z
+
α

p(I+
α |I,u, z+

α )p(z+
α |I,u) (5.12)

In words, the probability of getting from a particular current belief-state I to a particular

future belief-state I+ is the sum of all the ways of getting there via various mid-points in

Iα.

5.3 Application to the PPOMDP Solution Algorithm

The extra state can potentially be used to reduce the amount of computation required to

calculate T . Compare Figures 5.3 and 5.4. Node I+ in Figure 5.3 has four parents. This

relatively large fan-in is replaced in Figure 5.4 with fan-ins of three (to I+
α ) and two (to I+).

Exact marginalisation over any particular parent involves a nested iteration over all parents.

Marginalising over z+
α and z+

β to produce p(I+|I,u), without using I+
α , therefore requires a

giant nested loop over four variables. In contrast, p(I+|I+
α ) can be computed in a nested

loop over only two variables. This result can then be used to calculate p(I+|I,u) in a second

nested loop over three variables. As will be shown, the two loops over fewer variables can

be evaluated much more quickly than the single loop over many variables.



CHAPTER 5. FACTORING OBSERVATIONS 106

5.3.1 Representing p(I+|I+
α )

The difficulty in representing p(I+|I+
α ) is that the I-space is continuous, and hence p(I+|I+

α )

cannot be stored exactly in a lookup table. However it was shown in Section 5.1 how

the continuous conditional probability distribution (CPD) p(I+|I,u) can be approximated

by the discrete CPT T (IB,i,u, I
+
B,j). The same approximation method can be used for

p(I+|I+
α ).

Let Bα = {I+
Bα,1, I

+
Bα,2, . . . , I

+
Bα,|Bα|

} be a belief set of possible values for I+
α , distinct

from B = {I+
B,1, I

+
B,2, . . . , I+

B,|B|} which is a set of possible values of I+. As pointed out

in Section 5.2.1, the probability distribution p(I+|I+
α , z

+
β ), is a delta function centred on

fIβ
(I+

α , z
+
β ) (Equation 5.9). This can be approximated by a mixture of deltas centred on B,

in analogy to Equation 5.3:

p(I+|I+
α , z

+
β ) ≃

|B|
∑

i=1

λB

(
fIβ

(I+
α , z

+
β ), i

)
δ(I+

B,i) (5.13)

Substituting this approximation into Equation 5.11 gives

p(I+|I+
α ) ≃

∑

z
+

β

p(z+
β |I+

α )

|B|
∑

i=1

λB

(
fIβ

(I+
α , z

+
β ), i

)
δ(I+

B,i) (5.14)

which can be stored explicitly as the CPT Tβ(I+
Bα,i, I

+
B,j). As with the approximation made

by fitted value iteration, the approximation made by Equation 5.13 is unlikely to adversely

affect the quality of value iteration if the value function is sufficiently smooth and the set

B is sufficiently dense.

Stepping backwards through the graphical model, p(I+
α |I,u) can be similarly approximated

by

p(I+
α |I,u) ≃

∑

z
+
α

p(z+
α |I,u)

|Bα|∑

i=1

λBα

(
fIα(I,u, z+

α ), i
)
δ(I+

Bα ,i) (5.15)

where λBα is a weighting function defined over Bα and fIα is the function governing the

belief transition based on the action and observation component z+
α . Again, this can be

stored explicitly in the CPT Tα(IB,i,u, I
+
Bα,j). To clarify, Figure 5.5 shows the relationship

between the various discrete I-states.
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IB,i I+
B,j

u, z+

T (IB,i,u, I
+
B,j)

I+
Bα,m

Tα(IB,i,u, I
+
Bα,m)

u, z+
α z+

β

Tβ(I+
Bα,m, I

+
B,j)

Figure 5.5: The relationship between the discrete elements used in Algorithm 10. T is
approximated by Tα and Tβ. The additional information required for each transition is
below the arcs, the CPT describing the transition is above.

5.4 A Modified PPOMDP Solution Algorithm

Putting the approximations together gives

p(I+
B,i|IB,j ,u) =

|Bα|∑

m=1

p(I+
B,i|I+

Bα,m)p(I+
Bα,m|IB,j,u) (5.16)

The complete algorithm is shown in Algorithm 10. It makes use of Algorithms 11 and 12,

which generate distributions over I-states in Iα and I respectively, using sampling as shown

in the previous chapter. Algorithms 11 and 12 are trivial modifications of Algorithm 9. We

use Nα to denote the number of observation samples used to calculate Tα and Nβ to denote

the number used to calculate Tβ.

Note that, in contrast to Algorithm 5, Algorithm 10 contains two independent loops. The

first (steps 1-9) calculates the effects of observation z+
β , while the second (steps 10-24)

adds the effects of the action and observation z+
α . Note also that although Algorithm 10

references Tα, it is not necessary to store the entire CPT because each element is used only

immediately after being calculated.

5.4.1 Computational Complexity

Ignoring the cost of the weighting function and updating the CPTs, the computational

complexity of Algorithm 10 is

O

(

|Bα|Nβ

(
C(u, z+

β ) +NβC(Lβ)
)

+ |B||U |Nα

(
C(z+

α ) +NαC(Lα)
)
)

(5.17)



CHAPTER 5. FACTORING OBSERVATIONS 108

Algorithm 10 Converting a parametric POMDP to a discrete I-state MDP. This Algo-
rithm optimises previous algorithms by pre-calculating the effects of adding information
from observation z+

β . It makes use of Algorithms 11 and 12 to generate distributions over
posteriors.

1 Tβ(I+
Bα
, I+

B)← 0, ∀I+
Bα
∈ Bα, ∀I+

B ∈ B
2 foreach i ∈ 1 . . . |Bα|
3 ∆← generateDistributionOverPosteriorsβ(I+

Bα,i)
4 foreach l ∈ 1 . . . |∆|
5 foreach j ∈ 1 . . . |B|
6 Tβ(I+

Bα,i, I
+
B,j)← Tβ(I+

Bα,i, I
+
B,j) + 1

|∆|λB(∆l, j)
7 end foreach j
8 end foreach l
9 end foreach i
10 Tα(IB,u, I

+
B)← 0, ∀IB ∈ B, ∀u ∈ U, ∀I+

Bα
∈ Bα

11 T (IB,u, I
+
B)← 0, ∀IB ∈ B, ∀u ∈ U, ∀I+

B ∈ B
12 foreach i ∈ 1 . . . |B|
13 foreach u ∈ U
14 ∆← generateDistributionOverPosteriorsα(IB,i,u)
15 foreach l ∈ 1 . . . |∆|
16 foreach m ∈ 1 . . . |Bα|
17 Tα(IB,i,u, I

+
Bα,m)← Tα(IB,i,u, I

+
Bα,m)+

1
|∆|λBα(∆l,m)

18 foreach j ∈ 1 . . . |B|
19 T (IB,i,u, I

+
B,j)← T (IB,i,u, I

+
B,j)+

Tα(IB,i,u, I
+
Bα,m)Tβ(I+

Bα,m, I
+
B,j)

20 end foreach j
21 end foreach m
22 end foreach l
23 end foreach u
24 end foreach i

where C(u, z+
β ) and C(z+

α ) are the costs of calculating expected observations in Algo-

rithms 11 and 12 respectively, and C(Lβ) and C(Lα) are the costs of evaluating the like-

lihood function for the two observation components. The first term is the complexity of

building Tβ in the first nested loop of Algorithm 10, while the second term is the com-

plexity of using Tβ to build T in the second nested loop. Under the assumption that the

cost is dominated by the second term, which loops over actions in addition to beliefs and

observations, the cost can be approximated by

O

(

|B||U |Nα

(
C(z+

α ) +NαC(Lα)
)
)

(5.18)
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Algorithm 11 generateDistributionOverPosteriorsβ(I+
α )

1 ∆← ∅
2 foreach i ∈ 1 . . . Nβ

3 sample a state x+
i from p(x+|I+

α )
4 calculate the expected observation ẑ+

β,i from state x+
i

5 end foreach i
6 foreach i ∈ 1 . . . Nβ

7 foreach j ∈ i . . . Nβ

8 calculate L̃ij = p(ẑ+
β,i|ẑ+

β,j)
9 end foreach j
10 end foreach i
11 copy the upper triangle of L̃ to the lower triangle
12 normalise each row of L̃ to produce W
13 foreach i ∈ 1 . . . Nβ

14 Qβ ← ∅
15 foreach j ∈ 1 . . . Nβ

16 add qj =< x+
j ,Wij > to Qβ

17 end foreach j
18 calculate the mean µ and covariance Σ of Qβ

19 add I+ =< µ,Σ > to ∆
20 end foreach i

Algorithm 12 generateDistributionOverPosteriorsα(I,u)

1 ∆←∅
2 foreach i ∈ 1 . . . Nα

3 sample a state xi from p(x|I)
4 sample a next-state x+

i from p(x+|xi,u)
5 calculate the expected observation ẑ+

α,i from state x+
i , given u

6 end foreach i
7 foreach i ∈ 1 . . . Nα

8 foreach j ∈ i . . . Nα

9 calculate L̃ij = p(ẑ+
α,i|ẑ+

α,j)
10 end foreach j
11 end foreach i
12 copy the upper triangle of L̃ to the lower triangle
13 normalise each row of L̃ to produce W
14 foreach i ∈ 1 . . . Nα

15 Qα ← ∅
16 foreach j ∈ 1 . . . Nα

17 add qj =< x+
j ,Wij > to Qα

18 end foreach j
19 calculate the mean µ and covariance Σ of Qα

20 add I+ =< µ,Σ > to ∆
21 end foreach i
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Using a similar approach to measuring complexity, the cost of Algorithm 9 was given in

Chapter 4 as

O

(

|B||U |N
(
C(z+) +NC(L)

)
)

(5.19)

where C(z+) and C(L) are the costs of calculating expected observations and likelihoods

for the entire observation vector. Algorithm 10 is cheaper than Algorithm 9 because

C(z+
α ) < C(z), C(Lα) < C(L), and potentially Nα < N . This difference is quantified

for the BlockWorld problem in the following sections.

5.5 Experiments

The approach described in this chapter was applied to the BlockWorld problem presented

previously. Recall that the agent was equipped with four range sensors and a collision sensor.

All five sensors are conditionally independent given the state. While the distribution over

collision observations depends on both the state and the action, the range sensors depend

on the state alone.

While it would be possible to use the approach described in this chapter to generate a

separate CPT for each of the four range sensors, it will be shown that the cost is dominated

by the action-dependent component of the observation. Therefore calculating all four to-

gether adds relatively little computation but avoids the approximation inherent in separate

calculation. The graphical model is shown in Figure 5.6. The algorithm used to calculate

T was essentially Algorithm 10, with fIC
and fIR

denoting the transition functions which

incorporate the collision observation and range observations, respectively.

We compare against both MDP and the particle-based version of the PPOMDP algorithm

as described in Chapter 4. All parameters were kept the same where possible, however

pre-calculating the effect of the range observations introduces two differences.

Firstly, a new set of I-states BC is required. BC was chosen to be the same regular grid of

I-states used for B, though in general B and BC needn’t be identical.

Secondly, rather than having a single parameter to specify the number of samples to use

when calculating fI, there are two: the number to use when calculating fIC
and the number

to use when calculating fIR
. The two parameters needn’t take the same value, however

50 samples were chosen for both parameters, just as 50 samples were used in Chapter 4
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x x+

z+
N z+

S z+
E z+

Wu

I I+

z+
C

I+
C

Figure 5.6: Graphical model representing the modified approach to calculating the CPT T
governing the Block World. z+

C represents the collision sensor, while z+
R = {z+

N , z
+
S , z

+
E , z

+
W }

represents the four range sensors, pointing north, south, east and west respectively.

to calculate fI. In principle the number of particles could be reduced. The particles are

used to approximate the distribution over possible observations. The approach presented

in this chapter splits this into two simpler distributions, each over a lower-dimensional

observation space. Since in general the number of samples required to achieve a given

density is exponential in the dimension of the space, fewer samples should be needed to

approximate each of the simpler distributions to the same accuracy. Given the assumptions

used to simplify the computational complexity of Algorithm 10 in Section 5.4.1, the effect of

a decrease in the number of samples should be something between a linear and a quadratic

decrease in the computational requirements, depending on the relative importance of C(z+
C)

and C(LC).

5.6 Results

The results, shown in Figure 5.7, plot both the mean performance per episode and the mean

time required to generate a value function, with and without pre-calculation of the effects

of the range observations. Observation pre-calculation clearly produces similar or better

performance, with a substantial improvement in efficiency (the computational requirements

are reduced to approximately one third for this problem). The reason for the improved

performance on larger worlds is likely the increased sample density for each individual

observation component, as discussed in the previous section.
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After factoring the model, the bulk of the computation time was spent calculating the effects

of the action and collision sensor. Let TR denote the CPT describing the transitions resulting

from the range observation. The calculation of TR was found to represent a relatively minor

component of the total computational requirements (approximately 10%). This provides

support for the complexity assumptions which were made in Section 5.4.1. The remaining

90% was spent calculating T from TR, which requires a sum over both observations and

actions.

5.7 Summary

This chapter showed how the conditional independence between observations can be ex-

ploited to reduce the total computation required to solve a PPOMDP problem. After

formulating the theory, describing the improved algorithm in detail and analysing its com-

putational complexity, the improved algorithm was applied to the BlockWorld problem. The

results show similar or better performance, for approximately one third of the computation.
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Figure 5.7: Comparison of the PPOMDP algorithm with and without the pre-calculation
of the effects of the range observation, showing (a) the mean performance per episode, and
(b) the mean time taken to generate the value function, for each world. Both plots average
over the four possible goal locations. MDP performance is included for scale.



Chapter 6

Using Arbitrary Belief Sets

As discussed in Section 5.1, the approximation made by FVI is to approximate a determin-

istic transition to an arbitrary belief in a continuous I-space with a probabilistic transition

to a discrete set of nearby beliefs. The probability of each transition is set by a weighting

function λ which is a core component of the algorithm presented so far.

Until this point, a weighting function based on Freudenthal triangulation has been used,

as described in Section 3.3.2. While extremely fast, it requires that the set of beliefs B

be a regular grid in parameter-space. This is problematic for scaling to more complicated

problems. If the dimensionality of the parameter-space increases (as it will when heading is

modelled in Chapter 8), the number of belief points required to cover that parameter-space

with a regular grid will increase exponentially. However, as pointed out in Section 1.3, the

distribution over beliefs which are likely to be encountered during plan execution is probably

not uniform over the entire belief-space. By using an arbitrary set of beliefs rather than

a regular grid, the density of belief points can be selected to match this distribution more

closely. Scalability then becomes limited by the size of the set of likely beliefs rather than

the length of the parameter vector describing each belief.

The impediment to using arbitrary belief sets is that an efficient weighting function is

required, and Freudenthal triangulation cannot be used. The key to implementing an

efficient weighting function for arbitrary beliefs is to ensure that λB operates on only a

small neighbourhood of beliefs. If λB returns zero weighting for the vast majority of B,

that majority need not be considered. Results from the similarity search literature can be

114
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used to efficiently find the minority of beliefs for which λB returns a non-zero weighting,

without exhaustively evaluating λB for every element of B.

The remainder of this chapter proceeds as follows. Section 6.1 describes how a weighting

function for arbitrary belief sets can be implemented using a kernel function. Section 6.2

reviews data structures from the similarity search literature which can be used to implement

this weighting function efficiently. Similarity search in belief-space requires a metric by

which to measure the similarity of beliefs. Suitable metrics are discussed in Section 6.3.

The efficiency of search using these metrics, and the quality of the resultant plans, are

discussed in Sections 6.4 and 6.5 respectively. Section 6.6 presents the results of applying

the material above to BlockWorld, demonstrating a significant increase in planning speed.

Section 6.7 concludes.

6.1 Efficient Implementation of a Weighting Function

Recall that, as discussed in Section 2.5.2, the following conditions are required of the weight-

ing function λ, for all I ∈ I:

|B|
∑

i=1

λB(I, i) = 1 (6.1)

0 ≤ λB(I, i) ≤ 1 (6.2)

We introduce a kernel-based weighting function given by

λB(I, i) =
1

C
η
(
D(I, IB,i)

)
(6.3)

where η is a kernel function, D is a distance metric returning a scalar distance between two

I-states, and the denominator C =
∑|B|

i=1 η
(
D(I, IB,i)

)
is simply a normaliser to ensure that

the conditions in Equations 6.1 and 6.2 are met. A common choice in kernel applications [97]

is the Gaussian kernel

ηg

(
D(I, I′)

)
=

1
√

2πζ2
B

exp

(

−1

2

D(I, I′)2

ζ2
B

)

(6.4)

with an appropriate choice of the bandwidth ζB.
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This weighting function can be used in the Fitted Value Iteration approximation given by

Equation 5.3 and reproduced here:

p(I+|I,u, z+) ≃
|B|
∑

j=1

λB

(
fI(I,u, z

+), j
)
δ(I+

B,j) (6.5)

Equation 6.5 can be implemented efficiently, without the requirement to examine all of B,

if two conditions are met. Firstly, the weighting function needs to return a non-zero weight

for only a small minority of B. Secondly, an algorithm is required to find this minority

without actually evaluating λB for all B.

The first condition is met by choosing a truncated Gaussian kernel

η
(
D(I, I′)

)
=







1√
2πζ2

B

exp

(

−1
2

D(I,I′)2

ζ2
B

)

if D(I, I′) ≤ 3ζB

0 if D(I, I′) > 3ζB

which closely approximates a Gaussian kernel but returns a non-zero value for only those

beliefs within a hypersphere of radius 3ζB . It will be shown how the second condition can

be met by using data structures from the similarity search literature to efficiently find the

set of beliefs within that hypersphere.

6.2 A Review of Similarity Search Algorithms

Let P be a database of points in the domain V . Assume a query element q ∈ V , and a

dissimilarity (or distance) measure D. A common similarity search task is to find the set of

elements of P within a hypersphere of some radius r, centred on q. In the context of beliefs,

B can be seen as a database. Assuming that a belief is parameterised by the parameter

vector v, the domain V is ℜ|v|, where |v| is the length of v. Dissimilarity measures will be

discussed in detail in the following sections.

A naive approach to finding the set of neighbours within the radius r is brute-force search:

one could calculate the distance from q to every element in P , and remember the set within

r. This approach obviously scales linearly with the number of elements in the database.

A great deal of literature exists on the subject of fast, sublinear similarity search (related

to the K-nearest-neighbours problem [33]). This section focusses on a small set of the total
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number of similarity search algorithms which exist, and the particular requirements for fast

search in belief-space. For more details, interested readers are directed to one of several

survey papers on the subject [26][46][13]. The basic idea for most algorithms is a multi-

dimensional generalisation of the idea of binary search. The data is stored in a structure

which encodes a partitioning of the domain, allowing regions of the domain to be pruned

during search. Section 6.2.1 discusses similarity search in vector spaces, and Section 6.2.2

discusses similarity search in more general metric spaces.

