
Politecnico di Torino

Porto Institutional Repository

[Article] On the long term behavior of meandering rivers

Original Citation:
Camporeale C.; Perona P.; Porporato A.; Ridolfi L. (2005). On the long term behavior of meandering
rivers. In: WATER RESOURCES RESEARCH, vol. 41, pp. 1-13. - ISSN 0043-1397

Availability:
This version is available at : http://porto.polito.it/1529104/ since: March 2007

Publisher:
AGU

Published version:
DOI:10.1029/2005WR004109

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

http://porto.polito.it/view/publication/WATER_RESOURCES_RESEARCH.html
http://porto.polito.it/1529104/
http://dx.doi.org.ezproxy.biblio.polito.it/10.1029/2005WR004109
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=1529104


On the long-term behavior of meandering rivers

C. Camporeale,1 P. Perona,2 A. Porporato,3 and L. Ridolfi1

Received 14 March 2005; revised 26 August 2005; accepted 1 September 2005; published 1 December 2005.

[1] In spite of notable advances in the description of river morphodynamics, the long-
term dynamics of meandering rivers is still an open question, in particular, regarding the
existence of a possible statistical steady state and its scaling properties induced by the
competing action of cutoffs and reach elongation. By means of extensive numerical
simulations, using three fluid dynamic models of different complexity and analysis of real
data from the Amazon, North America, and Russia, we show that the reach cutoffs,
besides providing stability and self-confinement to the meander belt, also act as a
dynamical filter on several hydrodynamic mechanisms, selecting only those that really
dominate the long-term dynamics. The results show that the long-term equilibrium
conditions are essentially governed by only one spatial scale (proportional to the ratio of
the river depth and the friction coefficient) and one temporal scale (proportional to the
square of the spatial scale divided by the river width, the mean longitudinal velocity, and
the erodibility coefficient) that contain the most important fluid dynamic quantities. The
ensuing statistical long-term behavior of meandering rivers proves to be universal and
largely unaffected by the details of the fluid dynamic processes that govern the short-term
river behavior.

Citation: Camporeale, C., P. Perona, A. Porporato, and L. Ridolfi (2005), On the long-term behavior of meandering rivers, Water

Resour. Res., 41, W12403, doi:10.1029/2005WR004109.

1. Introduction

[2] Meandering rivers are dynamical systems far from
equilibrium driven by complex linear and nonlinear pro-
cesses. Their typical spatial and temporal patterns have
shown clues of statistical equilibrium [Howard, 1984;
Liverpool and Edwards, 1995; Sun et al., 1996; Stølum,
1996, 1998], self-organized criticality [Furbish, 1991;
Stølum, 1996, 1997], and fractal geometry [Snow, 1989;
Nikora et al., 1993; Stølum, 1998]. They can be assimilated
to planar curves evolving under two contrasting actions: the
continuous elongation induced by the local bend erosion,
and the sudden and sporadic shortening due to cutoff events.
The first action generates new reaches and is due to
complex fluid dynamic mechanisms [Parker et al., 1983;
Seminara, 1998]. It also provides a spatial memory to the
dynamics and gives rise to the sensitivity to initial con-
ditions typical of locally (spatially or temporally) unstable
systems [Argyris et al., 1994]. The second action is inter-
mittent and dictated by nonlocal geometric conditions that
eliminate the most mature meanders when two points of the
curve come into contact [Gagliano and Howard, 1984].
This sequence of elongation and shortening phases, which
represents the core of the long-term dynamics of meander-
ing rivers, is in turn impacted by several external forcings,
such as flow variability, riparian vegetation, geological

processes, and anthropic actions [e.g., Sun et al., 1996;
Perona et al., 2002]. In the following, we will indicate as
‘‘long term’’ the timescale that includes cutoff occurrences,
in contrast to the ‘‘short-term’’ timescale which is typical of
the evolution of single meanders before cutoff.
[3] The present work deals with two aspects of the long-

