346 research outputs found
Written reflection in an eHealth intervention for adults with type 2 diabetes mellitus: a qualitative study
Background: Individuals with type 2 diabetes mellitus (T2DM) are responsible for the daily decisions and actions necessary to manage their disease, which makes self-management the cornerstone of diabetes care. Many patients do not reach recommended treatment goals, and thus it is important to develop and evaluate innovative interventions that facilitate optimal motivation for adequate self-management of T2DM.
Objective: The aim of the current study was to explore how adults with T2DM experience using reflection sheets to stimulate written reflection in the context of the Guided Self-Determination (GSD) eHealth intervention and how written reflection might affect their motivation for self-management of T2DM.
Methods: We used a qualitative design in which data were collected through individual interviews. The sample consisted of 10 patients who completed the GSD eHealth intervention, and data were analyzed using qualitative content analysis.
Results: The qualitative content analysis yielded 2 main themes. We labeled the first theme as “Written reflection affects awareness and commitment in diabetes self-management”, which reflects 2 subthemes, namely, “Writing creates space and time for autonomous reflection” and “Writing influences individuals’ focus in diabetes self-management”. We labeled the second theme as “Written reflection is perceived as inapplicable in diabetes self-management”, which reflects 2 subthemes, namely, “Responding in writing is difficult” and “The timing of the writing is inappropriate”.
Conclusion: Our findings indicate that written reflection in the context of the GSD eHealth intervention may be conducive to motivation for diabetes self-management for some patients. However, it seems that in-person consultation with the diabetes nurse may be necessary to achieve the full potential benefit of the GSD as an eHealth intervention. We advocate further development and examination of the GSD as a “blended” approach, especially for those who consider written reflection to be difficult or unfamiliar.publishedVersio
A multi-source-to-sink system in a dynamic plate tectonic setting: the Cenozoic of the Barents Sea, Norwegian Arctic
Abstract of an oral presentation at the 61st British Sedimentological Resarch Group Annual Meeting, Southampton, 6-8 December 2022.When multiple source areas are located on a continuously moving plate margin relative to a sink, the signal propagation in the source-to-sink system may vary significantly in time and space. How fast and severe the impact of tectonics and climate is on sediment erosiontransfer-deposition in this dynamic setting is still not well understood. Similarly, how do we quantify the relative sediment contribution from each source area? Here, we use a forward stratigraphic modelling technique to constrain key controlling parameters in basin filling in relation to the Cenozoic successions of the Barents Sea in the Norwegian Arctic.
The Cenozoic evolution of the Barents Sea shelf is strongly linked to the breakup between the Greenland and the Eurasian plates at c. 55 Ma, which led to the development of highs and basins along the margins of the Barents Sea. This configuration resulted in the deposition of progradational wedges and submarine fans (c. 40 Ma) in the Sørvestsnaget Basin. Subsequent plate reorganization caused a major shelf uplift (c. 33 Ma) and opening of the Fram Strait (c. 17 Ma) and affected the sedimentary processes and deposits in the sink (including contourites) now observable in seismic and borehole data.
Moreover, Cenozoic successions were deposited under different extreme climate settings ranging from the Paleocene-Eocene Thermal Maximum (PETM) to icehouse conditions during the Quaternary glaciations (c. <2.7 Ma). A major increase in sediment supply resulting from glacial erosion is reflected in the deposition of a series of trough mouth fans along the continental margin. We present preliminary results of an ongoing project modelling this source-to-sink system, and discuss what factors control sediment erosion, transfer, and basin filling
Effect of lactation stage and concurrent pregnancy on milk composition in the bottlenose dolphin