6.2.1 Similarity Search in Vector Spaces: Spatial Access Methods

Spatial Access Methods, or SAMs, provide a means of indexing data items in a multidimen-

sional vector space. They provide efficient access to data, but rely on the assumption that

the dissimilarity between objects is based on a distance function which does not include

any correlation (or “cross-talk”) between dimensions [38]. More precisely, SAMs assume a

Minkowski distance, denoted Ln, examples of which include the Manhattan distance (L1),

Euclidean distance (L2), and max-norm (L∞).

Probably the most well-known example of a SAM is the kd-tree [45]. While there are many

extensions, such as R-trees [51], Quad-trees [96] and X-trees [9], this discussion is limited

to kd-trees since the basic principles are similar.

Briefly, a kd-tree consists of a set of nodes. Each leaf node contains a set of points from P .

Each internal node specifies a dimension i and a split value v, dividing the space into two

parts with an axis-aligned hyperplane. The left and right children of an internal node are

subtrees themselves. The left subtree contains all points in P for which the i’th dimension

is less than v, while the right subtree contains all points for which it is greater. The tree

therefore defines a partitioning of the space into a set of non-overlapping hyper-rectangles.

Figure 6.1 shows a simple two-dimensional example of a kd-tree.

The advantage of using a kd-tree for nearest neighbour search is that parts of the search

space can be pruned. As the search proceeds, one can imagine a d-dimensional hyper-sphere

of radius τ , centred on q, where τ is the distance from q to the nearest neighbour found

so far. If the hyper-rectangle represented by a child node does not intersect this sphere,

it can be guaranteed that there is no point in that hyper-rectangle closer than τ . The

subtree representing that hyper-rectangle therefore need not be searched. This scenario is
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Figure 6.1: A simple kd-tree in ℜ2, using Euclidean distance, for 7 points. The lines show
how the space is divided into rectangles, the numbering of the points shows the depth in
the tree.
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Figure 6.2: The circle bounds the volume of V closer than τ to the query point q, using the
L2 (Euclidean) distance metric in ℜ2. Subtrees can be pruned based on the observation that
hyper-rectangles which do not intersect this hypersphere can be ignored. This corresponds
to the shaded rectangles, which need not be searched.

illustrated in Figure 6.2.
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6.2.2 Similarity Search in Metric Spaces: Metric Indexing Structures

Instead of requiring a vector space, a number of algorithms require only that (V,D) define

a metric space. That is, the distance metric D must satisfy the following properties for all

x, y, z ∈ V :

• positiveness: D(x, y) ≥ 0, with D(x, y) = 0 if and only if x = y.

• symmetry: D(x, y) = D(y, x)

• triangle inequality: D(x, z) ≤ D(x, y) +D(y, z)

These algorithms are commonly referred to as general metric indexing techniques. A dis-

advantage compared to vector space indexing structures is that they use less information

about the data, possibly resulting in poorer performance [13]. Many variants of metric

indexing approaches exist [80][116][28][120], and several survey papers have been written

on the topic [29][26][55].

In order to discuss metric indexing with reference to a concrete example, this section pro-

vides a brief overview of vantage point trees, or simply vp-trees [125]. The issues encountered

are relevant for other metric indexing approaches.

A vp-tree is similar to a kd-tree. Each internal node defines a one-dimensional ordering of

the database, and splits it in two. Where the kd-tree defines a one-dimensional ordering

based on the value of a single dimension, the vp-tree orders the data based on the distance

from a single point in the database: the vantage point (often known as the pivot). To induce

a split in the database, the distances of all points from the vantage point are calculated,

and the median is found. Each internal node then stores its vantage point, the median

distance, a pointer to the left subtree (containing all points closer to the vantage point than

the median distance), and a pointer to the right subtree (containing all points further from

the vantage point than the median distance). The resultant partitioning of the domain is

shown in Figure 6.3.

While pivots can be chosen at random, a non-trivial increase in search efficiency can be

obtained through the use of a good heuristic for pivot selection [125]. Consider the dis-

tribution of distances from a candidate pivot to its child points. An effective heuristic is
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Figure 6.3: A simple vp-tree in ℜ2, using Euclidean distance, dividing the same set of points
as in Figure 6.1. The circles divide the space, while the numbering of the points shows the
depth in the tree. The pivots are the points in the centres of the circles.

to select pivots which maximise the second moment of this distribution about the median

distance.

When performing a nearest-neighbour search, let τ denote the distance from q to the closest

point found so far. When searching at a given node, if the distance from q to the median

distance is less than τ , then the subtree which does not contain q can be pruned. Another

way to put this is that if a hypersphere of radius τ , centred on q, does not intersect the split

curve, then half of the search can be pruned. This is illustrated in Figure 6.4. The result

is that, at least for a uniformly-distributed dataset in ℜ2, search can proceed in O(log(n))

time rather than the O(n) time required for brute-force search.

Unfortunately, the speed-up obtainable by using metric indexing structures decreases with

the intrinsic dimensionality of the metric space being searched [26]. Clarkson surveys several

methods for estimating the intrinsic dimensionality of a metric space, giving a numerical

estimate of the difficulty of searching in that space [29].

6.3 Inter-Gaussian Distance Metrics

The previous section introduced approaches to efficient similarity search, given a distance

metric. This section discusses several possible candidates for measuring distances in Igauss.
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Figure 6.4: The circle bounds the volume of V closer than τ to the query point q, using
the L2 (Euclidean) distance metric in ℜ2. Subtrees which do not intersect this circle can
be pruned.

The suitability of each viable candidate is evaluated, both in terms of search efficiency and

in terms of the quality of plans which are likely to result from its use.

The evaluation of efficiency highlights the fact that certain distance metrics induce a metric

space of high intrinsic dimensionality, and therefore only a very small efficiency increase is

possible over naive brute-force search. We present an approach to repairing the metrics in

order to avoid this difficulty, and show results which demonstrate that fast similarity search

is still possible. The analysis of the expected quality of plans will show that some of the

metrics from the literature for measuring distances between general probability distributions

exhibit properties which are undesirable for planning in Igauss.

6.3.1 Inter-Gaussian Distance Metrics

This section introduces several commonly-used functions for measuring the dissimilarity

between probability distributions, and evaluates their validity for similarity search in Igauss.

To help clarify, Figure 6.5 visualises each of the metrics which will be discussed. Each plot

in Figure 6.5 shows the distance from various one-dimensional Gaussians to a reference

one-dimensional Gaussian with zero mean and unit variance.

Formally, let p1(x) and p2(x) denote two probability distributions defined over the contin-

uous domain X, and let D(p1(x), p2(x)) be a function which returns a scalar representing
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the distance (or dissimilarity) between the two distributions. In order to use a metric in-

dexing technique for fast nearest-neighbour lookups, it is required that D(p1(x), p2(x)) be

a true metric, satisfying the three properties given in Section 6.2.2. In addition, since many

comparisons will be performed, we require that the distance has a closed-form solution for

comparing Gaussians. For the discussion that follows, we assume that p1(x) and p2(x) are

d-dimensional Gaussians parametrised by the vectors v1 and v2, where v1(i) denotes the

i’th element of v1. v1 and v2 represent the tuples < µ1,Σ1 > and < µ2,Σ2 >, where µ

and Σ denote means and covariances respectively.

Parameter-Euclidean Distance

The weighting function used in previous chapters was based on a Freudenthal triangulation.

It implicitly assumes a distance metric based on the elements of the parameter vector

v rather than the underlying probability distribution which that vector represents. The

extension of this idea to arbitrary belief sets will be called the Parameter-Euclidean distance,

denoted DPE , where

DPE(v1,v2) =

{ |v|
∑

i=1

(v1(i)− v2(i))
2

}1/2

(6.6)

DPE is the Euclidean distance, applied in the space of parameter vectors. It is simple, fast

to calculate, and defines a vector space, allowing the use of Spatial Access Methods.

KL Divergence

The well-known Kullback-Leibler (KL) divergence is commonly used to measure the distance

between distributions. It is given by [30]:

DKL(p1(x), p2(x)) =

∫

x

p1(x) log
(p1(x)

p2(x)

)
dx (6.7)

The KL divergence has the following analytic solution for Gaussians [127]:

DKL(p1(x), p2(x)) =
1

2
(µ1 − µ2)

TΣ−1
2 (µ1 − µ2) +

1

2
log(

Σ1

Σ2
) +

1

2
tr[Σ1Σ

−1
2 − Id] (6.8)
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(a) Parameter-Euclidean Distance: DPE
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(b) KL Divergence: DKL(p1(x), p2(x))
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(c) KL Divergence: DKL(p2(x), p1(x))
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(d) Symmetric KL Divergence: DKLsym

−5

0

5

0

10

20

30
0

2

4

6

8

mean

 

variance

D
is

ta
nc

e 
fr

om
 N

(0
,1

)

(e) Bhattacharyya Distance: DB
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(f) Matusita Distance: DM
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(g) Euclidean Distance: DE

Figure 6.5: Plots of several distance measures. Each plot shows the distance between
various one-dimensional Gaussians (defined by the x-y axes) and a reference one-dimensional
Gaussian of zero mean and unit variance. (c) is difficult to see because the height of
the surface is dominated by the distances for small σ. Similarly, the distances in (d) are
dominated by DKL(p2(x), p1(x)). Only (a), (f) and (g) satisfy the triangle inequality.
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where tr denotes the trace operator, and Id denotes the d-dimensional identity matrix.

Unfortunately the KL divergence satisfies neither the symmetry property nor the triangle

inequality. While the KL divergence is often symmetrised by taking the average:

DKLsym(p1(x), p2(x)) =
1

2
[DKL(p1(x), p2(x)) +DKL(p2(x), p1(x))] (6.9)

The failure to satisfy the triangle inequality remains.

α-Divergence

The Kullback-Leibler divergence is a special case of the Renyi or α-divergence [54],

Dα(p1(x), p2(x)) =
1

α− 1
log

∫

x

pα
1 (x)p1−α

2 (x)dx, α 6= 1, α > 0 (6.10)

for the special case of α approaching 1:

lim
α→1

(Dα(p1(x), p2(x)) =

∫

x

p1(x) log
p1(x)

p2(x)
dx (6.11)

The α-divergence is essentially a measure of overlap between distributions. Variation of the

α parameter produces a continuous range of divergence measures, allowing different features

of the distribution to be emphasised.

Bhattacharyya Distance

Another commonly-used special case is the Bhattacharyya distance, related to the α-

divergence for α = 1/2 [11]:

DB(p1(x), p2(x)) = − log

∫

x

√

p1(x)p2(x)dx (6.12)

∝ Dα=0.5(p1(x), p2(x)) (6.13)

The Bhattacharyya distance is symmetric and has an analytic solution for Gaussians [127]:

DB(p1(x), p2(x)) =
1

8
(µ1 − µ2)

T [
1

2
(Σ1 + Σ2)]

−1(µ1 + µ2) +
1

2
log
|12(Σ1 + Σ2)|
|Σ1|1/2|Σ2|1/2

(6.14)
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The form of equation 6.14 is intuitively satisfying: the first term represents a quadratic

penalty for a difference in means (scaled by the covariance matrices), while the second

penalises a difference in covariances. For Gaussians with equal covariances, the second term

becomes zero and the distance becomes equal to the Mahalanobis distance (the same is true

of the KL divergence) [127]. Unfortunately, the Bhattacharyya distance does not satisfy

the triangle inequality.

Matusita Distance

More useful for the task at hand is the Matusita distance [70], also known as the Hellinger

distance, given by

DM (p1(x), p2(x)) =

{∫

x

[√

p1(x)−
√

p2(x)
]2
dx

}1/2

(6.15)

It is related to the Bhattacharyya distance by

DM (p1(x), p2(x)) =

{

2
[
1− exp(−DB(p1(x), p2(x)))

]
}1/2

(6.16)

and therefore has an analytic solution for Gaussians. Furthermore, it qualifies as a true

distance metric.

Euclidean Distance

Any of the Ln distances of the form

Dn(p1(x), p2(x)) =

{∫

x

|p1(x)− p2(x)|n
}1/2

(6.17)

satisfy the conditions required for true metrics. This can be seen by observing that the Ln

metrics define vector spaces, and a function can be viewed simply as an infinite-dimensional

vector. Figure 6.5(g) plots the Euclidean (L2) distance, which has the following form:

DE(p1(x), p2(x))dx =

{∫

x

[p1(x)− p2(x)]2
}1/2

(6.18)

=

{∫

x

p2
1(x)dx +

∫

x

p2
2(x)dx− 2

∫

x

p1(x)p2(x)dx

}1/2

(6.19)
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For d-dimensional Gaussians, an analytic solution is available. Each of the first two terms

in 6.19 is the integral of the square of a Gaussian, which can be evaluated using

∫

x

p2(x)dx = (22dπd|Σ|)−1/2 (6.20)

where Σ is the covariance matrix. The third term is inversely related to the integral of the

product of two Gaussians, which can be calculated using:

∫

x

p1(x)p2(x)dx =
1

(2π)
d
2 |S| 12

exp(−1

2
mTSm) (6.21)

where S = Σ1 + Σ2 and m = µ1 − µ2.

Note that, while the Euclidean space is a vector space, this does not imply that the Spatial

Access Methods of Section 6.2.1 are applicable to the current problem. When using DE ,

the space of functions is an (infinite-dimensional) vector space, but the parameter space

(defined over < µ,Σ >) is not.

6.3.2 The Triangle Inequality

Since several of the metrics discussed fail the triangle inequality, this section attempts to

provide some intuition on the subject. Consider the one-dimensional example

Dsquared(x1, x2) = (x1 − x2)
2 (6.22)

as shown in Figure 6.6(a), and the three points xa = 0, xb = 1, and xc = 2. For the triangle

inequality to be satisfied, the distance from xa to xc via the midpoint xb should be at least

as large as for the direct route. Clearly this is not the case, and therefore the triangle

inequality does not hold:

Dsquared(xa, xc) = 4 (6.23)

Dsquared(xa, xb) +Dsquared(xb, xc) = 2 (6.24)

Intuitively, the reason is because the journey directly from xa to xc encounters a steep

slope near x = 2, whereas the two smaller journeys encounter only the gentler slope near

the origin. The positive second derivative breaks the triangle inequality. In contrast, the
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(a) Dsquared(x1, x2) = (x1 − x2)
2
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(b) Dlinear(x1, x2) = |x1 − x2|
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(c) Dsqrt(x1, x2) =
p

|x1, x2|

Figure 6.6: Three one-dimensional distance functions. The triangle inequality holds for
only (b) and (c).

constant slope of Dlinear(x1, x2) = |x1 − x2| and the decreasing slope of Dsqrt(x1, x2) =
√

|x1 − x2|, shown in Figures 6.6(b) and 6.6(c) respectively, do not break the inequality,

even though they preserve the same ordering as Dsquared.

6.3.3 Comparison of Metrics on a Simple Example

This section seeks to provide an intuitive understanding of some important properties of the

metrics defined above on a simple example. It will be shown that the properties described

here have important implications both for search efficiency and for plan quality.
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Figure 6.7: The four Gaussians p1(x) = N (0, 1), p2(x) = N (7.5, 1), p3(x) = N (15, 1), and
p4(x) = N (15, 6).

D(p1(x), p2(x)) D(p1(x), p3(x)) D(p1(x), p4(x))

Parameter-Euclidean (DPE) 7.500000 15.00000 15.81138
Euclidean (DE) 0.751125 0.751126 0.630285
Matusita (DM ) 1.413588 1.414214 1.414022

Table 6.1: The distances from p1(x) to each of the other Gaussians.

The example uses four one-dimensional Gaussians, p1(x) = N (0, 1), p2(x) = N (7.5, 1),

p3(x) = N (15, 1), and p4(x) = N (15, 6), as shown in Figure 6.7. The distances from

p1(x) to each of the other three Gaussians, as measured by each of the true metrics from

Section 6.3.1, are shown in Table 6.1.

Gaussians of Equal Variance

First, consider comparing the Gaussians of equal variance, p1(x), p2(x), and p3(x), using

the Euclidean distance metric. Equation 6.19, defining DE , consists of three terms. For

Gaussians of equal variance, the first two terms are constant. The third term (Equation 6.21)

is related to the integral of the product of the two Gaussians, giving a measure of the extent

to which they overlap. The exponential decay of the Gaussian distribution means that there

is virtually no overlap between Gaussians separated by more than 3σ. For non-overlapping

Gaussians, the distance becomes dominated by the first two constant terms, meaning that

the Euclidean metric does not encode the idea that distributions with more widely-separated

means are more dissimilar.
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This can be seen from Table 6.1: both p2(x) and p3(x) are approximately equidistant

from p1(x) as measured using DE . In contrast, DPE considers p2(x) to be much more

similar than p3(x) to p1(x). This phenomenon is also apparent from Figure 6.5(g). DE

is responsive to small changes in nearby distributions, but approaches a constant value for

widely-separated means. The Matusita distance has a similar form, and produces similar

results in Table 6.1. Interestingly, it is this behaviour which allows the DE and DM to

satisfy the triangle inequality, while the Bhattacharyya distance’s quadratic penalty for

differing means (Equation 6.14) fails the triangle inequality for the reasons outlined earlier

in this section. Section 6.4 will show the implications of this behaviour for search efficiency.

Effects of a Change in Variance

Next, consider how distances change as variance is altered. In particular, consider the

distance from p1(x) to each of p3(x) and p4(x), which have equal means but different

variances. This comparison is shown in the last two columns of Table 6.1. p4(x) has more

overlap with p1(x), and is therefore considered by DE to be more similar to p1(x). In

contrast, DPE considers p4(x) to be less similar to p1(x) due to the mismatch in variances.

Again, the behaviour of DM is more similar to DE than to DPE, considering p4(x) to

be more similar to p1(x). Section 6.5 will discuss how the two approaches to measuring

distances affect plan quality.

6.4 Search Efficiency

Search efficiency using the Euclidean, Matusita and Parameter-Euclidean distances was

compared on random databases of size 5000. To generate each point in the databases, each

dimension of the mean was sampled from a uniform distribution in the range [0, 50]. The

diagonal elements of the covariance matrices were sampled uniformly in the range [0.1, 5.0].

These ranges were chosen to approximate the kinds of beliefs that might occur for an agent

navigating in BlockWorld. For each database, a vp-tree was built. An equivalent number

of test points was then generated in the same manner, and the average number of distance

calculations required to determine the nearest-neighbour was measured. The results are

shown in Table 6.2.
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Parameter-Space
Gaussian Type Dimension Distance Metric % Compared

1 Dimensional 2D Parameter-Euclidean 0.4%
1 Dimensional 2D Euclidean 1.6%
1 Dimensional 2D Matusita 1.8%
2D Diagonal 4D Parameter-Euclidean 1.0%
2D Diagonal 4D Euclidean 76%
2D Diagonal 4D Matusita 49%

Table 6.2: Average percentage of the database against which a query element needed to be
directly compared when performing a nearest-neighbour lookup using a vp-tree.