term dynamics. The first one is the possibility that a
statistically stationary state may be reached by only two
‘‘internal’’ causes, that is, elongations and cutoff events, and
not because of other ‘‘external’’ forcings. The previous
results are somewhat contradictory to this regard. Sun et
al. [1996] underline the necessity of the pedological
processes for the self-confinement of the meander belt,
while Howard [1984] and Stølum [1996] seem to obtain
stationary states without introducing any external forcing.
The second aspect concerns the role of cutoff in selecting
the morphodynamic processes that are really important
in the long-term dynamics. As will be seen, our results
show that the shortening phases due to cutoff prevent
several fluid dynamics mechanisms that are important in
the short-term evolution from exerting a significant role
in the long-term meandering dynamics. As a consequence,
the overall complexity of the equilibrium state is markedly
reduced and becomes essentially regulated by only two
fundamental scales. Once normalized by such scales (that
we obtain from fluid dynamic models and not empirically)
the main features of the statistical steady state attain a
clear universal character.
[4] The recognition of this ‘‘dynamic’’ filtering by

cutoff is the principal novelty of the work. It also
provides an interpretation for some well-known empirical
laws of river geomorphology [Leopold and Wolman,
1960; Jansen et al., 1979; Allen, 1984] whose evident
scale invariance is apparently at odds with the complexity of
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the fluid dynamic mechanisms involved in the short-term
meandering dynamics. It is in fact the occurrence of cutoffs
that removes most of such a dynamic complexity and selects
the few governing scales of the long-term dynamics.
[5] As the nonlinearity due to cutoff and its random

occurrence prevent an analytical description of the long-
term river dynamics, we thus employ numerical simulations
of the temporal evolution of the river planimetry. We use a
series of fluid dynamic models, namely the model of Ikeda
et al. [1981], Johannesson and Parker [1989], and Zolezzi
and Seminara [2001]. The first two models have been used
in previous studies of long-term river dynamics [e.g.,
Howard, 1984; Stølum, 1996; Sun et al., 1996, 2001],
while the last one, which encompasses all the principal
morphodynamic mechanisms, has never been used in
long-term simulations. A recent investigation by the
authors (C. Camporeale et al., Hierarchy of models for
meandering rivers and related morphodynamic processes,
submitted to Reviews of Geophysics, 2005, hereinafter
referred to as Camporeale et al., submitted manuscript,
2005) has shown how such models can be hierarchically
derived from a common framework by increasing the
detail in the modeling of the fluid dynamic processes.
Therefore the analysis of the long-term behavior of such
models allows us to investigate the significance of each
fluid dynamic process and to reveal the filtering action by
cutoff in the long-term river dynamics.
[6] Finally, we support the results of the numerical

simulations by analyzing the planimetric characteristics of
forty four real rivers with very different hydraulic character-
istics and spatial scales. We pay particular attention to the
analysis of their scaling behavior and their meander belt
characterization.
[7] The work is organized as follows. Section 2 is

devoted to a brief review of the common mathematical
framework used by the three models of the meandering
dynamics. Section 3 deals with the numerical procedure
adopted to simulate the long-term dynamics, while section 4
presents the simulation results along with a comparison with
data from real rivers. Finally, section 5 draws the conclu-
sions of our analysis.

2. Mathematical Framework

[8] The evolution of the river planimetry can be described
using the formalism of the differential geometry of plane

curves. Assuming that the width of the river remains
constant during its migration, it is sufficient to study the
evolution of the curve described by the river axis. The
main steps for the deduction of the integrodifferential
equation regulating the curve dynamics are the following
(see Nakayama et al. [1992] and Brower et al. [1984] for
more details). The starting point is the equation of motion
of a parameterized curve r(a, t) that moves along the
normal versor n (see Figure 1), @r(a, t)/@t = nV, where t
is time, V is the local normal velocity, and a is a
descriptive parameter which does not depend on time,
so that @ta = @at. Introducing then the arc length coordi-

nate s(a, t) =

Z a

0

ffiffiffi
g

p
da0, where g(a, t) is the metric

coefficient
@r

@a
� @r
@a

����
����, and defining the curvature C =

j@2r/@s2j, it follows that [Brower et al., 1984]

