333 research outputs found

    Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    Get PDF
    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method

    Introducing willingness-to-pay for noise changes into transport appraisal: an application of benefit transfer.

    Get PDF
    Numerous research studies have elicited willingness-to-pay values for transport-related noise, however, in many industrialised countries including the UK, noise costs and benefits are still not incorporated into appraisals for most transport projects and policy changes (Odgaard et al, 2005; Grant-Muller et al, 2001). This paper describes the actions recently taken in the UK to address this issue, comprising: primary research based on the city of Birmingham; an international review of willingness-to-pay evidence; development of values using benefit transfers over time and locations; and integration with appraisal methods. Amongst the main findings are: that the willingness-to-pay estimates derived for the UK are broadly comparable with those used in appraisal elsewhere in Europe; that there is a case for a lower threshold at 1 45dB(A)Leq,18hr1 rather than the more conventional 55dB(A); and that values per dB(A) increase with the noise level above this threshold. There are significant issues over the valuation of rail versus road noise, the neglect of non-residential noise and the valuation of high noise levels in different countries. Conclusions are drawn regarding the feasibility of noise valuation based on benefit transfers in the UK and elsewhere, and future research needs in this field are discussed

    Topology optimization for human proximal femur considering bi-modulus behavior of cortical bones

    Full text link
    © Springer International Publishing Switzerland 2015. The material in the human proximal femur is considered as bi-modulus material and the density distribution is predicted by topology optimization method. To reduce the computational cost, the bi-modulus material is replaced with two isotropic materials in simulation. The selection of local material modulus is determined by the previous local stress state. Compared with density prediction results by traditional isotropic material in proximal femur, the bi-modulus material layouts are different obviously. The results also demonstrate that the bi-modulus material model is better than the isotropic material model in simulation of density prediction in femur bone

    Physical complexity to model morphological changes at a natural channel bend

    Get PDF
    This study developed a two‐dimensional (2‐D) depth‐averaged model for morphological changes at natural bends by including a secondary flow correction. The model was tested in two laboratory‐scale events. A field study was further adopted to demonstrate the capability of the model in predicting bed deformation at natural bends. Further, a series of scenarios with different setups of sediment‐related parameters were tested to explore the possibility of a 2‐D model to simulate morphological changes at a natural bend, and to investigate how much physical complexity is needed for reliable modeling. The results suggest that a 2‐D depth‐averaged model can reconstruct the hydrodynamic and morphological features at a bend reasonably provided that the model addresses a secondary flow correction, and reasonably parameterize grain‐sizes within a channel in a pragmatic way. The factors, such as sediment transport formula and roughness height, have relatively less significance on the bed change pattern at a bend. The study reveals that the secondary flow effect and grain‐size parameterization should be given a first priority among other parameters when modeling bed deformation at a natural bend using a 2‐D model

    A Three-Dimensional Atlas of the Honeybee Neck

    Get PDF
    Three-dimensional digital atlases are rapidly becoming indispensible in modern biology. We used serial sectioning combined with manual registration and segmentation of images to develop a comprehensive and detailed three-dimensional atlas of the honeybee head-neck system. This interactive atlas includes skeletal structures of the head and prothorax, the neck musculature, and the nervous system. The scope and resolution of the model exceeds atlases previously developed on similar sized animals, and the interactive nature of the model provides a far more accessible means of interpreting and comprehending insect anatomy and neuroanatomy

    On the long term behavior of meandering rivers

    Get PDF
    In spite of notable advances in the description of river morphodynamics, the long-term dynamics of meandering rivers is still an open question, in particular, regarding the existence of a possible statistical steady state and its scaling properties induced by the competing action of cutoffs and reach elongation. By means of extensive numerical simulations, using three fluid dynamic models of different complexity and analysis of real data from the Amazon, North America, and Russia, we show that the reach cutoffs, besides providing stability and self-confinement to the meander belt, also act as a dynamical filter on several hydrodynamic mechanisms, selecting only those that really dominate the long-term dynamics. The results show that the long-term equilibrium conditions are essentially governed by only one spatial scale (proportional to the ratio of the river depth and the friction coefficient) and one temporal scale (proportional to the square of the spatial scale divided by the river width, the mean longitudinal velocity, and the erodibility coefficient) that contain the most important fluid dynamic quantities. The ensuing statistical long-term behavior of meandering rivers proves to be universal and largely unaffected by the details of the fluid dynamic processes that govern the short-term river behavio

    Patterns of modern pollen and plant richness across northern Europe

    Get PDF
    Sedimentary pollen offers excellent opportunities to reconstruct vegetation changes over past millennia. Number of different pollen taxa or pollen richness is used to characterise past plant richness. To improve the interpretation of sedimentary pollen richness, it is essential to understand the relationship between pollen and plant richness in contemporary landscapes. This study presents a regional-scale comparison of pollen and plant richness from northern Europe and evaluates the importance of environmental variables on pollen and plant richness. We use a pollen dataset of 511 lake-surface pollen samples ranging through temperate, boreal and tundra biomes. To characterise plant diversity, we use a dataset formulated from the two largest plant atlases available in Europe. We compare pollen and plant richness estimates in different groups of taxa (wind-pollinated vs. non-wind-pollinated, trees and shrubs vs. herbs and grasses) and test their relationships with climate and landscape variables. Pollen richness is significantly positively correlated with plant richness (r = 0.53). The pollen plant richness correlation improves (r = 0.63) when high pollen producers are downweighted prior to estimating richness minimising the influence of pollen production on the pollen richness estimate. This suggests that methods accommodating pollen-production differences in richness estimates deserve further attention and should become more widely used in Quaternary pollen diversity studies. The highest correlations are found between pollen and plant richness of trees and shrubs (r = 0.83) and of wind-pollinated taxa (r = 0.75) suggesting that these are the best measures of broad-scale plant richness over several thousands of square kilometres. Mean annual temperature is the strongest predictor of both pollen and plant richness. Landscape openness is positively associated with pollen richness but not with plant richness. Pollen richness values from extremely open and/or cold areas where pollen production is low should be interpreted with caution because low local pollen production increases the proportion of extra-regional pollen. Synthesis. Our results confirm that pollen data can provide insights into past plant richness changes in northern Europe, and with careful consideration of pollen-production differences and spatial scale represented, pollen data make it possible to investigate vegetation diversity trends over long time-scales and under changing climatic and habitat conditions.Peer reviewe
    • 

    corecore