It is clear from Table 6.2 that the efficiency of the vp-tree is significantly worse when

comparing distributions than when comparing vectors. Furthermore, the gap between the

two increases rapidly with the dimensionality of the parameter vector. When searching

for the nearest-neighbours of a two-dimensional axis-aligned Gaussian using DE , distance

calculations must be performed against 76% of the database, which is a disappointingly

small improvement over the 100% required for brute-force search.

The cause for this inefficiency can be explained with reference to the simple example from

Section 6.3.3. The example showed that for non-overlapping distributions, the Euclidean

and Matusita distances do not encode the idea that a wider separation of means implies

a greater distance between distributions. Most of the database is therefore considered

approximately equidistant. This results in a high intrinsic dimensionality (and hence low

search efficiency) for the spaces defined by these metrics.

An Analysis of Intrinsic Dimensionality

Figure 6.8 shows, for each of the scenarios from Table 6.2, the mean histogram of distances

from a randomly-selected vantage point to all other points in the database. This histogram

is a fundamental measure of the intrinsic dimensionality of a metric space [26]. Assuming

that the tree was built using random pivots, the histogram gives the distribution of distances

from pivots to a random query point q. Let τ̄ denote the average distance from a randomly-

selected point to its closest point, and hence the expected distance from q to the closest

point in the database. If a hypersphere of radius τ̄ does not intersect with a pivot’s split

curve, then half of the database can be rejected during a search. Figure 6.8 therefore also

shows the band defined by D = m± τ̄ . Pruning can occur only if q falls outside this band.
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(a) 2D, Parameter-Euclidean Distance
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(b) 4D, Parameter-Euclidean Distance
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(c) 2D, Euclidean Distance
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(d) 4D, Euclidean Distance
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(e) 2D, Matusita Distance
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(f) 4D, Matusita Distance

Figure 6.8: Each histogram corresponds to a scenario from Table 6.2. The dimensionality
refers to the parameter-space, rather than the state-space. Each histogram shows the ex-
pected distribution of distances from a randomly-selected vantage point. The dashed lines
represent D = m ± τ̄ , where τ̄ is the average distance from a randomly-selected point to
its closest point. The databases are of size 5000, with means sampled uniformly from the
range [0, 50] and diagonal covariance entries from the range [0.1, 5.0]. Note that the shape of
these histograms depends on the ranges from which the means and covariances are sampled,
and that the expected distance to the closest point depends on the density of points and
therefore the size of the database.
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Therefore the efficiency of searching the vp-tree decreases monotonically with the amount

of probability mass covered by this band.

To clarify, one can imagine the extreme case where the distance function returns zero if

p1(x) = p2(x), and one otherwise [26]. Under these circumstances the histogram is a single

delta at distance 1, entirely covered by m± τ̄ , and brute-force search cannot be improved

upon.

Figure 6.8 explains the observed inefficiency. Considering all non-overlapping Gaussians

to be approximately equidistant induces a highly peaked histogram and hence a high in-

trinsic dimensionality. While this intrinsic dimensionality is low when using the Parameter-

Euclidean metric or working with one-dimensional Gaussians, the situation is hopeless when

using either the Euclidean or Matusita distance with two-dimensional diagonal Gaussians.

6.4.1 Improving Efficiency Through Metric Repair

The previous section showed that several metrics from the literature induce spaces of high

intrinsic dimensionality, which results in low search efficiency. This section suggests an

approach to repairing these metrics in order to avoid this problem. It relies on the fact

that the sum of two distance metrics is also a distance metric. This is trivial to show: if

the three properties of distance metrics from Section 6.2.2 are satisfied by D1 and D2, then

clearly they are also satisfied by D3 = D1 +D2.

Given this fact, the proposed approach is to devise additional metrics which can be added

to either the Euclidean or Matusita metrics. In particular, it would be beneficial to de-

vise a metric which heavily penalises widely-separated means or widely-differing covariance

matrices. This would ensure that most of the database is not approximately equidistant

from any given point, broadening the histograms from Figure 6.8. Additional metrics are

chosen such that the original metrics dominate for similar distributions, but the additional

metrics dominate for dissimilar distributions. Therefore the ordering for nearby neighbours

will remain relatively intact, while the relative distances of the rest of the database can be

chosen according to practical considerations.

The Matusita distance DM was chosen for the subject of this discussion. For the test

database of Gaussians described in Section 6.4, it can be seen from Figure 6.5(f) that

for Gaussians with similar means, DM is already relatively sensitive to the differences in
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covariance that are likely to be encountered. Therefore DM can be repaired by adding one

extra term, Dµ, which penalises widely-separated means:

DMR
= DM +Dµ (6.25)

As a simple distance sensitive to a difference in means, a weighted Euclidean distance

between mean vectors was chosen:

Dµ(v1,v2) = wµ

{

(meanv1 − µ2)
T (µ1 − µ2)

}1/2

(6.26)

where wµ sets the weighting of Dµ relative to DM . Dµ clearly satisfies all the conditions

for a proper distance metric except the requirement that Dµ = 0 if and only if v1 = v2.

This condition is not satisfied for vectors with identical means but different covariances, for

which Dµ = 0 but v1 6= v2. It will be satisfied for DMR
however. While the derivation of

wµ is deferred to Appendix A, the final value used was

wµ = Ms
√

2
{
−8 log(1− s2)

}−1/2
(6.27)

where s = 0.9 and M = 0.25.

Experimental Evaluation

The effect of the choice of metric on efficiency was evaluated using a database of the same

size and distribution as the database from Section 6.4. 5000 query points were randomly

selected from the same distribution. For a set of metrics, the nearest-neighbour of each

query point was calculated and the average number of required distance calculations was

recorded. The lists of nearest neighbours were then compared, and the percentage of queries

on which they agreed was calculated.

The results, shown in Table 6.3, demonstrate that the repaired Matusita metric mostly

agrees with the original Matusita metric but requires a much smaller number of distance

calculations, comparable with the number required for a general vector space of equivalent

dimension. The agreement between DMR
and DPE is not so strong, for the reasons outlined

in Section 6.3.3. Note that these results are dependent on the size and distribution of the
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database. Finally, Figure 6.9 shows the distance distribution for the repaired metric and a

plot of the 1-dimensional case, for comparison with Figures 6.8 and 6.5 respectively.

% Nearest-Neighbour Agreement % Compared

Metric DPE DE DM DMR

Parameter-Euclidean (DPE) 100% 69.1% 73.8% 67.6% 0.39%
Euclidean (DE) 100% 93.8% 95.6% 1.74%
Matusita (DM ) 100% 91.2% 0.87%
Repaired Matusita (DMR

) 100% 0.42%

(b) 1D Gaussians (2D Parameter Space)

% Nearest-Neighbour Agreement % Compared

Metric DPE DE DM DMR

Parameter-Euclidean (DPE) 100% 42.7% 49.9% 45.3% 1.02%
Euclidean (DE) 100% 81.7% 83.5% 75.7%
Matusita (DM ) 100% 86.6% 42.5%
Repaired Matusita (DMR

) 100% 1.70%

(b) 2D Diagonal Gaussians (4D Parameter Space)

Table 6.3: For (a) 1D and (b) 2D Gaussians, the central four columns are a matrix show-
ing the percentage of random queries about which pairs of metrics agree on the nearest-
neighbour. The rightmost column shows the average portion of the database against which
each query had to be compared.

6.5 Evaluation of Expected Plan Quality

While the preceding discussion analysed and improved search efficiency, this section ana-

lyses the expected quality of plans when using each metric. The choice of distance metric

affects the weighting function, which affects the discrete transition probabilities stored in

T . This section will show that certain metrics are more appropriate than others for plan-

ning in Igauss, by comparing how well the discrete transitions approximate the underlying

continuous transitions.

Each discrete transition (for a given action and observation) assumes that the agent begins at

one of the beliefs in B and will transition to another belief in B. Where the true continuous

transition does not end at a belief in B, in the agent’s mind’s eye it will probabilistically
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(a) 2D Distance Distribution for DMR
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(b) 4D Distance Distribution for DMR
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Figure 6.9: (b) and (c) show the expected distribution of distances from a randomly-chosen
vantage point. (a) shows the repaired Matusita distance DMR

from a reference 1D Gaussian
N(0, 1). Compare with Figures 6.8 and 6.5.

‘snap’ to a nearby belief after the transition (see Figure 6.10). If this snapping process is

inaccurate, the agent will have an unrealistic view of the likelihood of posterior beliefs.

6.5.1 Probabilistic Paths through Discrete Belief Sets

Rather than a single action and observation, consider an initial belief and a fixed set of future

actions and observations. This gives rise to a deterministic path through the continuous

belief-space. Since the PPOMDP agent plans over a set of discrete beliefs, this deterministic

future path must be approximated by a probabilistic path through B. This is done by

approximating each deterministic step in the path by a probabilistic step between discrete

beliefs.
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I
(a) The distribution over posterior beliefs, p(I+|I,u)

I
(b) An approximation to (a), based on sampling

IB,8IB,4IB,2 IB,6

I
IB,7IB,1 IB,3 IB,5

(c) An approximation to (b), made by weighting B

Figure 6.10: An example of a hypothetical one-dimensional belief-space. The figure is iden-
tical to Figure 5.2, except that B is non-uniform. (a) shows the true distribution over
posterior beliefs, (b) shows a set of sampled posteriors, and (c) shows the approximation to
(a) made by FVI, using (b). The true state of affairs is that the appearance of the observa-
tion z+ will result in a posterior belief I+ being selected from the continuous distribution
shown in (a). When planning using FVI, the agent supposes that when the observation is
revealed, the posterior belief will be selected from the distribution shown in (c). In other
words, the agent is under the impression that its posterior belief will probabilistically ‘snap’
to one of the beliefs in B.

A Simple Simulation

This idea can be demonstrated with a simulation, using one-dimensional Gaussian beliefs.

The simulation used databases of 5000 and 50000 beliefs, sampled from a uniform distri-

bution. To ensure equal axes on graphs for clarity, the ranges of means and variances were

both set to (0.1, 50). Note that a database of 5000 beliefs over this range has one tenth the

belief density of the database used in Section 6.4, while a database of size 50000 has equal

density. The starting belief was set to (µ, σ2) = (35, 20). A circular path was then gen-

erated, consisting of 50 steps through the continuous parameter-space. This deterministic

path is assumed to be the result of a particular set of future actions and observations.

Approximations to this true path can then be sampled, by sampling from the probabilistic

discrete transitions which the planner uses to approximate the true continuous transitions.
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Errors between the true path and sampled paths accumulate because the sampled paths

snap to discrete beliefs after every transition, introducing noise. This noise introduces

uncertainty about future posteriors beliefs. A good weighting function should minimise this

uncertainty, giving the planner an accurate picture of the future.

The weighting function relies on a distance metric and a bandwidth. All true distance

metrics from previous sections were compared. The bandwidth was selected as follows. Let

τ̄B
D denote the mean distance from points in B to the nearest other point in B, using the

metric D. ζB was set to Cτ̄B
D , where C was set to 0.5.

The results of sampling 100 paths, for each metric and database size, are shown in Fig-

ure 6.11. Unsurprisingly, the results show that a higher density of belief points results in a

better approximation, with more accurate predictions of future beliefs. More interestingly,

Figure 6.11 shows that not all metrics are equal. DPE introduces less noise than the other

metrics, which tend to over-estimate the probability of transitions to high-variance beliefs.

The Tendency to Transition to High-Variance Beliefs

DE , DM , and DMR
over-estimate the probability of transitions to beliefs with larger vari-

ances because they penalise a difference in means more heavily when a potential neighbour

has a smaller variance. In other words, when the mean of the belief at the end of a true

transition is not aligned with the mean of any belief in B, these metrics will place more

weight on the more uncertain nearby beliefs in B. This makes sense for metrics based on

overlap. When means are not aligned, more overlap can be attained by selecting a neigh-

bour with a higher variance. Since the Parameter-Euclidean metric is not based on overlap,

it does not exhibit this bias.

The bias was quantified more precisely by repeatedly selecting a random point from the

same distribution as the database, probabilistically snapping it to a nearby belief in B, and

noting whether the snap was to a more or less certain belief. The uncertainty of a belief was

measured by calculating the determinant of its covariance matrix, which is monotonically

related to its entropy [30]. Table 6.4 shows the results of 50,000 trials. As expected, DPE

is the only metric which does not exhibit a bias. The bias for the other metrics is negligible

when using a large database in a low-dimensional space, but increases as the density of

beliefs decreases (due to either fewer beliefs or the use of a higher-dimensional belief-space).
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Figure 6.11: A simulation showing the noise introduced by approximated continuous transi-
tions by discrete transitions. (a)-(d) use a database of size 5000, while (e)-(h) use a database
of size 50000. Each plot marks the true path through belief-space with a thick blue line,
beginning on the right and travelling in a counter-clockwise direction. The sampled approx-
imations are shown as red lines, and the belief set is shown with black dots.
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5000 Beliefs 50000 Beliefs

Metric 1D 2D Diagonal 1D 2D Diagonal

Parameter-Euclidean 50.16% 50.29% 49.77% 50.36%
Euclidean 52.87% 67.39% 50.82% 62.08%
Matusita 51.75% 60.14% 50.58% 56.54%
Repaired Matusita 51.38% 59.14% 50.39% 56.13%

Table 6.4: The proportion of trials in which snapping from a random belief increased
uncertainty, using databases of size 5000 and 50,000, and using one-dimensional Gaussians
and two-dimensional diagonal Gaussians. Each figure is generated from 50,000 trials. An
unbiased weighting function will increase uncertainty 50% of the time.

6.6 BlockWorld Experiments

In this section, the PPOMDP algorithm presented in the previous chapter is extended to

allow the use of arbitrary belief sets, and applied to the BlockWorld problem. Due to the

factoring described in the previous chapter, the algorithm uses two potentially different sets

of beliefs: the set of beliefs after acting and making complete observations, B, and the set of

beliefs after acting and observing the output of the collision sensor, BC . There are therefore

potentially two different weighting functions, λB and λBC
, with two associated bandwidths,

ζB and ζBC
. The full list of items which must be specified in order to extend the algorithm

by the use of arbitrary beliefs is:

1. the similarity search algorithm;

2. the distance metric D;

3. the kernel bandwidths ζB and ζBC
; and

4. the sets B and BC .

This section describes experiments with different combinations of settings for these items.

The results are presented by first providing details of the combination which was found,

empirically, to produce the best results. This consisted of the following:

• Similarity Search

A vantage point tree was used for similarity search.
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• Distance Metric

The Euclidean distance in parameter space, DPE , was found to produce the best

results.

• The Bandwidths ζB and ζBC

The bandwidths were set as in Section 6.5. ζB was set to Cτ̄B
D , where τ̄B

D denotes the

mean distance from points in B to the nearest other point in B using the metric D,

and C was set to 0.5. ζBC
was set similarly based on the distances between points in

BC . Performance was found to be relatively insensitive to changes in C.

• The Sets B and BC

B was calculated by random exploration. The size of the set, |B|, was decided a

priori. Until |B| was reached, a number of episodes were simulated. For each episode,

the agent begins at a random unknown valid state. Its belief is initialised by sampling

a Gaussian belief, with unit covariance, consistent with the initial state. Each episode

lasted 20 iterations. On each iteration, the agent randomly selects an action from a

uniform distribution over the continuous range of actions. After taking the action and

receiving an observation, it updates its belief. Each new belief is inserted into B. The

best results were obtained by choosing BC to be identical to B. An example belief

set is shown in Figure 6.12.

Section 6.6.1 compares the results using this configuration against results from previous

chapters. Subsequent sections then describe the effects of deviations from this configuration:

Sections 6.6.2, 6.6.3, and 6.6.4 modify the distance metric, set BC , and belief set generation

algorithm, respectively. All results are averaged over the four goal locations specified in

previous chapters. The result for each goal location was the average of 1000 episodes.

6.6.1 Comparison Against Previously-Presented Algorithms

Figures 6.13 and 6.14 show the effects of using an arbitrary rather than a regular belief

set. Algorithm 10, as presented in Chapter 5, was used to solve the PPOMDP; the only

difference is the set B and the associated weighting function λB . The parameters for B and

λB are as specified in Section 6.6, for a range of values of |B|.
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Figure 6.12: A sample of beliefs generated by random exploration. The plot shows 100
beliefs sampled from a belief set of size |B| = 6000, using the 30×15 sparse world. For clarity,
ellipses bound a one-sigma confidence interval. Generating beliefs through exploration takes
advantage of the structure of the problem. For example, only uncertain beliefs are possible
in the central open area.

It can be seen from Figures 6.13 and 6.14 that a reasonable choice for the size of the arbitrary

belief set is |B| = 2000. For this set size, switching from a regular to an arbitrary belief set

makes little difference in terms of attainable reward, perhaps leading to a small improvement

for some worlds. The difference in the time taken to generate the value function, however,

is considerable. For all four worlds, the reduction in computation time is approximately

equivalent to the reduction in the size of the belief set. The regular grids used 8316 and

17856 for the small and large worlds, respectively. Using only 2000 belief points represents

a reduction to 24% and 11% respectively, which approximates the reduction in required

computation time.

The memory requirements are also significantly reduced. The memory required to store the

transition function T for a regular belief set are considerable, even after taking advantage

of its sparse nature. For the 20×10 dense world, for each action, the transition function

for each belief point referenced an average of approximately 85 next-belief-points. For 33

possible actions, the memory required for T is 8316× 33× 85× 4 bytes (just under 90Mb)

when the index of each next-belief is stored as a four-byte integer. While this could be

reduced by ignoring some of the extremely unlikely transitions, it is still considerable and
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(a) Mean Performance on 20x10 dense world
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Figure 6.13: A comparison of rewards, for regular and arbitrary belief sets, for various
settings of |B|. The parameter settings for the arbitrary grid are as described in Section 6.6.
The regular grid is as described in previous chapters.

limits the ability of the algorithm to scale to larger problems. In contrast, the arbitrary

belief set for the same world referenced an average of only around 14 next-beliefs per belief-

action combination. The memory requirements for T are therefore only 2000× 33× 14× 4

bytes, or about 3.5Mb. In addition, an arbitrary belief set incurs the extra cost of having

to store the set B explicitly. This is relatively small however: storing each belief as four

floating-point numbers (two for the mean and two for the covariance) consumes just under

8Kb.
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Figure 6.14: A comparison of time required for planning, for regular and arbitrary belief sets,
for various settings of |B|. The parameter settings for the arbitrary grid are as described
in Section 6.6.