@

@t@s
� @

@s@t
¼ �CV

@

@s
: ð1Þ

[9] Equation (1) along with the Serret-Frenet equations
[Do Carmo, 1976] provides the temporal rate of change of
the arc length coordinate

@s

@t
¼
Z a

0

@g

@t

1

2
ffiffiffi
g

p da0 ¼
Z a

0

gCVffiffiffi
g

p da0 ¼
Z s

0

CVds0; ð2Þ

which gives [Nakayama et al., 1992]

dr

dt
¼ nV � @r

@s

Z s

0

CVds0: ð3Þ

Once the normal velocity, V(s, t), is given, the previous
equation describes univocally the dynamics of the curve.
Notice that equation (3) is nonlinear, regardless of the
mathematical form of V.
[10] In the case of meandering rivers, the functional V can

be modelled following an original idea of Ikeda et al.
[1981] who suggested a linear relationship between the
normal rate of erosion and excess bank longitudinal velocity
ub = u(s, n = b), that is, V = E � ub, where u(s, n) is the
longitudinal flow field perturbation to the mean stream
velocity, n is the transversal coordinate, b is the river half
width, and E is a coefficient of erodibility (a complete list of
symbols is provided at the end of the paper). Such a
hypothesis was confirmed by field investigations [Pizzuto
and Meckelnburg, 1989] and has been adopted in several
models for its simplicity [Parker and Andrews, 1986;
Johannesson and Parker, 1989; Odgaard, 1986; Howard,
1992]. It should be noted that ub refers to the value at the
edge of the lateral boundary layer and thus it corresponds to
the velocity given by the two-dimensional theories describ-
ing the flow field in meandering rivers. In particular, in this
paper we adopt the models developed by Ikeda et al.
[1981], by Johannesson and Parker [1989], and by Zolezzi
and Seminara [2001] (hereinafter referred to as IPS, JP, and
ZS models, respectively). While a detailed comparison
among the models has been conducted elsewhere
(Camporeale et al., submitted manuscript, 2005), here we
only recall some essential physical properties and their
conceptual differences.

Figure 1. Geometric framework. Notice that jAj = jBj.
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[11] As shown by Camporeale et al. (submitted manu-
script, 2005), these three theories can be hierarchically
derived from the same framework (i.e., the shallow water
equations and the continuity equation for the sediment) and
differentiate themselves according to the morphodynamic
mechanisms considered. In the case of the ZS model, the
generic m mode of the lateral Fourier decomposition of the

longitudinal flow field perturbation, u(s, n) =
X1

m¼0
um(s)

sinMn (with n transversal coordinate and M =
1

2
[(2m + 1)p],

is described by the following fourth-order linear differential
equation

d4um

ds4
þ ŝ3

d3um

ds3
þ ŝ2

d2um

ds2
þ ŝ1

dum

ds
þ ŝ0um ¼

X6
j¼0

r̂j
djC

dsj
: ð4Þ

[12] The coefficients of the above equation read

ŝi ¼
sib
n0U0

; r̂j ¼ Ambrj i ¼ 1; 4; j ¼ 0; 6ð Þ; ð5Þ

where Am = 2(�1)m/M2, n0 = b/R0, R0 is the minimum
radius of curvature of the river, U0 is the bulk velocity,
and the terms si and ri depend on the aspect ratio b = b/H,
the dimensionless roughness ds = dm/H and the Shield
stress q (for details see Zolezzi and Seminara [2001]).
Finally, H is the average depth and dm the mean sediment
diameter.
[13] Equation (4) provides the most complete linear