Although many toothed whales (Cetacea: Odontoceti) lactate for 2–3 years or more, it is not known whether milk composition is affected by lactation stage in any odontocete species. We collected 64 pooled milk samples spanning 1–30 months postpartum from three captive bottlenose dolphins Tursiops truncatus. Milks were assayed for water, fat, crude protein (TN × 6.38) and sugar; gross energy was calculated. Ovulation and pregnancy were determined via monitoring of milk progesterone. Based on analysis of changes in milk composition for each individual dolphin, there were significant increases (P<0.05) in fat (in all three dolphins) and crude protein (in two of three), and a decrease (P<0.05) in water (in two of three) over the course of lactation, but the sugar content did not change. In all three animals, the energy content was positively correlated with month of lactation, but the percentage of energy provided by crude protein declined slightly but significantly (P<0.05). At mid-lactation (7–12 months postpartum, n=17), milk averaged 73.0±1.0% water, 12.8±1.0% fat, 8.9±0.5% crude protein, 1.0±0.1% sugar, 1.76±0.09 kcal g−1 (=7.25 kJ g−1) and 30.3±1.3% protein:energy per cent. This protein:energy per cent was surprisingly high compared with other cetaceans and in relation to the growth rates of calves. Milk progesterone indicated that dolphins ovulated and conceived between 413 and 673 days postpartum, following an increase in milk energy density. The significance of these observed compositional changes to calf nutrition will depend on the amounts of milk produced at different stages of lactation, and how milk composition and yield are influenced by sampling procedure, maternal diet and maternal condition, none of which are known
Self-Guided Multimedia Stress Management and Resilience Training for Flight Controllers
Stress and anxiety-related problems are among the most common and costly behavioral health problems in society, and for those working in operational environments (i.e. astronauts, flight controllers, military) this can seriously impact crew performance, safety, and wellbeing. Technology-based interventions are effective for treating behavioral health problems, and can significantly improve the delivery of evidence-based health care. This study is evaluating the effectiveness, usefulness, and usability of a self-guided multimedia stress management and resilience training program in a randomized controlled trial (RCT) with a sample of flight controllers at Johnson Space Center. The intervention, SMART-OP (Stress Management and Resilience Training for Optimal Performance), is a six-session, cognitive behavioral-based computer program that uses self-guided, interactive activities to teach skills that can help individuals build resilience and manage stress. In a prior RCT with a sample of stressed but otherwise healthy individuals, SMART-OP reduced perceived stress and increased perceived control over stress in comparison to an Attention Control (AC) group. SMART-OP was rated as "highly useful" and "excellent" in usability and acceptability. Based on -amylase data, individuals in SMART-OP recovered quicker and more completely from a social stress test as compared to the AC group [1]. In the current study, flight controllers are randomized either to receive SMART-OP training, or to a 6-week waitlist control period (WLC) before beginning SMART-OP. Eligible participants include JSC flight controllers and instructors without any medical or psychiatric disorder, but who are stressed based on self-report. Flight controllers provide a valid analog sample to astronauts in that they work in an operational setting, use similar terminology to astronauts, are mission-focused, and work under the same broader work culture. The study began in December 2014, and to date 79 flight controllers and instructors have expressed interest in the study, 49 of those were cleared for participation, we have screened 44 for eligibility, and 23 have met inclusion criteria. Recruitment is ongoing and the study will continue until December 2016. Outcome measures include perceived stress, perceived control over stress, resilience, mood, personality, emotion regulation, sleep, health behaviors, and psychophysiological data such as 24-hour heart rate, alpha amylase, and urinary and salivary cortisol. We are also collecting user feedback such as usability, working alliance, usefulness, and treatment credibility
New insights into the role of androgen and oestrogen receptors in molecular apocrine breast tumours
Two recent studies on a rare androgen-dependent form of breast cancer have shed light on the biology of luminal tumours and reinforced the view that interfering with androgen signalling may have a place in the therapy of some forms of breast cancer
Superconductivity in Cu_xTiSe_2
Charge density waves (CDWs) are periodic modulations of the conduction
electron density in solids. They are collective states that arise from
intrinsic instabilities often present in low dimensional electronic systems.