6.6.2 Experiments with the Distance Metric

For all four worlds, mean performance and value function generation times were compared

for four algorithms: (1) MDP, (2) the version of the PPOMDP algorithm described in

Chapter 5 (using a regular grid of beliefs), (3) the same PPOMDP algorithm, using an

arbitrary grid of beliefs and the Euclidean distance in parameter space DPE , and (4) the

same PPOMDP algorithm, using an arbitrary grid of beliefs and the repaired Matusita

distance DMR. Figures 6.15 and 6.16 show, for each world, the results obtained by sweeping

across belief sets of many different sizes. Figure 6.17 shows a different view of the same

data, obtained by directly comparing performance on each world for |B| = 2000.
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Figure 6.15: The effects of different distance metrics on reward, for various values of |B|.

DMR requires more time for planning than DPE due to the increased computation involved

in each distance calculation. Comparing mean reward, DPE out-performs DMR
on most

worlds, especially in the 30 × 15 sparse world. This result is due to the tendency of DMR

to over-estimate the probability of transitions to high-variance beliefs, as was described

previously in Section 6.5. This tendency is most apparent in the 30 × 15 sparse world,

where belief density is lowest. Given these results, DPE is adopted as a distance metric for

the remainder of this thesis.
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Figure 6.16: The effects of different distance metrics on planning time, for various values of
|B|.
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Figure 6.17: The effects of a different distance metric. This plot shows a slice of the data
in Figures 6.15 and 6.16, for |B| = 2000.



CHAPTER 6. USING ARBITRARY BELIEF SETS 146

20x10−dense 20x10−sparse 30x15−dense 30x15−sparse
2

3

4

5

6

7

8

9
 

M
ea

n 
re

w
ar

d

Worlds

MDP
PPOMDP, Regular B
PPOMDP, Arbitrary B

C
 = B

PPOMDP, Arbitrary B
C

 != B

(a) Mean Reward

20x10−dense 20x10−sparse 30x15−dense 30x15−sparse
0

10

20

30

40

50

60
 

M
ea

n 
tim

e 
(s

ec
)

Worlds

MDP
PPOMDP, Regular B
PPOMDP, Arbitrary B

C
 = B

PPOMDP, Arbitrary B
C

 != B

(b) Mean Time

Figure 6.18: The effects of using distinct sets BC and B, versus identical sets. Belief set
sizes are fixed to |B| = |BC | = 2000. PPOMDP with a regular grid and MDP are included
for scale.

6.6.3 Experiments with a Distinct Set BC

This section compares the results of two algorithms for generating the sets B and BC using

random exploration. The first is as described in Section 6.6: an agent randomly explores the

environment. Each new action and complete observation results in a new belief I+ which

is added to the set B. After exploration is finished, a copy of B is used as the set BC .

The second algorithm uses distinct sets B and BC . At each time step, the agent generates

two beliefs, I+
C and I+. I+

C is the result of the inclusion of information from the action

and collision sensor, and is inserted into the set BC . I+ is the result of the inclusion of all

information, and is inserted into B. Note that I+ is not actually generated from I+
C . To

do so would incur the approximation penalty of mapping from particles to a Gaussian and

back. Instead, I+ is calculated directly from I, u and z+. The sizes of both sets were fixed

at 2000 belief points.

The results are shown in Figure 6.18. The use of distinct set makes little difference to mean

reward, but results in a slight increase in the time requirements.



CHAPTER 6. USING ARBITRARY BELIEF SETS 147

6.6.4 Experiments with Belief Set Generation

It is possible that the belief sets generated by random exploration will be unnecessarily

dense in some areas of the belief space, and too sparse in others. This section describes

the results of a modification to the belief set generation algorithm to try to prevent this

occurrence. The modification is simple: beliefs are added to B only if they are sufficiently

different from the beliefs already in B. Specifically, they are added only if the distance to

the nearest point in B is greater than a threshold. A similar approach to adding new belief

points was used by Thrun [108]. The value of this threshold is a free parameter, for which

0.2 was selected in this work.

Note that this modification to the algorithm for generating the belief set affects the mean

distance between beliefs in the set. The algorithm described in Section 6.6 sets the band-

width ζB based on this mean. Therefore comparisons in this section use a fixed bandwidth

of 0.5, to ensure that the makeup of the belief set is the only parameter being modified.

The detailed results are shown in Figures 6.19 and 6.20, while a summary for |B| = 2000 is

shown in Figure 6.21. Figure 6.20 shows that fixing a constant bandwidth has some impact

on the time required to generate plans. While previous results showed a well-behaved linear

dependence of planning time on |B|, Figure 6.20 shows some aberrations.

The results demonstrate that accepting only those beliefs which are sufficiently different

from the existing set does not improve performance, and is detrimental in some cases.

In most cases there is a small increase in the time requirements, due to the fact that

the exploration algorithm has to execute more steps, since not every step will result in a

belief being added to B. This increase could be reduced, since the implementation which

generated the results in Figure 6.21 used linear search to find the nearest belief in B. A

vp-tree could be used, however it can quickly become unbalanced when points are added

incrementally [55]. A better alternative would be to use a data structure optimised for

dynamic modification, such as an M-tree [28].

One possible explanation for the disappointing performance is that rejecting overly-similar

beliefs represents an attempt to enforce more uniformity on the belief set. The logical

extreme of enforcing uniformity is to use a regular grid, for which 2000 belief points are

clearly insufficient. Selecting belief points by exploration is advantageous precisely because
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Figure 6.19: The effects of different belief set generation algorithms on reward, for various
values of |B|.

the set of likely beliefs is in fact non-uniform. By allowing the exploration algorithm to

freely choose a set of belief points, the density of B can be matched to the density of beliefs

expected during plan execution.

This line of reasoning suggests that one could expect better performance by matching B

more closely to the set expected during plan execution. This can be achieved by matching

the policy used for exploration to the final policy which will be used for plan execution.

While the final policy is not known when selecting B, one could expect to find a better

approximation than a random policy. Roy uses two approaches to finding a better ap-

proximation: initial exploration using heuristics based on the MDP solution, and further

exploration using the POMDP policy after partial calculation of the value function [92].
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Figure 6.20: The effects of belief set generation algorithms on planning time, for various
values of |B|.

One must be careful however to ensure that the POMDP planner is given sufficient initial

belief points to allow it to make significant deviations from the heuristic plan. This idea

will be utilised for the more complex world described in Chapter 8.

6.7 Summary

This chapter presented an approach to efficient function approximation when using arbi-

trary belief sets. After reviewing the literature on similarity search, it presented several

approaches to measuring distances between distributions in general and Gaussians in par-

ticular, and discussed their suitability for similarity search in Igauss.
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Figure 6.21: The effects of belief set generation algorithms on (a) reward and (b) time, for
|B| = 2000. The plots show a slice of the data presented in Figures 6.19 and 6.20.

Several of these distance metrics were then evaluated experimentally on a synthetic dataset.

Efficiency problems, related to the intrinsic dimensionality when using certain metrics, were

identified, analysed and solved. Metrics were then analysed in terms of the expected quality

of plans which would result from their use. The metrics based on dissimilarity of general

probability distributions were shown to be likely to result in worse plans. This is because

they tend to over-estimate the probability of transitions to uncertain beliefs.

After showing how similarity search can be incorporated to implement an efficient weighting

function, the approach was experimentally validated on BlockWorld. Individual parameter

settings were varied in order to demonstrate their effects.

The results showed a significant speed-up in planning time, plus reduced memory require-

ments. In addition, there are several less-obvious benefits of using arbitrary belief sets.

Firstly, compared to a regular grid, there are fewer free parameters to specify. To specify

a set of beliefs, a regular grid requires that the range and level of discretisation of each

parameter be specified. An arbitrary grid requires only that the size of the belief set and

the algorithm for generating it be specified. Secondly, the results obtained when using a

regular grid can be sensitive to the particular details of how grid-points line up with features

of interest (such as the goal), which is determined by the range and level of discretisation

of the grid. The use of arbitrary grids removes this dependency.

Finally, we note that Pineau has experimented with applying metric indexing schemes to

Point-Based Value Iteration, a discrete gradient-based approach [85]. Beliefs over discrete
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states are stored in metric trees in order to accelerate the comparison of belief points with α-

vectors. The results seem to show that the efficiency gains of using metric indexing decrease

as the number of states grows, and hence the intrinsic dimensionality of the space increases.

This agrees with the results presented in Section 6.3. We expect the use of metric indexing

schemes to be more profitable for beliefs described by fewer parameters.



Chapter 7

Plan Execution and Forward

Planning

This chapter shows how plan execution can be improved by incorporating online forward

planning with prior offline value iteration. Section 3.5 described how the PPOMDP agent’s

plans have been executed until this point. To briefly review, value iteration requires a

maximisation over actions at every belief point. By remembering those maximising actions,

an agent executing the plan online can simply apply the maximising action corresponding

to the stored belief in B which most closely matches the current belief.

Section 3.5 referred to this strategy as zero-step lookahead, referring to the idea that it is a

special case of a more general lookahead strategy. Recall that Section 2.7.3 described how

a POMDP can be viewed as a game in which turns alternate between the agent selecting

an action, and nature selecting an observation. Figure 7.1 shows how this game can be

represented as a tree, with circles representing action-nodes from which the agent chooses

an action, and squares representing observation-nodes from which nature chooses an obser-

vation. Casting the problem as a game in this way makes it possible to draw on extensive

theoretical analysis and results from the AI game-playing literature. The contribution of

this chapter is to discuss how results from the game-playing literature can be applied to

the PPOMDP formulation, to show how a game-tree can be implemented in an efficient

manner for a particle-based PPOMDP, and to experimentally evaluate the approach on

BlockWorld.

152
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Figure 7.1: A POMDP viewed as a game-tree, starting from belief I. Action-nodes (cir-
cles) represent nodes from which the agent chooses a value-maximising action from one of
n = |U | choices. Observation-nodes (squares) represent nodes from which the environment
probabilistically chooses one of m = |Z| observations. The value of each node is based
on the rewards associated with belief-action transitions and the estimated values of the
un-expanded leaf nodes.

The remainder of this chapter proceeds as follows. Section 7.1 describes the parallel between

POMDPs and game-trees in more detail, and Section 7.2 reviews similar games and strate-

gies from the literature which have proven effective for solving them. Section 7.3 shows

how forward planning can be incorporated efficiently into the particle-based PPOMDP for-

mulation presented in previous chapters. Experiments to show the value of incorporating

forward planning are described in Section 7.4. The results, presented in Section 7.5, show

that online forward planning relaxes the requirements for detailed and time-consuming off-

line prior planning. Section 7.6 discusses approaches to improving forward planning, and

Section 7.7 summarises.

7.1 Forward Planning as Game-Tree Expansion

A tree represents a plan as follows. Should the agent arrive at a particular action-node,

that node dictates both the current action and a future policy:

• At every non-leaf action-node, the current action is the one which leads to the

maximum-value observation-node. The future policy is the policy dictated by the

child action-node resulting from the current action and the subsequent observation.
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• At every leaf action-node, both the current action and all future actions are determined

directly from prior value iteration. The maximising action for the nearest belief in B

is always selected.

In practice only the first action of any plan will ever be executed, because a new game-tree

will be generated for the next action.

In the language of the literature on game-tree searching, the value of a leaf node is deter-

mined using an evaluation function. This is a somewhat coarse estimate of the value of

the node which can be obtained without examining its children, usually through the use of

a heuristic. Game-tree terminology also refers to a single level of the tree, consisting of a

move by either player, as a ply. We prefer to define the depth solely in terms of action-nodes

because the evaluation function exists only for action-nodes. Further, we define an n-step

lookahead plan as a tree of maximum depth n. The plan which has been considered thus

far, namely a zero-step lookahead plan, corresponds to a tree consisting of a single leaf. The

plan is therefore derived solely from the previously-computed value function.

While most games to which game-tree search has been applied use a discrete state-space,

the belief-space of the PPOMDP problem is continuous. Plan execution using the value

function alone implicitly assumes that the agent begins every action at one of the beliefs

in B and will transition to another belief in B. As described in previous chapters, where a

transition does not end at a belief in B, in the agent’s mind’s eye it will probabilistically

‘snap’ to a nearby belief after the transition (see Figure 6.10). The incorporation of forward

planning allows the agent to plan over the entire continuous belief-space for a few moves,

delaying this snap. In areas of the belief-space where B is dense, the approximation of

snapping to a nearby belief is relatively mild. In sparse areas, however, it is more severe.

It will be shown in Section 7.5 how the use of forward planning allows sparse areas of the

belief-space to be ‘filled in’ at execution time.

In game-tree terms, the evaluation function in the PPOMDP case is a function which

returns the infinite-horizon discounted cumulative reward when executing the previously-

calculated policy while snapping to B at every iteration. Forward planning to a depth of d

means that the agent can compare plans which begin snapping to B only after d actions.

The scenario is a standard one in planning for game playing: exact forward planning can

occur to a certain depth, beyond which a more coarse approximation is used. Problems
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can occur near the boundary between exact and approximate planning; see the discussion

of the horizon problem in Section 7.2.1.

In addition to a continuous state-space, the PPOMDP scenario has a continuous action-

space. This has been dealt with by artificially discretising that space. The level of dis-

cretisation is a free parameter: a coarse discretisation is preferred in terms of planning

time, but may result in poor fine control during plan execution. Forward planning may

offer a solution, since the set of actions considered from the root node need not match the

actions considered during value iteration. Increasing the level of discretisation during value

iteration has a dramatic effect on planning time, because the same number of actions is

considered for every belief. However, it may be possible to locally refine the prior plan by

considering a larger number of actions, just from the agent’s current belief, during plan

execution.

As with any tree-search problem, one must choose an order in which to expand nodes

when growing the tree, and there are usually better strategies than brute-force breadth-first

search. While executing PPOMDP plans for robot navigation, time is a strict constraint: a

robot must be able to make decisions quickly in order to interact with the real world, and

can therefore choose only a limited number of nodes to expand.

7.2 Strategies for Related Tree-Expansion Problems

Before discussing particular strategies, it is helpful to clarify the nature of the problem and

relate it to similar AI problems. The problem of searching the tree resembles many general

tree-search problems to which algorithms such as AO* have been applied [78], but differs

in several important respects. Firstly, there is no goal state but rather a continuous reward

associated with any given path through the tree. Secondly and more importantly, the aim

is not to find a path to a goal state, or even a path of maximum reward, but rather to

select a good action from the root node. AO* operates by expanding the most promising

node first. In contrast, a good tree-search strategy for the problem at hand should begin

by expanding nodes which are likely to affect the choice of action from the root. It should

try to either lower the value of the apparent best action or increase the values of other

competing actions.
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In this way the PPOMDP search tree is similar to a minimax tree [95], the differences

being that the opponent plays randomly rather than adversarially, and that the state and

action spaces are continuous rather than discrete. Given this parallel, it is worth considering

effective minimax search strategies. Efficient search of minimax trees has made enormous

differences to machines’ ability to plan ahead in fully observable deterministic games such

as chess [95][118]. It may be worth pointing out once again that the POMDP forward-

planning problem, like chess, is fully observable because it is the (observable) I-state which

is considered rather than the (unobservable) true underlying state.

In terms of determinism, the POMDP problem is more similar to a game such as backgam-

mon, which has a random element introduced by the dice. Playing against an opponent

who plays probabilistically is in fact more difficult computationally than playing against

an adversarial opponent as in chess. While an adversarial opponent will deliberately frus-

trate, he or she is at least predictable. This predictability allows branches of the game-tree

to be pruned, since there are many moves a good opponent will clearly never make. A

probabilistic opponent can be modelled less precisely, and hence the effective non-prunable

branching factor is much higher, limiting the depth of forward search. Comparing successful

implementations in different domains, Deep Blue could plan to a depth of around 14 plies in

chess [22], whereas TD-Gammon could plan forward only two or three in backgammon [106].

The probabilistic nature of the opponent in the POMDP problem suggests that the horizon

of forward planning will be more similar to TD-Gammon’s than Deep Blue’s.

7.2.1 Common Strategies for MiniMax Tree Expansion

At the heart of many minimax game-playing algorithms is iterative-deepening alpha-beta

search [95]. Iterative-deepening avoids the need to specify a maximum depth of search.

Specifying a particular depth a priori is hazardous because a shallow search will result in a

poor plan, but if the search is too deep the agent may run out of time before the search is

completed. The results of a completed shallower search are generally more reliable than the

results of a partially-completed deeper search [118]. Iterative deepening simply performs

a number of fixed-depth searches, beginning with a very shallow search and extending the

depth by one ply per iteration.

Alpha-beta search performs a depth-first search of the tree to a specified depth. For each

node it maintains bounds on the best outcome that either player can guarantee for them-



CHAPTER 7. PLAN EXECUTION AND FORWARD PLANNING 157

selves for a game passing through that node. Assuming optimal play, a player will never

select a branch which is provably worse than the best outcome they can already guarantee.

Such a branch can therefore be pruned. Pruning in this manner can result in an effective

halving of the branching factor of the tree, although the results are highly dependent on

being able to select good actions for evaluation before worse actions [95]. When a prob-

abilistic element is involved, as in backgammon, alpha-beta search can still be used. The

only difference is that guarantees are much harder to provide because future play is less

predictable [95].

Transposition tables are often used to further limit the branching factor [95]. A transposition

table is a lookup table of game positions which a planner can use to avoid repeated searching

of identical positions which are reachable via different sequences of moves, or in cycles.

While transposition tables can make a large difference for discrete games, it is less clear

how to apply them to games in a continuous state-space.

Search to a fixed depth d can suffer from the horizon problem [95]. One manifestation

of this problem is a plan which involves significant events at depth d. For example, a

chess plan may end with the capture of a supported bishop by the queen. The evaluation

function may assign high value to the resultant position, failing to see that the the opponent

will immediately capture the queen on the next move. Another manifestation involves an

inevitable calamitous event which the evaluation function cannot foresee. If the planner can

push the event over the edge of the forward planning horizon, it will apparently disappear.

Therefore an apparently-successful strategy is to waste time, or make slightly-detrimental

stalling moves which only delay the inevitable.

The horizon problem arises due to the mismatch between the crude evaluation function and

accurate forward planning. While the problem can be lessened by an improved evaluation

function, it cannot be eradicated without a perfect evaluation function, which would render

forward search redundant. A solution to the former manifestation is quiescence search, a

specific case of a more general technique known as singular extension [118]. The use of

singular extensions involves searching more thoroughly and deeply in areas of game-trees

near significant events. These tend to correspond to scenarios in which the evaluation

function is less stable. Examples of significant events include domain-specific events such as

check or capture in chess. More generally, a node whose value is significantly higher than

its siblings’ (indicating a forced move) tends to be a good candidate for further search.
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Upton overviews a number of more advanced techniques for identifying significant areas of

the game-tree on which to focus [118]. He suggests however that once an area has been

deemed worthy of special attention, it should be searched thoroughly. The most thorough

means is brute-force full-width fixed-depth search. Since the area near the root is certainly

significant, a successful strategy seems to be to begin any search with an initial shallow

full-width search from the root. For PPOMDP game-trees for robot navigation, considering

the high branching factor arising from a probabilistic opponent plus the tight constraints

on the amount of time available for online planning, it seems unlikely that enough time will

be available to move beyond this initial full-width search.