fluid dynamics-based solution of the river morphodynamic
problem. It contains some fundamental novel aspects to
the previous linear formulations. First, the ZS model fully
accounts for the coupling between curvature-driven sec-
ondary currents and topography-driven secondary flow, by
considering the redistribution of the secondary flow
through the action of the main flow. The fourth order of
the equation (4) arises from the dependence of the free
surface on both these components of the lateral flow.
Secondly, the two complex conjugate eigenvalues that
are always present in the solutions of the secular equation
corresponding to the free response of the system, cause an
oscillatory pattern in the flow field that allows the
modeling of multilobed behavior in the curve growth
[Seminara et al., 1994]. Thirdly, the model accounts for
the spatial change in the friction factor as well as for the
vertical variation of the eddy viscosity by means of
Dean’s distribution [Dean, 1974], which may strongly
influence the normal rate of erosion (Camporeale et al.,
submitted manuscript, 2005). Finally, since one eigenvalue
is always positive, the ZS model reveals that the local
flow field depends on both the upstream and downstream
river geometry. The former dependence becomes dominant
in the so-called superresonant conditions giving rise to
upstream-skewed meanders.
[14] The JP model can be obtained from the ZS model

with three main simplifications: (1) negligible coupling
between curvature driven secondary currents and topogra-
phy, (2) no spatial variations in the friction coefficient and
no dependence of the bedload transport on the flow depth,
and (3) vertically averaged value of the eddy viscosity. With

the previous assumptions, equation (4) reduces to the
second-order model

d2um

ds2
þ s01

dum

ds
þ s00um ¼

X2
j¼0

r0j
djC

dsj
; ð6Þ

whose first lateral mode (m = 0) corresponds to the JP
model. Coefficients si

0 and ri
0 are reported in appendix A.

[15] If we further neglect the coupling between sediment
dynamics and fluid dynamics and model the dimensionless
bed elevation h(n, s) through the linear relationship h =
�ACn (where A is a coefficient depending on the friction
factor and the turbulence closure model), equation (6)
solved at the wall (i.e., ub = u(s, n = b)) reduces to a first-
order equation

dub

ds
þ s000ub ¼ r000C þ r001

dC

ds
: ð7Þ

[16] This corresponds to the IPS model, which can be
considered as the founder of the physically based meander-
ing models (for the coefficients s00i and r00i, see Ikeda et al.
[1981] and Sun et al. [1996]). In spite of its several
simplifying hypotheses, it captures some of the fundamental
features of the meandering dynamics, like the fattening and
the skewing in meander evolution. This fact, together with
the model simplicity, explains the use of the IPS model in
several theoretical and numerical works [e.g., Parker et al.,
1983; Beck, 1984; Parker and Andrews, 1986; Sun et al.,
1996].

3. Numerical Algorithm

[17] The long-term dynamics of meandering rivers was
investigated by numerical simulations of the three mean-
dering models ZS, JP, and IPS, with different hydraulic
conditions. Each simulation started from a straight line with
weak random perturbations to trigger instability. Each
simulation was carried out using the following iterative
algorithm.

3.1. Step One

[18] The river axis is discretized as a sequence of points i
(i = 1,.., N) with a constant spacing Ds by means of a spline
interpolation (see Figure 1). We chose Ds = b/4. In each
point, the local curvature is then evaluated according to

C ¼ � @f
@s

’ � arcsinA ^ Bð Þ
Aj j Bj jDs ¼

aybx � axby
Ds3

; ð8Þ

where f is the angle between the local tangent to the river
axis and the x coordinate, and A = (ax, ay) and B = (bx, by)
are the vectors reported in Figure 1. The endpoints of the
river (i.e., i = 1, N) were set to have zero curvature.