The layered dichalcogenides are the most well-studied examples, with TiSe_2 one
of the first CDW-bearing materials known. The competition between CDW and
superconducting collective electronic states at low temperatures has long been
held and explored, and yet no chemical system has been previously reported
where finely controlled chemical tuning allows this competition to be studied
in detail. Here we report how, upon controlled intercalation of TiSe_2 with Cu
to yield Cu_xTiSe_2, the CDW transition is continuously suppressed, and a new
superconducting state emerges near x = 0.04, with a maximum T_c of 4.15 K found
at x = 0.08. Cu_xTiSe_2 thus provides the first opportunity to study the CDW to
Superconductivity transition in detail through an easily-controllable chemical
parameter, and will provide new insights into the behavior of correlated
electron systems.Comment: Accepted to Nature Physic
Exposure to Radiofrequency Electromagnetic Fields and Sleep Quality: A Prospective Cohort Study
BACKGROUND: There is persistent public concern about sleep disturbances due to radiofrequency electromagnetic field (RF-EMF) exposure. The aim of this prospective cohort study was to investigate whether sleep quality is affected by mobile phone use or by other RF-EMF sources in the everyday environment. METHODS: We conducted a prospective cohort study with 955 study participants aged between 30 and 60 years. Sleep quality and daytime sleepiness was assessed by means of standardized questionnaires in May 2008 (baseline) and May 2009 (follow-up). We also asked about mobile and cordless phone use and asked study participants for consent to obtain their mobile phone connection data from the mobile phone operators. Exposure to environmental RF-EMF was computed for each study participant using a previously developed and validated prediction model. In a nested sample of 119 study participants, RF-EMF exposure was measured in the bedroom and data on sleep behavior was collected by means of actigraphy during two weeks. Data were analyzed using multivariable regression models adjusted for relevant confounders. RESULTS: In the longitudinal analyses neither operator-recorded nor self-reported mobile phone use was associated with sleep disturbances or daytime sleepiness. Also, exposure to environmental RF-EMF did not affect self-reported sleep quality. The results from the longitudinal analyses were confirmed in the nested sleep study with objectively recorded exposure and measured sleep behavior data. CONCLUSIONS: We did not find evidence for adverse effects on sleep quality from RF-EMF exposure in our everyday environmen
Thermodynamics of Nonstoichiometric Nickel Tellurides. I. Heat Capacity and Thermodynamic Functions of the δ Phase from 5 to 350°K
Heat capacities of the nickel tellurides were measured at compositions NiTe1.1 and NiTe2.0 (near limits of homogeneity of the δ phase) and at one intermediate composition, NiTe1.5, from 5 to 350°K. Heat capacity values and entropy and enthalpy increments are tabulated. No evidence of order‐disorder transitions, or thermal anomalies, or of contributions to the thermal properties from the anisotropy or phonon scattering by the holes in the structure on approaching the composition NiTe2 was observed. Although simple additivity of the heat capacities of the constituent elements failed to represent that of the solution compositions adequately, a Kopp‐Neumann treatment in terms of the limiting compositions of the δ phase gives good agreement with the experimental heat capacity and entropy of NiTe1.5 and hence is useful in interpolating to other intermediate compositions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70090/2/JCPSA6-28-3-497-1.pd
A novel causal mechanism for grey squirrel bark stripping: The Calcium Hypothesis
AbstractGrey squirrels, Sciurus carolinensis, damage trees in the UK by stripping bark and eating the underlying phloem; squirrel motivation for damage is, however, unknown. Damage can result in deterioration of timber quality and a significant economic toll on the forestry industry. Prediction of severe damage followed by targeted killing of squirrels is the current recommended management option. However, the use of warfarin (an anticoagulant poison) is now restricted in the UK and other more humane methods of killing are labour-intensive, so an alternative solution is needed. A better understanding of what motivates grey squirrels to strip bark may enable a preventive approach to be developed. Whilst the bark stripping literature has explored predictive factors affecting the likelihood of damage, causal understanding is lacking. The aim of this review is to introduce the Calcium Hypothesis as a possible explanation for bark stripping, with a view to informing the prevention of damage. The Calcium Hypothesis states that grey squirrels damage trees to ameliorate a calcium deficiency. The main predictive factors of bark stripping behaviour each inform and lend support to the Calcium Hypothesis. Calcium is stored in tree phloem, and damage increases with phloem width, providing squirrels with more calcium per unit area ingested. Calcium levels increase in trees as active growth resumes after winter dormancy, this occurs immediately prior to the main bark stripping season of May–July, and trees growing most vigorously are at increased risk of damage. It is likely grey squirrels also have a requirement for calcium during the bark stripping season. Adult females will be under post-parturition pressures such as lactation, and juveniles will be going through their main period of bone growth, both of which likely represent a requirement for calcium – which supports an observed positive correlation between juvenile abundance and bark stripping. A high autumnal seed crop increases juvenile recruitment the following spring, and could also induce a requirement for calcium to a population due to the high phosphorus to calcium ratio of seeds. To further investigate the hypothesis, the extent to which grey squirrels can utilise calcium oxalate, as calcium occurs in bark, should be determined, and also the extent to which grey squirrels undergo seasonal periods of calcium deficiency. Increasing our causal understanding of bark stripping could inform the future development of preventive measures to aid forest management
- …