7.3 Forward Planning for a Particle-Based PPOMDP

As mentioned in Section 2.7.3, the depth of a breadth-first search is limited by the expo-

nential explosion of the number of nodes at each level. Specifically, the number of nodes

at depth d is (mn)d, where m and n are the branching factors at observation and action

nodes respectively. To maximise the forward planning horizon, it is therefore important

to minimise the storage and computational costs at each node. Note that it is assumed

for the purposes of this discussion that the reward is action-independent; the extension to

action-dependent rewards is straightforward.

7.3.1 Logical Tree Structure

In principal, the structure of the tree is as follows. Every node needs to store:

• the belief at that node, either in parametric form or as a set of samples; and

• the estimated value of the node, denoted v̂.

In addition, observation-nodes must store

• a set of arcs to action-nodes, with associated observations and probabilities

and action-nodes must store

• a set of arcs to observation-nodes, with associated actions; and
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Figure 7.2: The structure of a small segment of a particle-based PPOMDP game-tree for
forward planning, showing the information stored at each node. (a) shows the logical
structure, whereas (b) shows the structure which was implemented. The two differ for
efficiency reasons. Squares are observation-nodes, circles are action-nodes. Logically, each
observation-node stores a particle set Qz plus an estimated value v̂z, and each action-node
stores an I-state I, a reward r, a particle set Qu, and an estimated value v̂u. Each arc stores
its action or observation, plus arcs leaving observation-nodes store the probability of that
observation.

• the reward associated with the belief at that node, denoted r.

For accuracy reasons, it is preferable to propagate beliefs forward as sets of weighted samples

rather than incur the approximation error involved in mapping to and from parametric form.

Therefore every node stores a set of particles Q where each particle is a tuple qi =< xi, wi >,

with wi specifying the weight.

In addition to storing beliefs as particle sets, action-nodes need an associated parametric

belief. This is required to estimate the value of the node from the value function before it is

expanded. The structure of the tree, showing the information which is logically associated

with each node and arc, is shown in Figure 7.2(a). As will be described in subsequent

sections, the actual implementation differs from this logical structure for efficiency reasons.
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7.3.2 Observation-Nodes

Since there is no way to estimate the value of an observation-node directly from the prior

value function, it must be estimated from its child action-nodes. All leaf observation-

nodes must therefore be expanded immediately. The estimated value v̂z of an expanded

observation-node with particle set Qz is the weighted sum of the estimated values of its

children:

v̂z =
m∑

i=1

p(zi|Qz)v̂u,i (7.1)

where v̂u,i is the value of the i’th child action-node.

In analogy with the approach to belief propagation presented in Chapter 4, the number of

arcs leaving an observation node is set to the number of particles, with each observation

being the expected observation of the corresponding particle. The observation branching

factor is therefore m = |Qz|. It will be shown that Qz contains uniform sample weights,

and hence the term p(zi|Qz) can be replaced with a constant.

Each observation results in a new weighted particle set in each child action-node. However,

since the observations don’t alter the state samples but rather adjust the weights, the child

action-nodes all share a common set of state samples. In addition, one can take advantage

of the symmetry of the likelihood function by pre-calculating a weight matrix W in the

parent observation node. For details of the construction of W , the reader is referred to

Section 4.4.2.

Given these potential optimisations, the actual structure of the tree is as shown in Fig-

ure 7.2(b). The state samples for both child action-nodes and parent observation-nodes

are identical, and are therefore stored only once in the observation-node. The weights in

the observation-node are uniform, and need not be stored explicitly. The weights for the

action-nodes are stored in the parent observation-node’s weight matrix. Each action-node

contains an index to the row of W that specifies its weights.

Computing the statistics of the state samples, weighted by the appropriate row of W ,

produces the action-node’s parametric belief I. This parametric belief is used to calculate

the new leaf action-node’s estimated value, v̂u, from the prior value function.
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7.3.3 Action-Nodes

When unexpanded, an action-node’s value is estimated using

v̂u =

|B|
∑

j=1

V̂ (IB,j)λB(I, j) (7.2)

where V̂ is the previously-stored value function. When it has at least one child, its estimated

value is a maximisation over its n children:

v̂u = γmax
i∈n

v̂z,i (7.3)

where v̂z,i is the estimated value of the i’th child observation-node, evaluated using Equa-

tion 7.1.

Algorithm 13 Generates a particle set for an observation node, Qz, based on an action-
node’s particle set Qu and an action u. The number of particles representing the observation
node’s belief is set to γ2|Qu|. Using the discount factor γ causes nodes at greater depths to
use fewer particles.

1 for i← 1 . . . γ2|Qu|
2 sample a state x from Qu, with probability proportional to particle weights
3 sample a predicted state x+ from p(x+|x,u)
4 add the tuple < x+, w > to Qz, where w is a uniform weight
5 end for

An action-node is expanded by selecting an action u, then predicting the particles Qu

forward according to u to produce the new particle set Qz. This is done using Algorithm 13.

Since Algorithm 13 samples from Qu with probability proportional to the particle weights

(in step 2), and the prediction step does not alter the weights, the resultant particle set

Qz has uniform particle weights. Enforcing uniform weights in this prediction step serves

the same role as resampling in particle filters, namely combatting degeneracy (insufficient

variance in the weights) [4]. When implementing a particle filter, a common strategy is to

resample only when the effective sample size drops below a threshold, rather than at every

time step. In this case, however, uniform weights are always enforced in order to simplify

matters for the observation nodes, as described in Section 7.3.2.

The number of samples remains to be specified. Kearns et al. suggest that fewer samples

are necessary deeper in the tree, since the impact on the top-most values are diminished
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due to the discount factor γ [62]. Applied to the current problem, if the direct children of

the root action-node use |Qz| = K samples, then the children of the action-node at depth

d use γ2dK samples. This produces the factor γ2 in step 1 of Algorithm 13.

7.4 Experiments

Experiments were performed on the BlockWorld problem from earlier chapters. Unless

otherwise stated, the best set of parameters from earlier chapters was used. Tests were

performed under three conditions:

1. considering 33 possible actions during value iteration, with no forward planning during

execution;

2. considering only 9 possible actions during value iteration, with no forward planning

during execution; and

3. considering only 9 possible actions during value iteration, but planning forward with

33 possible actions during execution.

The first option above is identical to the best algorithm from the previous chapter. The set

of actions is extensive and the algorithm performs well. The second option should produce a

plan much more quickly, but the quality is likely to suffer. Eight moves of 2m are considered,

spread uniformly over the range [−π, π), plus the move (0.1m, 0). Finally, it is hoped that

the third option will provide the best of both worlds, quickly producing a coarse plan then

locally filling in the details during plan execution.

The number of samples at the root node was chosen to be 50. The time allowed for online

decision making was 10ms. Note that online decision-making times were measured using

wall-clock time, whereas offline plan generation times were measured using CPU time.

While a longer online decision-making time would be acceptable, the BlockWorld problem

is intended as a test-bed for the development of algorithms for eventual application to real-

world problems. The figure of 10ms was chosen by selecting an approximate upper limit of

100ms as an acceptable decision-time threshold in more realistic problems, and estimating

that action-node expansion in those problems might require an order of magnitude longer.
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Measurements of the time taken to consider an action followed by the subsequent observa-

tions showed that the full 10ms was required to expand the 33 actions from the root node

plus their resultant observation-nodes. Therefore all experiments used a tree of just three

levels: the root action-node, followed by 33 observation-nodes, followed by 33 × 50 = 1650

action-nodes. As suggested in Section 7.2.1, the search begins with a shallow full-width

search from the root. Unfortunately, this strategy leaves no remaining time in which to try

more selective search strategies. Performing a fixed-depth search in this way may result in

manifestations of the horizon problem. Section 7.6 suggests approaches to combatting this

by improving forward-planning speed to allow better search strategies.

7.5 Results

Figures 7.3 and 7.4 show the mean performance and time requirements, respectively, for

each of the three variations described in the previous section. Again, the results show an

average over the four goal configurations described in Chapter 3, with 1000 episodes being

used for each goal configuration.

The most salient point from Figure 7.3 is that similar performance can be attained by

considering a larger number of actions during plan execution as by prior planning with that

many actions, assuming a reasonable number of belief points. Figure 7.4 shows that the

time saved by prior planning using a smaller number of actions is considerable. In other

words, online planning confers the benefits of precise offline planning with the consideration

of many actions, but does not incur the associated cost. Note that the times shown in

Figure 7.4 include the time taken for belief set generation, hence a linear relation to the

number of actions is not expected.

A second point of interest is the behaviour when the belief set is relatively sparse. This is

easier to see in Figure 7.5, which shows the mean performance for two belief set sizes, |B| =
200 and |B| = 2000. As was seen previously, a certain minimum density of belief points is

required before the PPOMDP planner begins making sensible plans. These results suggest

that when incorporating one step of forward planning, the minimum density requirement

is lowered. Figure 7.5(a) shows that, for the 30×15 sparse world, the threshold for sensible

plans is greater than 200 beliefs. Without forward planning, PPOMDP produces terrible

results. However, a forward-planning agent can still attain a reward similar to the reward
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(d) The 30×15 sparse world

Figure 7.3: For the four worlds and a variety of belief set sizes, a comparison of mean
rewards using (i) only 9 actions, (ii) 33 actions, and (iii) only 9 actions for value iteration
but all 33 actions for one step of forward planning. The results of using 33 actions for MDP
planning are included for scale.

attainable by the MDP-based agent. We expect this result to be important as we move to

more realistic worlds in Chapter 8, for which B will necessarily be less dense than desired

due to the size and dimensionality of the state-space.

7.6 Planning Further Ahead

A major cause of the computational difficulty of forward planning in this problem is the large

branching factor for observation-nodes. Coupled with this is the fact that no evaluation
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Figure 7.4: For the four worlds and a variety of belief set sizes, a comparison of the times
required to produce a plan using (i) only 9 actions, and (ii) 33 actions. The results of using
33 actions for MDP planning are included for scale.

function exists for observation-nodes, necessitating their immediate and complete expansion.

The computational cost could be reduced substantially, and hence an agent could plan

further ahead, if this branching factor could be reduced. There are two likely approaches

to achieving this: using fewer observation samples, and detecting identical observations.

Using Fewer Observation Samples

The implementation described in this chapter required that each observation-node describe

the weights of the particles of its children with a square weight matrix. A square matrix
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Figure 7.5: This figure shows a different view of the same data as Figure 7.3, for (a)
|B| = 200 and (b) |B| = 2000 beliefs.

was chosen in order to take full advantage of the symmetry of the likelihood function, as

described in Chapter 4. Forcing W to be square implies that the number of particles defining

the distribution in each child action-node is equal to the number of observation arcs leaving

the action-node. When choosing the number of particles to use, one must therefore satisfy

two constraints with the same number:

1. there must be enough samples to represent the distribution over observations ade-

quately; and

2. there must be enough samples to represent each belief adequately.

While the appropriate number is problem dependent, it is likely that one of the two con-

straints will dominate. For the BlockWorld problem, the most pressing constraint appears

to be the latter. 50 samples seems like a reasonable number to represent each belief, but

seems excessive for representing distributions over observations. Choosing a non-square ma-

trix would allow the above constraints to be satisfied with two different parameters. At the

cost of exploiting symmetry less fully, the branching factor could be dramatically reduced.

Assuming a non-square W , a possible extension would be to use an adaptive sampling tech-

nique such as KLD sampling [42] to set the number of observation samples depending on

the complexity of the observation distribution.
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Detecting Identical Observations

In general, all observations in the BlockWorld problem will be different, due to the contin-

uous range component. However in areas of the belief-space where range observations are

unlikely and observations differ only in the discrete collision sensor, repeated observations

will occur. In areas devoid of obstacles, only one observation (no collision and no range

observations) is possible. The implementation described above assumed a uniform weight-

ing for each of the arcs leaving an observation-node, requiring that repeated observations

be represented explicitly with child action-nodes. Large computational savings would be

possible if non-uniform weights were allowed.

While continuous observations will never be identical, it is likely that they will often be simi-

lar. Discretising the observation-space with a fine grid introduces a small approximation but

may have a significant impact on the branching factor by forcing similar observations to be

identical. Note that any extra computation time spent searching for identical observations

is likely to pay off due to the geometric increase in the number of nodes at each level in the

tree.

7.7 Summary

This chapter drew parallels between POMDPs and sequential games, and discussed game-

tree search as a common solution method. It reviewed a number of algorithms for efficient

tree search, and discussed their applicability to the POMDP problem. The implementation

of game-trees for the particle-based PPOMDP approach was presented and then experimen-

tally evaluated. This showed that the incorporation of forward planning over a short horizon

at execution time relaxes the requirements for precise prior offline planning. A coarse plan

can be produced quickly, then combined with forward planning to produce results simi-

lar to those attainable by a detailed time-consuming offline planning process. Suggestions

were then presented for methods of improving the efficiency of forward planning, with the

potential to increase the online planning horizon.

The following chapter presents a complex real-world planning problem, which will require all

the improvements discussed up to this point. It is anticipated that online forward planning

will be particularly beneficial, because prior plans will necessarily be coarse by virtue of the

complexity of the problem.



Chapter 8

Scaling to the Real World

The BlockWorld example has served as a simple scenario where algorithms could be tested

and compared easily. However, as stated in Chapter 1, the eventual aim is to apply

PPOMDP planning to a real robot navigation problem. This chapter achieves that aim

incrementally, by adding realistic dynamics to a toy problem, then simulating a real envi-

ronment, and finally presenting results from running live on a real robot.

To this end, Section 8.1 provides a more detailed description of the application domain

which was briefly introduced in Chapter 1. Section 8.2 discusses some of the challenges

for navigation in this domain, and outlines the approach taken for localisation. A more

precise, mathematical description of the process and sensor models is given in Section 8.3.

It shows how the PPOMDP formulation can be extended from BlockWorld to a real-world

application.

Section 8.4 explains how policies are evaluated. It describes the framework used for eval-

uating policies in both realistic simulations and reality, the models used during realistic

simulation, and the non-probabilistic policy against which PPOMDP is compared. Sec-

tion 8.5 presents ToyWorld, a toy problem with realistic dynamics, and Section 8.6 presents

RealWorld, the final problem to which PPOMDP will be applied. RealWorld experiments

are carried out both in simulation and during live execution on a robot. Results show that

the problem is tractable for PPOMDP, and that PPOMDP represents a significant increase

in reliability over a non-probabilistic planner. To the author’s knowledge, this represents

the most challenging robot navigation scenario to which POMDP solution methods have

successfully been applied to date. Section 8.7 summarises the chapter.

168



CHAPTER 8. SCALING TO THE REAL WORLD 169

8.1 Application Domain

The target problem is an industrial application involving several robots navigating in a

known mock-up urban environment for long periods of time (episodes on the order of eight

hours continuous operation). The task involves having the robots visit a series of waypoints

on a specified time schedule, at speeds up to 2 metres per second. The environment and

robots are shown in Figure 8.1. The robots are based on the Segway RMP. In addition to

their wheel encoders and on-board inertial system used for balancing, each carries a single

sensor: a horizontally-mounted forward-pointing SICK laser.

The use of a dynamically-stabilised platform introduces several difficulties, but allows the

robots to have a high centre-of-mass for a relatively small base. This allows the robots to be

of approximately human height while still fitting through doorways designed for humans.

An obvious disadvantage of using a dynamically-stabilising platform is the possibility that

robots might fall over, a scenario from which they are unable to recover. While the risk

is negligible when traversing flat level terrain, the robot is totally incapable of traversing

a step-change of more than a few centimetres. A curb, for example, is completely non-

traversable. In addition, the risk of falling is serious when traversing small undulations at

high speed. If a wheel leaves the ground for more than a moment, the vehicle will lose the

ability to control its pitch and will fall.

Unfortunately, the robots’ sensors are unable to detect terrain which might cause a fall.

The sensors are mounted high, where they are most useful for localisation. The approach

taken to avoiding falls is to engineer the working environment of the robots such that it is

hazard-free, and rely on the robots’ navigation capabilities to avoid known dangerous areas.

This can be non-trivial because a number of non-detectable hazards exist just outside of

the robots’ designated working area, as shown in Figure 8.2.

Since the application is real, the number of robots is high, and the time-scales are long,

reliability is clearly a major concern. In general, failures in the system can be attributed

to one of three areas: hardware-related, software-related, or algorithmic. The former two

areas are implementation issues, and outside the scope of this thesis. Algorithmically, most

of the reliability challenges revolve around the localisation module. As will be described in

Section 8.2, the environment and robots have certain characteristics which make localisation

particularly difficult.
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(a) two robots, foreground and background

(b) a portion of the environment

Figure 8.1: The robots and a portion of their environment. The vertical white strips are
retro-reflective fiducials to aid navigation.
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(a) non-traversable curbs (b) a non-traversable gutter

(c) non-traversable rough terrain

(d) an occupancy grid map of the environment, measuring 66m × 36m

Figure 8.2: On the border of the robots’ designated working area lie a number of non-
detectable hazards, such as (a) curbs, (b) a gutter, and (c) rough terrain. The former
two are completely non-traversable, while the latter is non-traversable at speed. (d) is
an occupancy grid map of the environment. The dark yellow regions indicate potentially
hazardous areas which the robot should not enter. The small red squares indicate laser-
reflective fiducials.
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Two sources of localisation-related error are likely. The first is that the localisation module

itself will fail by becoming inconsistent. That is, if the localisation module considers the true

robot pose to be sufficiently unlikely, the filter will have difficulty recovering. The second

source of error arises from the fact that the robot has real tasks to perform, and its ability

to carry out these tasks depends on its unobservable true state. The default controller,

however, is based on the invalid assumption that the estimated maximum-likelihood state is

true. When localisation uncertainty is small this assumption is not problematic, but we will

show that control based solely on the maximum-likelihood state can result in catastrophic

failure when the true state is toward the tails of an uncertain distribution. We will also show

how a POMDP-based controller, capable of managing its entire probability distribution, can

significantly improve the reliability of the system.