3.2. Step Two

[19] The longitudinal flow field and ub(s) are evaluated
from the corresponding mathematical models. For the JP
and IPS models this was done by solving the equations (6)
and (7) by means of a fourth-order Runge-Kutta scheme,
while the presence of a the positive eigenvalue in the ZS
model requires a different procedure. We thus used the
solution reported by Zolezzi and Seminara [2001] which

W12403 CAMPOREALE ET AL.: LONG-TERM BEHAVIOR OF MEANDERING RIVERS
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consists of a local term, four boundary conditions, and four
convolution integrals that can be written as

Ij ¼
Z b

a

e�j s�zð ÞC zð Þdz j ¼ 1; 4ð Þ; ð9Þ

where �j are the four eigenvalues of the secular equation and
(a, b) = (s, 0) for j = 1 and (a, b) = (0, s) for j = 2, 3, 4. The
evaluation of the integrals (9) requires great care as
explained in Appendix B. However, even if the high decay
rate of the exponential in the integrals Ij at higher Fourier
modes m (due to the increment of j�jj with m) would require
very small Ds to maintain the same precision for all modes,
the influence of the convolution integrals on ub becomes
negligible at higher modes. As a consequence, as verified
with several numerical tests, it was sufficient to consider
only the first two modes maintaining the same spatial
discretization. The same numerical tests suggested that the
computation of the curvature derivatives involved in the
known term of (4) can be stopped at the third order, being
the coefficients r4–6 negligible.

3.3. Step Three

[20] Once the excess bank longitudinal velocities are
computed for the three models, the points of the curves
have to be shifted normally to the local tangent (see
Figure 1) according to the evolution equation (3). To this
aim we adopted a geometrical method that takes advan-
tage of the uniformity of the distances Ds between points
to give

xi t þ Dtð Þ ¼ xi tð Þ � z
b

c
; yi t þ Dtð Þ ¼ yi tð Þ þ z

a

c
; ð10Þ

where xi(t) and yi(t) are the coordinate of the ith point at the
time t, Dt is the temporal step, z = VDt = EubDt is the
normal displacement, a = [xi+1(t) � xi�1(t)], b = [yi+1(t) �
yi�1(t)], and c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. The ratio Ds/Dt was maintained

of order 10�4 m/s to ensure the curve smoothness, as
pointed out by [Seminara et al., 2001]. As Ds = b/4 and the
river width is usually 101–102 m, the time step Dt is of the
order of a few days.

3.4. Step Four

[21] The fourth step concerns the search for potential
cutoff events along the river. A neck cutoff happens
whenever two points of the rivers come into contact. As
we are only following the evolution of the river axis, this

would imply considering a threshold value equal to the river
width, b. However, a larger and more realistic value of the
threshold can be reasonably used [Howard, 1992]; so, we
adopted a threshold equal to 1.5 times the river width. It is
evident that this choice does not consider the chute cutoffs,
but a correct modeling thereof would require a probabilistic
approach coupled with the description of the evolution of
floodplain topography and riparian vegetation, and this is
outside the scope of the present work. On the other hand,
such a conservative value allows the river to develop quite a
high sinuosity, and thus the different dynamic character-
istics of the models to clearly emerge during the meanders
elongation phases (we will come back to this point in the
following).
[22] To identify the points closer than the selected

threshold we used the matrix algorithm explained in
Appendix C. Such a searching method is much more
efficient than those previously used [e.g., Sun et al., 1996,
2001; Stølum, 1997] and it is thus particularly useful for
long-term simulations. Once the possible cutoff is
detected, the points of abandoned reach are deleted,
assuming that they no longer play any role in the
dynamics. The algorithm then goes back to the first step
and the procedure is iterated.

