183 research outputs found

    Influence of de-hulled rapeseed roasting on the physicochemical composition and oxidative state of oil

    Get PDF
    The effect of roasting time on the contents of bioactive compounds (tocopherols, phytosterols, phenolic compounds), antioxidant capacity and physicochemical properties of rapeseed oil pressed from de-hulled seeds was investigated. The de-hulled seeds were roasted at a temperature of 165 °C for 20, 40, 60, 80, and 100 min. The results of this study show that a roasting pre-treatment led to a gradual increase in canolol content (from 1.34 to 117.33 mg/100 g), total phytosterols (from 573.51 to 609.86 mg/100 g) and total carotenoids (0.82 to 2.41 mg/100 g), while only slight changes in the contents of tocopherols were noted. With the increase in roasting time a gradual increase in oxidative stability (from 4.27 to 6.85 h), and antioxidant capacity, seen mainly in the hydrophilic fraction of oil (from 0.32 to 2.30 mmol TEAC/l) was found. Although roasting resulted in the formation of primary and secondary oxidation products, the quality parameters of oils were within Codex Alimentarius limits

    Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions

    Full text link
    In this work, three ultrafiltration (UF) membranes with different molecular weight cut-offs (MWCOs) and made of different materials were fouled with several whey model solutions that consisted of bovine serum albumin (BSA) (1% w/w), BSA (1% w/w) and CaCl2 (0.06% w/w in calcium) and whey protein concentrate (WPC) with a total protein content of 45% w/w at three different concentrations (22.2, 33.3 and 44.4 g·L− 1). The influence of MWCO and membrane material on the fouling mechanism dominating the UF process was investigated. Experiments were performed using two flat-sheet organic membranes and a ceramic monotubular membrane whose MWCOs were 5, 30 and 15 kDa, respectively. Hermia's models adapted to crossflow UF, a combined model based on complete blocking and cake formation equations and a resistance-in-series model were fitted to permeate flux decline curves. The results demonstrated that permeate flux decline was accurately predicted by all the models studied. However, the models that fitted the best to permeate flux decline experimental data were the combined model and the resistance-in-series model. Therefore, complete blocking and cake formation were the predominant mechanisms for all the membranes and feed solutions tested.The authors of this work wish to gratefully acknowledge the financial support of the Spanish Ministry of Science and Innovation through the project CTM2010-20186.Corbatón Báguena, MJ.; Alvarez Blanco, S.; Vincent Vela, MC. (2015). Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions. Desalination. 360:87-96. https://doi.org/10.1016/j.desal.2015.01.019S879636
    corecore