8.2 Localisation Approach

For the reasons discussed in Section 4.2, a particle filter is used for localisation. Specifically,

we use a KLD particle filter, which dynamically adapts the number of samples [42]. Unlike

previous chapters, the filter used for online estimation (as opposed to planning) does not

convert to and from a Gaussian representation at each iteration, and hence does not lose the

detailed information stored in the particles. A Gaussian is generated in order to make de-

cisions, but the particles are retained. In order to generate a Gaussian for decision-making,

the localiser first clusters particles into groups, then calculates the mean, covariance, and

total weight of each group. The Gaussian with the greatest weight is used for decision-

making. Approaches to using all Gaussians for decision-making, rather than simply the

most likely, will be discussed in Chapter 9.

In general, a particle filter requires the specification of a process model and a likelihood

function. This section discusses some of the difficulties faced when attempting to localise in

this particular environment, and motivates the general approach which was finally adopted.

Specific definitions of the process model and likelihood function will be presented in Sec-

tion 8.3.1.

Since the environment is largely outdoors, GPS was initially considered for localisation.

Unfortunately, the robot is required to operate in and around metal structures and under

trees, rendering GPS insufficiently reliable.
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An initial approach to using the laser for localisation was to build a prior occupancy grid [37],

then to localise based on measured ranges to obstacles. This technique has been shown to

be extremely robust in indoor environments [110]. Particles are weighted using a likelihood

function based on the differences between the ranges of actual returns and the expected

ranges of returns, where the expected ranges are calculated by ray-tracing in the occupancy

grid.

The occupancy grid approach was non-trivial to apply to the problem at hand because

the laser often sees the ground. This is rare in indoor environments because the ground is

generally flat and the laser scan is generally close to horizontal. In the present scenario, the

terrain contains small bumps and gradients, and the dynamically-stabilised platform needs

to pitch back and forth to remain upright. When accelerating or even just leaning into the

wind, the robot often sees the ground only a few metres in front of it. An example is shown

in Figure 8.3.

While it may be possible to model the interaction with the ground, the solution adopted

was to extract point features from the laser scan. The most reliable way of doing this

was to modify the environment, adding laser-reflective fiducials as shown in Figure 8.1.

The likelihood function can then be constructed based on the ranges and bearings to the

actual and expected sets of observed features. The expected set of observed features can be

assessed by ray-tracing through the prior occupancy-grid map. Assuming that the fiducials

are the only retro-reflective objects in the environment, the robot may fail to detect true

features, due to factors such as the tilting of the platform, but it is unlikely to register a

false positive. It is clearly not a requirement of the PPOMDP algorithm in general that an

environment be instrumented, however it simplifies matters considerably in this domain.

8.3 From BlockWorld to the Real World

8.3.1 The PPOMDP Model

The previous section provided an outline and motivation for the method used for estimation.

This section gives precise details of the model used for simulating the world during planning

and for estimation.
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(a) The robot must lean forward to accelerate (b) Leaning causes the laser scan to intersect
with the ground

(c) This intersection is difficult to model because
the ground is not perfectly flat

Figure 8.3: An example showing the impracticality of modelling the world using a two-
dimensional occupancy grid. The robot often needs to lean forwards at a considerable angle
in order to accelerate, as shown in (a). (b) shows the associated laser scan in red, drawn
from the mean pose. It intersects the ground approximately 6m in front of the robot. If
the ground were perfectly flat, it would be possible to use information from the robot’s
gyroscopes to calculate the expected point of intersection. Unfortunately it is generally not
flat. (c) shows one example of un-even terrain in front of the robot.

States and Beliefs

The state of the world consists of an occupancy grid, a set of features, and the state of the

robot. The occupancy grid and features are considered to be known and static. The set of

features is of the form F = {fi|i = 1 . . . |F |}, where fi is the tuple < xi, yi > defining the

fixed position of the i’th feature.
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The state-space of the robot is defined by the tuple x =< x, y, θ > describing the robot’s

pose. The parametric belief-space is the space of Gaussians defined by 9 parameters: 3

describing the mean and 6 describing the upper triangle of a full 3x3 covariance matrix

(due to symmetry, only the upper triangle needs to be represented explicitly).

Actions

The action-space is defined by the tuple u = < vl, vθ >, where vl and vθ are the linear

and rotational velocities respectively. The range of valid input values for vl is [0, 2] metres

per second, and for vθ is [−90, 90] degrees per second. During planning, time is discretised

to intervals of ∆t = 1 second. Therefore for a single action the maximum nominal linear

change in position is 2 metres, and the maximum nominal change in heading is 90 degrees.

The Process Model

For a given nominal action < vl, vθ >, the true (noisy) linear and angular velocities, v′l and

v′θ, are distributed according to independent GaussiansN (vl, (0.25vl)
2) and N (vθ, (0.35vθ)

2)

respectively, where N (µ, σ2) denotes a Gaussian with mean µ and variance σ2. This noise

model was determined through extensive empirical testing with the robots used to demon-

strate this work. In the absence of obstacles, the planning model applies an action by first

translating the robot by v′l∆t in the direction of its current heading then rotating it by

v′θ∆t. Where an action would traverse a non-empty cell of the occupancy grid, the model

applies no change to the pose.

Observations

An observation consists of the tuple z = < zC , Zf >. zC is an observation of whether or

not the previous action was successful, identical to the collision sensor used in BlockWorld.

Zf = {zf,i|i = 1 . . . |Zf |} is a set of observations of features, where zf,i is the i’th range-

bearing tuple < zr,i, zb,i >. Since the laser is mounted forward and has a 180◦ field of view,

zb,i is in the range [−90◦, 90◦], where a bearing of zero is directly in front of the robot.

While the maximum range of the laser is 80m, features are not observable at this range.

The tilting of the platform and slope of the ground mean that the laser scan often does
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not intersect the fiducials at longer ranges. Even when the scan does intersect the fiducials,

the laser has difficulty detecting the high reflectivity beyond relatively short ranges. Due

to the combination of these effects, the maximum range at which features can reliably be

detected is approximately 8m. Building a probabilistic model beyond 8m is problematic

because the observability of features is state-dependent, given small variations in the slope

of the ground in different areas of the environment. Therefore, as a slight simplification, it

is assumed that the maximum range of the laser is exactly 8m, and hence zr,i is in the range

[0, 8]. To ensure that this simplification matched reality, the laser was artificially limited to

an 8m range during live execution.

The Sensor Model

Let the expected set of feature observations from a particular pose be denoted Ẑf . Ẑf is

determined by first calculating, for each fi ∈ F , the expected range and bearing to that

feature, denoted < ẑr,i, ẑb,i >. If ẑr,i and ẑb,i are within the bounds defined above for valid

observations, and a ray from the vehicle to the feature does not intersect an occupied cell

of the occupancy grid, < ẑr,i, ẑb,i > is added to Ẑf .

The sensor model assumes that true observations are a perturbation of the expected ob-

servations. It assumes that the range and bearing of the j’th actual feature observation,

< zr,j, zb,j >, are drawn from the Gaussian distributions N (ẑr,j , (0.3m)2) and N (ẑb,j , (5
◦)2).

In addition to sensor noise from the laser, these noise levels account for inaccuracies in tim-

ing (particularly during sharp turns), inaccuracies in the map, inaccuracies in the measured

transformation from the vehicle reference frame to the laser, and the fact that laser rays

are not always exactly horizontal.

The Likelihood Function

The likelihood function used for re-weighting particles is a function of two observations: the

true observation, z, and the expected observation given the particle, ẑ. It is the product of

two factors

l(ẑ|z) = lC(ẑC |zC)lf (Ẑf |Zf ) (8.1)

where the factors lC and lf are functions of the collision and feature components of the

observation respectively. For the binary collision component, lC(ẑC |zC) returns zero for a



CHAPTER 8. SCALING TO THE REAL WORLD 177

mismatch, and one otherwise.

The feature-based component lf is more complicated, since one must consider not only

sensor noise but also the likelihood of non-detection of features. Furthermore, there are two

scenarios in which the likelihood function may be applied: the simulation used for planning,

and the real world. In the former, observations occur at a frequency of 1Hz, whereas in the

real world observations occur at the frequency of the laser, which runs at about 10Hz.

To deal with these issues, the assumption is made that during a given one-second interval,

the probability of failing to observe an observable feature is negligible. The likelihood

function used for planning therefore assumes that the probability of non-detection is zero,

and operates as follows. Of the actual and observed sets of features, let Zf+ and Zf− denote

the larger and smaller sets respectively (|Zf+| ≥ |Zf−|). If |Zf−| = 0 but |Zf+| 6= 0, lf

returns zero. Otherwise, lf is calculated using the product

lf (Ẑf |Zf ) = 1.0×
|Zf+|∏

i=1

ls(zf+,i|Zf−) (8.2)

where ls is a likelihood function for single feature observations. ls(zf+,i|Zf−) is the likelihood

of the i’th feature observation from Zf+ given the set of feature observations Zf−. It is

based on the similarity of zf+,i to the closest-matching feature observation in Zf−:

ls(zf |Zf ) = max
zf,j∈Zf

G(zr − zr,j, σ2
r )G(zb − zb,j , σ2

b ) (8.3)

where G is the Gaussian function

G(x, σ2) =
1√

2πσ2
exp(

−x2

2σ2
) (8.4)

This likelihood function is not appropriate during online estimation because it ignores the

possibility of non-detection. For online estimation, a slightly different likelihood function

l̃f is used, given by

l̃f (Ẑf |Zf ) = ν(Ẑf |Zf )

|Zf |∏

i=1

ls(zf,i|Ẑf ) (8.5)

where ν(Zf |Ẑf ) is a penalty term which penalises expected observations against which no

actual observations were matched. If the number of non-matched observations is n, ν is
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chosen to be 0.75n. In other words, for every observation which a particle predicts but

which is not actually observed, the likelihood is multiplied by 0.75. The figure 0.75 was

experimentally found to produce consistent beliefs.

The Reward Function

The environment contains a goal area and one or more hazard zones. The reward as a

function of state is +10 for being in a goal area, −50 for being in a hazard zone, and −0.1

otherwise. As for the BlockWorld problem, the reward as a function of belief is calculated

by integrating the agent’s belief over the areas of interest. Integrations are performed using

sampling.

8.3.2 Discussion of the Model

Before continuing, it is worth assessing the difficulty of the RealWorld problem relative to

the BlockWorld problem. The length of the state vector has been extended from two to

three with the addition of heading, and full 3 × 3 covariance matrices are being modelled

rather than diagonal 2× 2 matrices. The length of parameter vectors is therefore increased

from 4 to 9. This represents a huge leap forward in complexity. For example, using a regular

grid of beliefs for B is clearly intractable. Assuming that the heading is discretised into 10

bins and that each element of the covariance matrix is discretised into 6 levels (as was the

case in Chapter 3), a regular grid for the current problem would have approximately 13,000

times more belief-points than a regular grid for a BlockWorld problem of the same physical

size.

Using an arbitrary set B improves matters, however the achievable density of belief-points

will certainly be lower than was possible for the BlockWorld problem. Chapters 6 and 7

experimented with various settings for the size of B. The results showed that performance

increases rapidly as the density of belief-points increases, then reaches a plateau at some

density. The extra dimensionality of the belief-space for this more realistic problem suggests

that it may not be possible to operate on this plateau. As discussed in Chapter 7, the use of

forward planning was particularly helpful when operating at a portion of the curve prior to

the plateau. It is anticipated that forward planning will be similarly useful for this problem.
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Relative to previous work on POMDP-based robot navigation, we believe that the problem

described above is substantially more realistic than any robot navigation problem which

has been attempted to date. To the author’s knowledge, the most similar problems from

the literature are (a) the navigation problem presented by Spaan and Vlassis, using omni-

directional vision [103], and (b) the navigation problem presented by Roy [92], using back-

to-back SICK lasers in a realistic simulation. Both of these problems assumed heading-

invariant sensors and modelled only robots’ (x, y) positions during planning. In the real

world, robots do have headings and most robots also have directional sensors. A planner

with no concept of heading can have no understanding of the fact that heading uncertainty

induces positional uncertainty, and cannot account for non-holonomic constraints [63]. Al-

lowing only omni-directional sensors prohibits robots from exhibiting the interesting and

useful behaviour of moving in order to point their sensors in informative directions.

8.3.3 PPOMDP Parameter Settings

This section lists the settings which were used for the PPOMDP algorithm when applied to

more realistic problems. Essentially, they represent a generalisation of the settings which

were found to be most successful on the BlockWorld problem.

Observation Pre-Calculation

The action-independent portion of the observations were pre-calculated in a similar way

as they were in the BlockWorld problem, as described in Chapter 5. Observations were

split into two components, zC and Zf , of which only the former is action-dependent. Belief

transitions can therefore be split into two sub-transitions: TC (resulting from the action

and collision observation) and Tf (resulting from the feature observations).

Belief Sets and Weighting Functions

Arbitrary belief sets were used. Chapter 6 defined a number of new parameters which must

be specified in order to use an arbitrary belief set. The following choices were made:

1. Similarity Search: vp-tree as the similarity-search algorithm;
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2. Distance Metric: the Euclidean distance metric in parameter space DEP was used,

measuring distances in metres and angular quantities in radians;

3. Kernel Bandwidths: half the mean distance to the closest point in the belief set,

as described in Chapter 6;

4. Belief Sets: a single set was used for both the beliefs after full observations (B) and

the beliefs after partial observations (BC). The set was chosen using exploration as

described below.

Exploration for belief set generation was performed by repeatedly (a) randomly initialising

the state at a non-occupied position in the map, (b) initialising a belief, consistent with

that state, with a small diagonal covariance, then (c) executing 30 actions, adding each

posterior belief to B. This process was continued until the belief set was of a specified size.

The policy used to explore was a mixture of random and heuristic policies. At each step,

with probability 0.75 a random action was taken, selected from a uniform distribution over

the space of valid linear and angular velocities. With probability 0.25 the action was taken

using the non-probabilistic policy which will be described in Section 8.4.3.

As was discussed in Chapter 6, the optimal belief set should have a belief density corre-

sponding to the probability of occurrence of beliefs when executing the final policy. Since

the final policy cannot be known before the belief set is chosen, an approximation to that

policy is needed. A mixture of random and non-probabilistic policies was chosen as this

approximation: the PPOMDP and non-probabilistic policies are likely to coincide often,

however using a significant random component allows the PPOMDP planner to consider

plans which the non-probabilistic policy would not make.

8.4 Evaluation of Policies

Policies were evaluated in three scenarios of increasing complexity and realism:

1. the simple simulator used for planning;

2. a realistic simulator; and

3. the real world.
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Figure 8.4: The component framework used for evaluating policies during realistic simula-
tion or live execution.

Previous chapters have considered only the first scenario. This section describes the frame-

work used for evaluating policies in the latter two scenarios, the process noise model used for

realistic simulation, and the non-probabilistic policy against which PPOMDP is compared

in all three scenarios.

8.4.1 The Component Framework for Online Evaluation of Policies

The framework used for evaluating policies online, both in realistic simulation and the real

world, is shown in Figure 8.4. The system was implemented such that the exact same

software could control either a simulated robot or a real robot, using Orca [20]: an open-

source software framework for building component-based robotic systems. Components for

hardware/simulation interfacing, feature extraction, obstacle avoidance, and visualisation

are available for download from the Orca component repository1.

The robot receives speed and turn-rate commands from a low-level obstacle avoidance algo-

rithm, and produces laser scans and odometry information. A feature extractor processes

the laser scans to segment the fiducials. An estimator (or localiser) receives both the ex-

tracted features and the odometry information, producing Gaussian beliefs. The policy

then maps from beliefs to actions.

A low-level obstacle avoidance algorithm mediates between the policy and the robot. This

1http://orca-robotics.sourceforge.net
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is done because the policy maps directly from a belief to an action, without reference to

local sensing. Since the estimator relies on extracted features rather than occupancy, the

policy may have no way of knowing that there is an obstacle directly in front of it. The

obstacle avoidance algorithm used in this case was VFH+ [117].

One complication is that the VFH+ accepts waypoints rather than direct commands of

speeds and turnrates. It converts these waypoints into speed and turnrate commands de-

pending on local sensing. This complication was handled by having the policy set constraints

on VFH+’s maximum speed and turnrate in addition to setting waypoints. Fine control

is possible by setting the maximum speed and turnrate to the desired values while issuing

waypoints only a small distance in front of the robot. VFH+ will then execute the desired

speed and turnrate when there are no obstacles in the vicinity. While all components run

asynchronously at frequencies appropriate for their tasks, the policy sends commands to

the obstacle avoidance component at 1Hz (the ∆t used during planning).

8.4.2 The Process Noise Model Used in Realistic Simulation

Since policies are to be evaluated in realistic simulation first, a model is needed to inject

odometric noise into that simulation. It is common in mobile robot localisation problems

to assume additive white Gaussian odometric noise. We argue that in real scenarios this

assumption is almost always invalid, but it is made because it is sufficiently close to the

truth. In reality, for any given model, systematic errors occur due to issues such as non-

uniform terrain and un-modelled dynamics. To account for these systematic biases, the

usual approach is to increase the level of assumed Gaussian noise.

In an effort to be as realistic as possible, we attempt to re-create this scenario. The model

for localisation assumes that actions are perturbed by independent identically-distributed

Gaussian noise sampled from N (1, (0.25vl)
2) and N (1, (0.35vθ)

2) for linear and rotational

components respectively, as described in Section 8.3.1. The true noise injected into the sim-

ulation, however, is neither independent nor Gaussian. Rather, a pair of multipliers ml and

mr are sampled from uniform distributions over the ranges [−0.25, 0.25] and [−0.35, 0.35]

respectively. The true additive noises are then deterministically set, at each time-step, to

mlvl and mrvθ. Every 10 seconds, a new pair of multipliers is sampled.

Relative to the model, the true simulated noise is relatively small in magnitude. The true
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odometry is always less than or equal to one standard deviation from the nominal value.

Indeed, the localiser has no difficulty in coping with the noise, despite the fact that the

model is strictly incorrect. The advantage of using non-independent noise is that it gives

realistic errors, such as odometry sometimes being incorrect by a significant amount for

large sharp turns. Section 8.6 will present results which indicate that the level of noise used

in simulation is not unrealistic. If anything, it is relatively tame compared to the noise

experienced when operating in a real environment.

8.4.3 The Competition: Non-Probabilistic Path Planning

The PPOMDP-based controller was evaluated by comparing against the performance of a

simple non-probabilistic policy, which we refer to from this point onwards as NONPROB.

At a frequency of 1Hz NONPROB computes a deterministic path, as a series of waypoints,

from the maximum-likelihood position to the goal. This is identical to the Replan heuristic

discussed in Section 2.7.1, except that NONPROB re-plans on every iteration rather than

just when it detects that its plan has gone awry. This is not problematic, since deterministic

re-planning is computationally inexpensive.

The description of NONPROB requires the specification of how paths are planned and

how they are followed. Two different algorithms are used for path-following: one during

execution in the simulator used for planning, and another during realistic simulation or live

execution. Both path generation and path following are described below.