4. Analysis and Results

4.1. Long-Term Simulations

[23] Table 1 reports the ten hydraulic configurations that
have been considered for the simulations with the three
mathematical models, ZS, JP, and IPS. These cover very
different morphodynamic conditions within the subresonant
regime [Zolezzi and Seminara, 2001] of meander formation
range proposed by Parker [1976]. The soil erodibility
coefficient, E, was fixed equal to 3 � 10�8 for all the
simulations [Beck et al., 1984; Sun et al., 1996], without
loss of generality. As will be seen, in fact, the value of E
only changes the timescale of the meandering process,
leaving the spatial characteristics unaltered.
[24] In order to obtain statistically significant results, the

length of the initial straight line was varied from 10 km
for the smallest river (S1) to 100 km for the biggest one
(S10), while the corresponding duration of the simulations
ranged from 103 and 105 years. The total number of
points N was about 103 for a maximum number of
iterations of about 107.
[25] During each simulation, we followed the dynamics

of the river planimetry focusing on the temporal evolution

Table 1. Morphodynamic Parameters Used in the Simulations

Run ds q b Cf0 D0, m T0, years Q, m3 s�1 �l, ma

S1 0.025 0.18 14.6 0.0060 45 105 23 728
S2 0.020 0.10 15.4 0.0054 77 211 50 1023
S3 0.012 0.10 15.1 0.0045 123 422 85 1550
S4 0.012 0.10 13.4 0.0036 153 528 132 2050
S5 0.006 0.30 14.6 0.0032 250 634 382 3214
S6 0.004 0.40 14.0 0.0032 250 792 271 3050
S7 0.008 0.15 13.1 0.0040 250 792 334 3190
S8 0.010 0.20 15.8 0.0043 450 635 2621 5854
S9 0.010 0.20 13.4 0.0043 500 792 2877 6545
S10 0.004 0.40 14.8 0.0032 500 1058 1630 6610

aMean of results obtained using IPS, JP, and ZS models.
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of the sinuosity, S, the tortuosity t, the probability density
functions (pdfs) of the linear and curvilinear wavelengths
(l and lc respectively), and the pdf and the autocorrelation
of the local curvatures along the river. The sinuosity is
defined as the ratio between the river length and the length
of the broken line joining the inflection points. The
tortuosity is defined as the ratio of the river length to the
linear distance between its endpoints. The linear wave-
length is assumed equal to twice the linear distance
between the zero crossings of the curvature, while the
curvilinear one refers to the distance along the river [e.g.,
Allen, 1984].
[26] Figure 2 shows the evolutions of the mean wave-

length, �l (the overbar refers to the spatial averaging), the
mean curvilinear wavelength, �lc, and the mean absolute
curvature, j�Cj. They refer to two hydraulic conditions,
each simulated using the three different models. We can
easily distinguish three phases in the river evolution. A
first phase takes place before the occurrence of cutoffs,
where strong differences among the models are evident,
due to the different fluid mechanic processes included in
the modeling. A second phase sets in when cutoffs start to
appear and the differences between the models tend to
phase out. Finally, a third phase occurs when a statistically
steady state (that is substantially independent of the
morphodynamic model adopted) is attained. This type of

evolution that is common to all the other geometric
quantities analyzed in all the simulations represents the
key point of our analysis.
[27] The statistically steady state reached by the long-

term river geometry (Figure 2) is controlled by the sole
action of the internal dynamics of elongation and cutoff.
Thus the external forcings (e.g., geological constraints,
pedological processes, riparian vegetation dynamics, etc.),
although influencing the steady state in real rivers, are not
necessary to obtain it. This confirms the results of
previous investigations [Howard, 1984; Liverpool and
Edwards, 1995; Stølum, 1996] and clearly shows that
cutoffs are sufficient to give stochastic stability to the
system (i.e., self-confinement of the meander belt; see
subsection 4.3), independently of the fluid dynamic model
used to describe the elongation phases (i.e., the erosion
rate, V).
[28] The convergence to a model-independent steady

state implies that the most simplified (but physically based)
meandering model (i.e., the IPS model) already contains
all the necessary ingredients to describe the long-term
dynamics. Some of the fluid dynamic processes described
by the more complex models (in particular the ZS model)
do not exert any relevant influence on the statistical
properties of the long-term steady state (at least those
investigated here). The sequence of the three phases
observed in Figure 2 clearly suggests that the cutoff
is responsible for such a dynamical simplification. By
removing the oldest river reaches, the cutoffs lead to a
progressive elimination of the cumulated geometric differ-
ences resulting from the use of different morphodynamic
models and leave only the essential dynamical character-
istics common to all models.
[29] Notwithstanding the statistical similarity among the

long-term simulations, it should be noticed that the single
instantaneous planimetric configurations at steady state can
be also very different among the models. An example,