Path Generation

Paths are calculated using well-known techniques from the motion-planning literature [63][64].

The occupancy grid map is first pre-processed by

1. marking all cells within hazards as occupied;

2. growing occupied cells by the radius of the robot;

3. calculating a potential function, over all of free-space, directly proportional to the

distance to the nearest obstacle; and
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4. extracting a “skeleton” corresponding to the loci of the maxima of this potential

function.

The skeleton is a path which connects areas of free-space while keeping a distance from

obstacles. From a start point, planning a path to a goal point involves

1. connecting to the closest point on the skeleton,

2. traversing the skeleton to the skeleton-point nearest to the goal, and

3. connecting to the goal point.

As a post-processing step the path is optimised by removing many waypoints while still

maintaining clear straight lines between all waypoints. For more detailed information, the

reader is directed to [63]. The code to perform this planning is also available from the Orca

component repository.

Path Following in the Planning Simulator

When using the planning simulator, NONPROB translates beliefs and paths into actions

using simple rules. If the difference between the maximum-likelihood heading and the

heading to the next waypoint is more than 20◦, the policy turns towards the next waypoint.

It sets a linear velocity of 0.5m/s and turns towards the waypoint as fast as possible, without

setting the rotational velocity so high as to overshoot the desired heading in the one second

alloted for the action. If the difference in heading is less than 20◦, the policy approaches

the next waypoint. It sets the linear velocity as high as possible, avoiding overshoot, while

setting a rotational velocity that will keep the maximum-likelihood heading pointed towards

the waypoint.

Path Following Online and During Realistic Simulation

The path-following algorithm used during online plan execution or realistic simulation is also

simple. As shown in Figure 8.4, VFH+ obstacle avoidance mediates between the policy and

the robot. NONPROB simply gives the set of waypoints generated by the deterministic plan
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Figure 8.5: The toy world. The dark yellow area at the top is a hazard which the robot
should not enter. The robot icon near the top left marks the start position, which faces
south. The 1m×1m goal is marked by the dark cyan square near the top right. The small
red squares are features. The map measures 30m×15m. Occupancy grid cells measure
0.1m×0.1m. in this case, all cells are empty.

to VFH+, relying on VFH+ to follow the path under the assumption that the maximum-

likelihood state is the true state. VFH+ is commanded to reach the final waypoint (on

the goal) with zero tolerance, such that it persists until the episode ends, whether through

success, failure, or expiration of the allotted time.

8.5 ToyWorld: A Toy Problem with Realistic Dynamics

Before embarking on RealWorld, the model described above is applied to ToyWorld: a toy

problem, but with realistic dynamics. The simulation was implemented using the Stage

simulator [48]. Figure 8.5 illustrates ToyWorld.

For this world, the obvious strategy from the start location is to turn and drive directly

towards the goal. Indeed, this is exactly the strategy taken by NONPROB. It pushes the

mean of its distribution towards the goal, ignorant of the amount of probability mass that

may be sweeping through the hazardous area. An example distribution that arises using

non-probabilistic control is shown in Figure 8.6.

In contrast, a POMDP-based controller is able to consider the entirety of its distribution.
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Figure 8.6: An example distribution encountered during non-probabilistic control. The
particles are shown in blue, and the parametric belief is indicated by the blue ellipse. The
true state, shown in cyan, is north of the mean due to oversteer on the initial left turn
from the start point. Since the non-probabilistic controller is aware of only the mean of
the distribution, it is completely unaware that there is a danger. After the next action, the
robot will have entered the hazardous area.

It should realise that it is incapable of turning by exactly 90◦ from the start point, and

that there are no features near the top of the map which can be used to correct any errors.

A better strategy is therefore to begin by moving south towards the features, traverse

eastwards using the features to navigate, then finally move north to the goal. The path is

longer but more reliable.

8.5.1 Results

The PPOMDP policy was generated using a belief set containing 4000 beliefs. 200 samples

were used to estimate the belief transition function during planning. This number was

reduced during online forward planning: 100 samples were used at the root of the game-tree.

The average time required to make a decision while executing the plan was approximately

95ms. The total time taken to generate the value function was approximately 420 seconds,

or 7 minutes. The breakdown of this figure is shown in Table 8.1. This breakdown indicates

that belief set generation is by far the most time-consuming component of value function

generation, followed by observation precalculation and MDP transition calculation. A large
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Step Required Time

Belief Set Generation 325.5s
Observation Precalculation 59.7s
Calculation of MDP Transitions 32.1s
Reward Calculation 0.4s
Discrete MDP Solving 2.9s

Total 420.6s (7min)

Table 8.1: A breakdown of the time required for PPOMDP to generate a value function for
the toy world.

component of all three is ray-tracing. Planning could therefore be accelerated by the use of

a data structure which allows fast ray-tracing, such as a quad-tree [96]. Another possibility

is to pre-compute the ray-tracing, as suggested by other authors [43]. These optimisations

were not exploited in this thesis.

Results Using the Planning Simulator

Policies were evaluated in the planning simulator over 100 episodes. An episode is termi-

nated when the robot reaches the goal or enters a hazard, or 100 seconds have elapsed. The

mean reward for PPOMDP was 3.8 compared with -22.3 for NONPROB. NONPROB’s

reward corresponds to an approximate success rate of 50% (the mean of +10 for success

and -50 for failure, minus a small amount for the time spent reaching the termination con-

dition). This is not unexpected: NONPROB is as likely to oversteer as understeer on the

initial turn. Oversteer will lead to failure, understeer to success.

Results Using the Realistic Simulator

Policies were evaluated over 40 episodes on the realistic simulator, using the same world

described previously. The simulation was reset at the end of each episode. PPOMDP

achieved a perfect success rate, for an average reward of 6.2, while NONPROB failed on

15 of the 40 episodes, for an average reward of -14.8. In order to contrast the strategies

adopted by the two policies, Figure 8.7 plots the true trajectories taken over the 40 trials,

for each controller.

From Figure 8.7(a), it can be seen that when NONPROB oversteers on the initial turn, it

enters the hazard. If it understeers it will eventually observe a feature, adjust its heading,
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(a) NONPROB Trajectories

(b) PPOMDP Trajectories

Figure 8.7: The true trajectories taken over 40 trials during realistic simulation in ToyWorld,
using (a) the non-probabilistic policy and (b) PPOMDP. The start point is on the left, while
the goal is on the right. Goals, hazards and features are marked in blue, yellow and red
respectively.

and reach the goal. PPOMDP adopts an entirely different strategy, using the features

to allow it to reliably reach the goal. One interesting point is the behaviour near the

goal, where the robot sometimes circles once before the end of the episode. This is likely

due to a modelling approximation. The process model used for planning, described in

Section 8.3.1, applies the entire translation before applying the entire rotation associated

with an action. Therefore the robot believes that by turning right while moving forward,

it will arrive directly in front of its current position, only with a different heading. Instead

it arrives somewhat to the right of its current position, sometimes missing the goal on the

first attempt.

Another point of interest is that PPOMDP’s trajectories are significantly more smooth than
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NONPROB’s. This is probably due to the interaction between PPOMDP and the VFH+

obstacle avoidance component. As described in Section 8.4, PPOMDP tries to set speeds

and turnrates using an ad hoc scheme involving setting waypoints and constraints. It is

likely that this scheme does not allow PPOMDP to turn as tightly as it would like. In

contrast, NONPROB selects much more sparse waypoints, leaving VFH+ with the control

to make sharp turns.

8.6 The RealWorld Problem

8.6.1 Problem Description

The RealWorld problem uses the right half of the map from Figure 8.2(d). Since there will

be no simulation to reset when running live, it is difficult to transport the robot back to

the starting location after each episode. The robot is therefore given four goals, as shown

in Figure 8.8. Its task is to reach the four goals in order, in a counter-clockwise direction,

starting from the lower-left goal. This brings it back to the starting location for the next

episode.

Multiple Goals

The use of multiple goals introduces a problem, since the value function depends on the

reward function, which is specific to a single goal. As a solution, four value functions are

generated: one per goal. When the robot reaches a goal it simply loads the value function

for the next goal.

Of the steps required to produce a value function, several can be re-used for multiple goals.

Specifically, only one belief set needs to be generated, and observation precalculation and

MDP transition calculation need to be performed only once, since they are independent of

reward. Since these steps dominate the total time required, as shown in Table 8.1, the cost

of adding extra goals is small.

One complication with re-using belief set generation is that the heuristic policy used to bias

random exploration, as described in Section 8.3.3, requires a goal. This problem is solved

by using each goal for one quarter of the belief set generation process.
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Figure 8.8: The map used for the RealWorld problem. The colour scheme is identical to
the scheme used in Figure 8.5. The numbers on the goals indicate the order in which they
should be traversed (counter-clockwise). The four segments are indicated by the arcs. The
map measures 38m×36m, with 0.1m×0.1m occupancy grid cells.

Tunnelling Through Thin Walls

A second complication, which had not been encountered previously, arises from the fact

that the walls in RealWorld are thin. The approach to planning described thus far can lead

PPOMDP to believe that it can ‘tunnel’ through thin walls in two ways.

Firstly, the planner maps all distributions to the nearest Gaussian, and therefore cannot

consider distributions involving a step change. Step changes do occur in RealWorld, how-

ever, where uncertain distributions meet walls. Since Gaussians have smooth tails, the

planner believes that if it becomes sufficiently uncertain and moves the mean of its distri-
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bution near a thin wall, there will be a non-zero probability that the true state is in fact

on the opposite side of that wall. It believes that the right feature observation (i.e. one

that is only possible after tunnelling through the wall) will re-weight its distribution such

that it becomes well-localised on the opposite side of the wall. Of course in reality such an

observation is impossible since the probability that the robot has passed through the wall

is zero. However, during experimental trials, PPOMDP clearly tried to take advantage of

this loophole. It intentionally avoided looking at features while hugging thin walls, hoping

to tunnel through.

Secondly, even in the absence of observations from the opposite sides of walls, the planner

may try to take advantage of the “snapping” of posterior beliefs onto B. The distance

measure considers only the proximity of beliefs, not the the occupancy grid. Especially in

the presence of a locally sparse belief set, a nearby belief in B may be on the opposite side

of a thin wall, leading the planner to believe that it can tunnel through.

One solution is to use the occupancy grid to modify the weighting function. If direct line-

of-site does not exist between the mean of a posterior and the mean of a member of B,

that member of B must receive zero weight. This solution is rather ad hoc, but worked for

this problem. There may be circumstances where it rejects legitimate nearby beliefs (such

as near corners), but the effects were not noticeable. All RealWorld results were generated

with the inclusion of this feature.

8.6.2 Results

Computation Time

The size of the belief set was chosen to be 8000 beliefs. The number of samples used to

estimate the belief transition function was increased to 500, although this is almost certainly

excessive. As for ToyWorld, this number was decreased to 100 during forward planning.

The average time required to make a decision during plan execution was approximately

145ms. This is longer than the time required for ToyWorld for three reasons. Firstly, the

larger belief set induces a sub-linear increase in the time required for each similarity search

when applying the weighting function. Secondly, the increase in the number of features

causes a corresponding increase in the time required to calculate expected observations.



CHAPTER 8. SCALING TO THE REAL WORLD 192

Step Required Time

Belief Set Generation 568.5s
Observation Precalculation 697.4s
Calculation of MDP Transitions 178.2s
Reward Calculation (per goal) 0.7s
Discrete MDP Solving (per goal) 9.2s

Total 1483.7s (∼25min)

Table 8.2: A breakdown of the time required for PPOMDP to generate a value function for
the RealWorld problem. The last two items are multiplied by four in the calculation of the
total, since they must be performed once per goal.

Thirdly, since the world is larger, ray-traces for observations are likely to cover more distance

on average.

The total time required for planning all four segments of the circuit was 1484 seconds, or

approximately 25 minutes. The breakdown of this total is shown in Table 8.2. Compared

to ToyWorld, observation precalculation and MDP transition calculation consume larger

portions of the total time. This is because the increase in the number of samples (from

200 to 500) affects only these two phases. The number of samples used during belief set

generation is controlled by the KLD particle filter, which adapts the number of samples.

Results Using the Planning Simulator

The policies were initially compared using the planning simulator. Each policy attempted

each of the four segments of the loop 100 times. The results are shown in Table 8.3. The

most interesting segment is the first, where PPOMDP clearly outperforms NONPROB. The

reason for this difference will be explained with reference to the results obtained using the

realistic simulator. To help develop intuition for the operation of the algorithm, Figure 8.9

shows a snapshot of the forward planner’s perceived distribution over future posteriors.

Results Using the Realistic Simulator

Using the realistic simulator (Stage [48]), policies were evaluated over 40 loops. During

execution, if a segment was terminated by either a hazard or the expiration of time, the

segment was considered a failure and the simulation was reset at the next goal, facing away
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Segment NONPROB PPOMDP

1 -18.7 1.4
2 8.5 5.9
3 4.9 8.1
4 9.0 8.9

Table 8.3: The average reward obtained by either policy on each of the four segments of
the loop around RealWorld.

(a) The three most likely posteriors (b) All 16 possible transitions

Figure 8.9: The perceived distribution over future posteriors in B, over a one-step planning
horizon. The current belief is marked in blue. The considered action is to move forward
while turning slowly to the right. Each green ellipse is a belief in B which the planner
considers to be a possible result of this action. (a) shows the three most likely posterior
beliefs. From left to right, the transition probabilities are 0.05, 0.8, and 0.03. The posteriors
correspond to observing the feature on the left, observing nothing, and observing the feature
on the right, respectively. Note that the posterior corresponding to no observation has a
large heading uncertainty. (b) shows all 16 possible posteriors. This shows how each slightly
different possible feature observation will produce a slightly different belief, whereas the
absence of an observation will result in one poorly-localised belief.

from the previous goal. The results are shown in Table 8.4, and the true trajectories are

plotted in Figure 8.10.

NONPROB’s failure mode is clear from Figure 8.10(a). Understeer while turning at the

lower-left goal causes the robot to enter the hazard to the south. To avoid this, rather than

turning 90◦ left after reaching the lower-left goal, PPOMDP usually wheels 270◦ to the

right in a large arc. This allows the robot to see the feature just below the lower-left goal

during the first part of the turn, then finish the turn by seeing either the features to the

centre-left or near the centre of the map. The result is that the robot reliably reaches the
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(a) NONPROB Trajectories

(b) PPOMDP Trajectories

Figure 8.10: The true trajectories taken over the 40 trials during realistic simulation in
RealWorld, using (a) the non-probabilistic policy and (b) PPOMDP. Goals, hazards and
features are marked in blue, yellow and red respectively.
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Average Reward Number of Failures Number of Successes
Segment NP PP NP PP NP PP

1 -6.7 4.3 10 1 30 39
2 8.6 7.9 0 0 40 40
3 7.6 6.9 0 0 40 40
4 8.7 8.1 0 0 40 40

Table 8.4: A comparison of the performance of the two policies on each segment of the
RealWorld problem during realistic simulation. NONPROB and PPOMDP are abbreviated
to NP and PP respectively.

area near the lower-right goal.

Again, process model approximations cause the robot to sometimes circle just prior to

reaching the goals, particularly near the lower-right and upper-left goals. PPOMDP’s one

failed trajectory can be seen, just below the lower-right goal. One possible reason for this is

particularly poor odometry while circling to reach the lower-right goal. Another possibility

is temporary localisation failure, which did occur occasionally during execution.

On the other three segments of the loop, it can be seen from Table 8.4 that NONPROB

slightly out-performs PPOMDP. While the circles before reaching goals account for some

of this difference, NONPROB also clearly takes a more direct approach than PPOMDP,

conferring a small advantage in the absence of uncertainty. Again, this is likely a result of

the interaction between PPOMDP and the obstacle avoidance component.

Results From Running Live

Finally, both policies were evaluated on real robots. Since the true pose of the robot is

unavailable, different termination criteria are needed. The robot is deemed to have reached

a goal if it places the mean of its belief over that goal while its uncertainty is sufficiently low

(the variance in x and y must be less than one metre). The uncertainty condition is trivial

to satisfy if the robot is not lost, since the goals are all in sight of features. Termination

due to hazards cannot be assessed in the same way, because the robot will never knowingly

enter a hazard. Instead this was assessed manually, by watching the robot.

The results are presented in Table 8.5. Figures 8.11 and 8.12 show snapshots of typical

behaviour, under NONPROB and PPOMDP control respectively. Numerically, PPOMDP’s

performance is clearly superior to NONPROB. Subjectively, it appears that NONPROB’s
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NONPROB PPOMDP

Number of Successful Loops 3 27
Number of Failed Loops 8 4
Total attempted Loops 11 31
Success Rate 27% 87%

Table 8.5: The number of successful and failed loops using the two policies on a real robot.

(a) (b)

(c) (d)

Figure 8.11: Screenshots during live execution, showing NONPROB’s typical behaviour.
After reaching the lower-right goal, NONPROB turns to the left as shown in (a). It soon
loses sight of all features, as shown in (b). As a result, uncertainty quickly grows as it
travels towards its goal. NONPROB considers the belief in (c) to be perfectly safe because
the maximum-likelihood pose is not in the hazard to the south. This is despite the fact that
considerable probability mass exists within that hazard. By the time the robot reaches the
belief shown in (d), the true pose has entered the hazard and the robot sees the uneven
ground in front of it.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.12: Screenshots during live execution, showing PPOMDP’s typical behaviour.
After reaching the lower-right goal in (a), PPOMDP turns right to maintain sight of the
lower left features, as shown in (b). (c) shows the real-world complexity of the observation
model: when accelerating, the robot sees the ground a few of metres ahead of it. (d) shows
PPOMDP’s strategy of heading to the north-east, trying to find a feature after leaving the
lower-left goal. Since the laser scan is drawn from the mean of each belief, it is clear in
(d) that a substantial difference has developed between the mean belief and the true pose.
NONPROB has difficulty because it cannot anticipate this occurrence. When a feature is
found, the robot will become well-localised as in (e). It can then proceed to the goal while
remaining in sight of the features, as shown in (f).
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problem is that it is over-confident. This is much more apparent during live execution on

a large robot than in simulation. NONPROB, with its complete faith that its maximum-

likelihood position is correct, seems like a dangerous driver and is stressful to watch. In

contrast, PPOMDP appears far more cautious and intelligent, taking care to ensure that it

is well-localised before acting.

Table 8.5 shows only loops that were attempted in their entirety. A handful of loops

were aborted due to policy-unrelated issues, such as failure of the localisation module, or

collision with an obstacle. The latter occurred several times when trying to pass through

the door near the top of the map. An unexpected advantage of PPOMDP was that it

was far less likely to have problems with this door. A possible reason for this is that the

model used for planning does not include obstacle avoidance, but rather assumes that an

attempt to move through the door when incorrectly aligned will simply fail. This impacts

visibly on PPOMDP’s behaviour: it slows down when approaching the door, receiving more

observations per metre travelled than NONPROB does, and hence is better localised as it

passes through the door.