Figure 2. Evolution of (a) the river mean wavelength,
(b) the mean curvilinear wavelength, and (c) the mean
absolute curvature for simulations S7 and S9, (dotted line,
IPS model; dashed line, JP model; solid line, ZS model).

Figure 3. Configuration at time t = 30,000 years for (top)
IPS, (middle) JP, and (bottom) ZS model, run S10.
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corresponding to the same initial condition, is shown in
Figure 3. Thus the long-term statistical spatial properties
investigated here must not be confused with the details of
the single planimetry that reflect the short-term evolution
and thus the fluid dynamic differences between models,
such as the role of the turbulence closure, the presence of
higher harmonics, and the spatial distribution of the
friction factor (Camporeale et al., submitted manuscript,
2005).
[30] The fact that the IPS model is sufficient to fully

describe the steady state statistical properties also implies
that the same dimensionless groups proposed by Edwards
and Smith [2002] for the short-term dynamics of such a
model can also be used for the long-term dynamics
including the cutoffs. These groups can be obtained
starting from the formal solution of the IPS model [Sun
et al., 1996],

ub ¼ �bUC þ UbCf

H
F2 þ Aþ 1
� � Z s

�1
e�

2Cf
H

s�zð ÞC zð Þdz; ð11Þ

where U is the mean stream velocity, Cf is the friction factor,
F is the Froude number, and A is the lateral slope factor.
Applying dimensional analysis to (3) and (11), the essential
geometric and hydraulic parameters can be used to form a
spatial scale D = H/2Cf and a temporal scale T = D2/bU E.
Notice that the dimensionless ratio of the stress term to the
convective term in the St Venant shallow water equations
reduces to H/LCf (where L is a generic length scale); it
follows that the scale D is close to the backwater length H/I,
with I the overall bed slope. The role of the temporal scale T
is apparent in the transient phase, while the spatial scale D
impacts the statistically steady state properties through its
influence on the kernel of the convolution integral of (11)
that in turn controls the downstream influence of the
curvature on the local river displacement. Moreover, once
scaled with the time-independent values D0 and T0 (the
subscript refers to the ‘‘straightened’’ river), the dimension-
less rate of bank erosion, ~V = ubET0/D0, satisfies the
following linear differential equation [Edwards and Smith,
2002]

t1=3
@ ~V

@~s
þ ~V ¼ @ ~C

@~s
þ P

t1=3
~C; ð12Þ

where the tilde refers to dimensionless quantities, while t is
the tortuosity defined before, and P = (F2 + A + 1)/2 is a
parameter that depends on sediment dynamics. Both
simulations and real data (Table 2) show that the variance
of the steady state values of t1/3 is about 10�3–10�2

regardless of the hydraulic characteristics. This has been
also confirmed by the comparison with the tortuosity time
series reported by Stølum [1996] and with the data of
Howard and Hemberger [1991]. Similarly, it can be
shown that the parameter P has also a negligible
influence on equation (12). As a result equation (12)
turns out to be essentially controlled by only D0 and T0
without need to use the tortuosity-dependent scales D =
t1/3D0 and T = tT0.
[31] After normalization with D0 and T0, the results of