An interesting issue is that the results in Table 8.5 are much worse than the results obtained

in simulation. The fact that NONPROB failed on significantly more than 50% of loops

suggests that the odometry is biased to understeer on the left turn near the lower-left goal.

One possible explanation is that the odometry is always biased to the right. A more likely

explanation is that, as the robot corners hard at speed after reaching the lower-left goal,

the weight is thrown onto the outside tyre which compresses. The outside wheel therefore

has a reduced effective radius, and travels less distance for the same angle of rotation than

the inside wheel. These kinds of dynamics are difficult to model, justifying the approach of

simply using more (assumed Gaussian) process noise.

Another major difference between simulation and reality is in the observation model. The

planning simulator guarantees feature observations at 1Hz if there is line-of-sight to a feature

less than 8m away. The realistic simulator also guarantees feature observations, but at an

unrealistically high frequency. It was anticipated that, of the two, the planning simulator

would be the more realistic model for reality. However, in reality observations are not

guaranteed at 1Hz. Often, a second elapses without an observation of a feature within range,

for example due to the tilting of the platform. A more accurate model would be much more

complicated. The transition from the planning simulator to the realistic simulator maintains
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a simple observation model but represents a significantly more complicated process model.

The transition from the realistic simulator to reality adds a significantly more complicated

observation model.

Most of PPOMDP’s four failures involved wandering south into the hazard when very

uncertain, somewhere between the two southern goals. The reason for this is unclear,

however one possibility is that the failures are a result of belief transitions which can occur

in reality but which PPOMDP considers impossible. In particular, after wheeling right from

the lower-left goal, PPOMDP hopes to see some of the features near the centre of the map.

Usually it sees a feature, becomes well-localised, then turns and heads towards the lower-

right goal. However sometimes it turns towards the lower-right goal just before observing

a feature, presumably under the assumption that a feature will be observed as it turns. In

the simulators this assumption is reasonable. In reality however, especially at ranges close

to 8m, feature observations may not be made. If a feature observation is not made, the

robot will have travelled a long distance and turned almost 360◦ without viewing a feature.

Its heading uncertainty will be extremely large, such that it will be unable to reliably turn

back. This analysis is supported by the fact that PPOMDP was more successful on the

realistic simulator than in reality. A more accurate observation model would likely reduce

the occurrence of this failure mode.

8.7 Summary

This chapter applied PPOMDP to scenarios of increasing complexity, culminating in on-

line planning for navigation of real robots. Results showed that PPOMDP is capable of

scaling to real problems, and that managing an entire distribution rather than simply the

maximum-likelihood state can produce much more robust behaviour. PPOMDP’s perfor-

mance was shown numerically to be superior to that of a non-probabilistic planner. In

addition, PPOMDP subjectively appears to be much more in control, as though it has a

better understanding of the problem. To the author’s knowledge, these results represent

the most challenging robot navigation problem to which POMDP solution methods have

successfully been applied to date.



Chapter 9

Conclusion

This thesis presented an approach to planning in partially observable continuous domains.

The basic methodology was to consider the evolution of continuous probability distributions,

or beliefs, parameterised by finite-length vectors of parameters. Fitted value iteration was

the solution method adopted. Numerous improvements to this basic approach were pre-

sented, allowing the algorithm to scale to a real robot navigation problem.

This chapter proceeds as follows. Section 9.1 summarises the material presented in this

thesis, Section 9.2 outlines possible avenues for future research, and Section 9.3 concludes.

9.1 Summary

The subject of decision making under uncertainty in continuous domains was introduced

in Chapter 1. It was shown, in general terms, how the approach advocated in this thesis

relates to the field. The main contributions of the thesis were summarised and an outline

of the thesis was presented.

Chapter 2 reviewed the literature on POMDP solution methods in detail. It focussed

particularly on approaches based on value iteration, and on the applicability of the various

solution methods to continuous problems. It was shown that several methods from the

literature can be seen as the application of fitted value iteration after the selection of a

particular information space in which to represent histories of actions and observations.

200
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Chapter 3 presented the approach advocated in this thesis, of applying fitted value iteration

after selecting the space of Gaussian approximations. It motivated the choice of Igauss,

and described the basic mechanics of what we call the PPOMDP algorithm. BlockWorld

was introduced as a relatively simple continuous navigation problem on which to compare

planning algorithms. PPOMDP was compared against a state-of-the-art discrete POMDP

solution method on this world, showing reasonable but not spectacular performance.

Results were improved in Chapter 4 by using Monte Carlo methods to construct a belief

transition function. Several optimisations were presented such that transitions could be

calculated efficiently, by re-using the calculations of predictions, expected observations, and

likelihoods. The result was that plans required no more processing than for the simplified

transition function presented in the previous chapter, but were of a much higher quality.

Furthermore, it was shown that the complexity of each belief transition does not depend on

the number of discrete states required to cover the state-space, implying that this approach

will be capable of scaling to larger physical environments than approaches relying on an

underlying discretisation.

Chapter 5 improved planning speed by showing how the calculation of the discrete belief

transition function could be broken into two or more steps based on the assumption of con-

ditional independence between observation components. The results showed that planning

on BlockWorld could be performed in approximately one third of the time.

Until this point, it was required that the set of beliefs over which PPOMDP planned lay

on a regular grid over belief-space. Chapter 6 relaxed this requirement, allowing the use

of arbitrary belief sets. In order to do so, an efficient weighting function based on metric

indexing schemes was introduced. The use of arbitrary belief sets was shown to result in a

significant increase in scalability, speeding up planning and reducing memory requirements.

Chapter 7 integrated online, local forward search with offline, global value iteration. It

reviewed the relevant literature on forward search, showed how forward search can be im-

plemented efficiently for the particle-based PPOMDP algorithm, and presented results to

demonstrate its effectiveness. It was shown how forward planning can be used to locally

“fill in the gaps” of a coarse global plan.

In Chapter 8, the material from previous chapters was brought to bear on a real-world

problem. PPOMDP was applied to several progressively more challenging environments,
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culminating in a live demonstration on real robots. To the author’s knowledge, this problem

represents the most challenging robot navigation application to which POMDP solution

methods have been applied. Results showed that PPOMDP was significantly more reliable

than a non-probabilistic planner. By considering the entire distribution rather than simply

the maximum-likelihood position, PPOMDP maintained localisation quality and avoided

potentially dangerous scenarios.

9.2 Avenues for Future Research

While the algorithm presented in this thesis produced good results on a difficult problem,

this section discusses potential improvements to the algorithm and the possibility of its

application to even more challenging problem domains.

9.2.1 Dynamic or Unknown Environments

The POMDP formulation presented in this thesis assumes that the environment is both

static and perfectly known. This assumption is often invalid. In robot navigation terms, the

simultaneous localisation and mapping (SLAM) problem [35] provides a counter-example,

where the robot must discover the environment online. The simultaneous localisation,

mapping, and moving object tracking (SLAMMOT) problem [121] adds extra complexity

by relaxing the requirement that the environment be static.

A principled approach to planning in dynamic or unknown environments is to simply aug-

ment the state vector, as is done for estimation in the SLAM and SLAMMOT problems.

Unfortunately, assuming a Gaussian approximation, the dimensionality of Gaussians be-

comes large and varies with the number of features. It seems unlikely that current POMDP

solution methods will scale to considering the evolution of beliefs over map states and the

states of moving objects, in addition to vehicle states. Furthermore, the likelihood of future

observations in unknown environments is particularly challenging to model, although some

work has been done on modelling observation likelihoods in unknown environments [104].

A simplified approach to planning in unknown or dynamic environments, which avoids

augmenting the state vector, would be valuable.
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9.2.2 Further Application of POMDP Solution Methods

In the author’s opinion, a challenge for the practical application of POMDP solution meth-

ods is to find the right problem domain. The problem domain must be sufficiently simple to

allow an accurate model, while still being sufficiently uncertain to benefit from a POMDP

solution.

If the problem domain is too complicated, it can be difficult to model. As was discussed

in Section 4.2, one approach to estimation in difficult-to-model environments is to choose

to incorporate only those aspects of observations which are reliable. An example of this is

feature-based localisation which ignores negative information. Section 4.2 explained why

this is an appropriate strategy for estimation, but not for planning. A planner must be

able to anticipate the likelihood of future observations. The fact that a feature was not

observed on this time-step is definitely pertinent to the likelihood of it being observed on

the next time-step. The modelling inaccuracies for the RealWorld environment, discussed

in Chapter 8, suggest that RealWorld is approaching the threshold of an environment that

is too complicated.

Conversely, if the problem domain is too simple, an accurate model can be used. While

not necessarily the case, the application of powerful estimation techniques is likely to keep

uncertainty small. For small enough uncertainty, a POMDP solution will be identical to a

maximum-likelihood or heuristic solution. The counter-example to this scenario is a world

which can be accurately modelled, but in which observations are either extremely uncertain

or infrequent. This would represent the perfect scenario for the application of POMDP

solution methods, since the likelihood of future observations could be accurately predicted,

but high uncertainty would be problematic for heuristics.

9.2.3 Increased Belief Complexity

While a number of opportunities for optimisation were noted throughout this thesis, the

most promising area for improvement is perhaps the extension from unimodal Gaussians

to more complex probability distributions. Section 3.2 discussed the quality of a Gaussian

approximation, and hence the importance of such an extension. It argued that Gaussians

are a good model for most of the beliefs that occur during robot navigation problems.

Multimodal distributions occur relatively infrequently (assuming that global localisation is
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an infrequent event), and present a less serious problem for an unprepared planner than

for an unprepared localiser. However, non-Gaussian unimodal beliefs are more frequent.

Section 8.6.1 discussed one such issue, involving an uncertain belief near a thin wall. Since

the step change at the wall cannot be modelled by a single Gaussian, the planner believed

that there was a non-zero probability of “tunnelling” through that wall.

This section suggests two approaches to handling non-Gaussian beliefs. The first is based

on heuristics, while the second involves operating in a more expressive information space.

9.2.4 Heuristics for Dealing with Non-Gaussian Beliefs

While the Gaussian-based planner discussed in this thesis can only reason about future

Gaussian beliefs, a relatively simple extension may allow it to reason about one non-

Gaussian step. As discussed in Section 8.2, the online estimator used for belief tracking in

Chapter 8 clusters particles before estimating Gaussians, producing a Mixture of Gaussians

(MoG) representation. When multiple Gaussian components are reported, the approach

taken has been simply to select the most likely component, and assume that this represents

the true belief.

One can draw parallels between uncertainty about a discrete set of states, and uncertainty

about a discrete set of Gaussian components. The approach of having blind faith in the most

likely component is analogous to the MLS heuristic for dealing with POMDPs, discussed

in Section 2.7.1, which has blind faith in the most likely state. Section 2.7.1 also described

a set of more sophisticated heuristics, which may produce better results.

In particular, a version of the QMDP heuristic could be applied to MoG beliefs. Rather

than acting according to the most likely Gaussian, each component of the MoG could vote

for actions in proportion to the value of actions from that Gaussian belief, with a number

of votes proportional to the component’s weight. QMDP implicitly assumes that all state

uncertainty will disappear after the next action and observation, and is optimal when that

assumption is correct. When applied to MoGs, the heuristic would assume that the belief

will collapse to a single Gaussian after the next action and observation.

Another option would be to generalise a dual-mode heuristic, such as the Action entropy

heuristic described in Section 2.7.1. This would involve executing the PPOMDP plan as
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normal for a belief consisting of a single component, but taking actions to reduce the number

of components when the uncertainty over components is beyond a threshold.

The heuristics described in Section 2.7.1 are unable to make long term plans which reason

about how uncertainty will evolve, but can often deal with uncertainty over a short time-

horizon. The Gaussian planner described in this thesis is able to make long term plans,

but only about Gaussian uncertainty. The more non-Gaussian the true uncertainty, the

more approximate these plans will be. However, the addition of heuristics for dealing with

multi-modal beliefs will hopefully allow the planner to deal with non-Gaussian beliefs much

more accurately over a short time horizon.

A potential complication for generalising QMDP is that the best actions from each Gaussian

component must be considered. If forward planning is used, this is potentially expensive.

The optimisations discussed in Section 7.6 may alleviate this expense. Another alterna-

tive is to reduce the amount of forward planning when beliefs are represented by multiple

components.

9.2.5 Operating in a More Expressive I-Space

A more complete alternative to heuristics would be to operate in the space of mixtures of

Gaussians. The ability to work with arbitrary belief sets would be critical, because the

increase in the size of the parameter space would require an infeasibly large number of

regular grid-points to cover it. As pointed out in the introduction to this chapter, the use

of arbitrary beliefs means that scalability becomes limited by the size of the set of likely

beliefs, rather than the size of the parameter-space in which beliefs are described. This

is important, because the set of MoGs encountered during robot navigation is likely to be

highly constrained.

The main impediment to planning with an arbitrary set of MoG beliefs is the choice of an

appropriate distance metric. Comparing MoGs using the Parameter-Euclidean distance is

inappropriate because the length of parameter vectors would be variable, and results would

differ depending on the order in which individual Gaussian components are listed. A more

appropriate choice may be a distance metric based on the underlying probability distribution

described by the parameter vector. The analysis and results presented in Chapter 6 may

provide a starting point.
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Another complication of using mixtures of Gaussians is that the space of relevant beliefs

is likely to be significantly larger. However, it may be possible to reduce the amount of

computation by recognising that many of the calculations required to estimate transitions

from Gaussian A and transitions from Gaussian B are the same as those required to estimate

transitions from a mixture of Gaussians A and B. In other words, it may be possible to

combine calculations from individual Gaussian components to avoid performing an entire

set of calculations from each individual MoG belief.

Alternatively, it may be the case that a mixture of Gaussians is not the best representation.

For certain problems at least, an entirely different parameterisation, such as the use of

wavelet coefficients, may be more expressive and compact. In analogy to Roy’s work on

belief compression [94], it may be possible to learn a good continuous representation based

on a set of sample beliefs. This would free the human designer from the responsibility of

selecting a good representation for beliefs.

9.3 Conclusion

This thesis has contributed an algorithm for planning in partially-observable domains, which

operates by planning in the space of continuous parameterised probability distributions.

While the approach may not be appropriate for all domains, it was shown that good plans

can be generated quickly when the structure of the domain is such that beliefs are usually

well approximated by a particular parametric form. It was shown that robot navigation

problems can involve sufficiently structured beliefs as to be amenable to this approach. A

number of novel improvements to the basic algorithm were presented, to the point where the

algorithm could solve challenging real-world problems and be implemented on real robots.

This demonstration, involving modelling both position and heading, represents a significant

improvement on the state of the art.



Appendix A

Derivation of wµ for Repairing the

Matusita Distance

Section 6.4.1 described a repaired Matusita distance metric, denoted DMR
, such that

DMR
= DM +Dµ (A.1)

where DM is the Matusita distance metric, and

Dµ(v1,v2) = wµ

{

(µ1 − µ2)
T (µ1 − µ2)

}1/2

(A.2)

This appendix provides a detailed derivation of wµ.

Let max(DM ) denote the steady-state value which DM approaches as the overlap between

two distributions approaches zero. To ensure that Dµ only dominates for near neighbours,

wµ is chosen such that

Dµ(v1,v2) > DM (v1,v2) if and only if DM (v1,v2) > smax(DM ) (A.3)

where s is a value close to 1, such as 0.9. In other words, the relative weighting is chosen

such that DM dominates until it approaches its steady-state value, at which point Dµ takes

over.

The steady-state value of DM is simple to evaluate from Equation 6.16. Since the Bhat-
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tacharyya distance is unbounded, the maximum value of DM is approached as DB → ∞,

and hence exp(−DB)→ 0. Therefore max(DM ) =
√

2.

It is not possible to satisfy Equation A.3 for all v1 and v2, given the different shapes of the

two metrics. Therefore the approach taken is to choose a representative covariance value

and calculate an analytical w̃µ such that Equation A.3 holds for two Gaussians with this

covariance. wµ is then set using

wµ = Mw̃µ (A.4)

where M is a constant selected experimentally, by evaluating the efficiency of the resultant

metric indexing structure versus the extent to which neighbours are re-ordered. The chosen

representative covariance is the identity matrix I.

Let v1 =< µ1,Σ1 > and v2 =< µ2,Σ2 >, where Σ1 = Σ2 = Σ, and let

DM (v1,v2) = smax(DM ) (A.5)

Therefore

smax(DM ) =

{

2
[
1− exp(−DB(v1,v2))

]
}1/2

(A.6)

DB(v1,v2) = − log
(
1− 1

2

[
smax(DM )

]2)
(A.7)

From Equation 6.14, the Bhattacharyya distance between Gaussians of equal covariance is

DB(p1(x), p2(x)) =
1

8
(µ1 − µ2)

TΣ−1(µ1 + µ2) (A.8)

Substituting this into Equation A.7 gives

(µ1 − µ2)
TΣ−1(µ1 − µ2) = −8 log

(
1− 1

2

[
smax(DM )

]2)
(A.9)

Taking square-roots of both sides,

{

(µ1 − µ2)
T Σ−1(µ1 − µ2)

}1/2

=

{

−8 log
(
1− 1

2

[
smax(DM )

]2)
}1/2

(A.10)
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Using a representative covariance value of Σ = I,

{

(µ1 − µ2)
T (µ1 − µ2)

}1/2

=

{

−8 log
(
1− 1

2

[
smax(DM )

]2)
}1/2

(A.11)

To satisfy Equation A.3, it is required that

Dµ(v1,v2) = DM (v1,v2) (A.12)

Combining Equations A.12, A.2, and A.5 gives

w̃µ

{

(µ1 − µ2)
T (µ1 − µ2)

}1/2

= smax(DM ) (A.13)

Substituting Equation A.11 and rearranging gives

w̃µ = smax(DM )

{

−8 log
(
1− 1

2

[
smax(DM )

]2)
}−1/2

(A.14)

Substituting max(DM ) =
√

2 and simplifying produces

w̃µ = s
√

2
{
−8 log(1− s2)

}−1/2
(A.15)

Combining Equations A.15 and A.4 gives

wµ = Ms
√

2
{
−8 log(1− s2)

}−1/2
(A.16)

M was selected using a database of the same size and distribution as the database from

Section 6.4. 5000 query points were randomly selected from the same distribution. For a

set of metrics, the nearest-neighbour of each query point was calculated and the average

number of required distance calculations was recorded. The lists of nearest neighbours were

then compared, and the percentage of queries on which they agreed was calculated.

The number of comparisons and the rate of agreement represent competing objectives. A

good compromise was found to be M = 0.25. The results for this choice of M are shown in

Table 6.3.
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