the simulations of the three models for different hydraulic
conditions (i.e., 10  3 = 30 simulations) collapse on a
common behavior characterized by �l ’ 13.4D0, �ls ’
25D0, and j�Cj ’ 0.2/D0 (Figure 4). A similar collapse is
obtained for the pdfs and the autocorrelation functions.
Their envelopes (rescaled with D0) are marked by two
red lines in the Figure 5. As explained before, this
universal behavior emerges as a symptom of the action
of the cutoff in selecting the two governing scales D0 and
T0 among various fluid dynamic mechanisms.
[32] The emergence of a fluid dynamic spatial scale,

rather than a morphodynamic one, can be justified by
noticing that in the context of the long-term evolution only
the scale D0 = H0/2Cf0 influences the exponential factor
of the convolution integrals (9) of the various models,
despite the different hydrodynamic processes considered.
This property is immediately evident in the IPS solution
(see equation (11)), but may be also shown for ZS and JP
models. In fact, each eigenvalue, �j, in the convolution
integrals Ij can be written as the sum of two terms, �j =
fj(D0) + gj(b, q, ds), where the first only depends on the
scale D0 (gj = 0 for the IPS model). As the phase response
of all the models is substantially the same (Camporeale et
al., submitted manuscript, 2005), a single eigenvalue �*

Table 2. Rivers Considered in the Analysisa

Rivers �l, m �lc, m t1/3

Walla Walla (Washington) 194 267 1.88
Johnson-2 (Yukon Territory) 367 521 1.29
Johnson-1 (Yukon Territory) 393 593 1.23
Porcupine (Yukon Territory) 408 616 1.37
Johnson-3 (Yukon Territory) 435 677 1.31
Man (Manitoba) 459 661 1.39
Assiniboine (Manitoba) 485 744 1.35
Little Black (Alaska) 490 767 1.45
Johnson-4 (Yukon Territory) 496 690 1.29
Hodzana (Alaska) 757 1231 1.39
White-1 (Indiana) 792 1530 1.20
Birch-1 (Alaska) 844 1342 1.42
Old Crow-1 (Yukon Territory) 935 1381 1.47
Black-1 (Alaska) 982 1367 1.39
Birch-2 (Alaska) 994 1525 1.34
White-2 (Indiana) 1001 1629 1.36
Birch-3 (Alaska) 1002 1477 1.36
Pembina (Alberta) 1021 1576 1.41
Koyukuk-1 (Alaska) 1185 1914 1.38
Old Crow-2 (Yukon Territory) 1233 1846 1.34
Black-2 (Alaska) 1450 2177 1.31
Purus-1 (Brazil) 1804 2656 1.29
Purus-3 (Brazil) 1866 2585 1.34
Purus-2 (Brazil) 2030 2872 1.26
Purus-4 (Brazil) 2192 2902 1.31
Jurua-3 (Brazil) 3432 4518 1.27
Koyukuk-2 (Alaska) 3542 5349 1.30
Jurua-2 (Brazil) 3762 5105 1.27
Jurua-1 (Brazil) 3815 6167 1.39
Jurua-4 (Brazil) 4124 6178 1.33
Jurua-5 (Brazil) 4312 6767 1.32
Koyukuk-4 (Alaska) 4676 8043 1.31
Markha-1 (Russia) 4692 6488 1.25
Markha-3 (Russia) 5088 6522 1.36
Koyukuk-3 (Alaska) 5163 7065 1.31
Purus-5 (Brazil) 5561 8362 1.30
Markha-2 (Russia) 6223 9634 1.22
Purus-6 (Brazil) 6605 10190 1.35
Ucayali-1 (Peru) 7057 9875 1.27
Purus-7 (Brazil) 7272 12000 1.18
Ucayali-3 (Peru) 7275 10918 1.31
Ucayali-4 (Peru) 8567 12359 1.23
Ucayali-2 (Peru) 8707 14183 1.28
Purus-8 (Brazil) 8963 13283 1.35

aThe number after the name refers to different reaches of the same river.
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controls the free response of the system and g* � f*.
Consequently, since ub is the main ingredient of the
evolution equation (3), D0 regulates the spatial response
of meandering dynamics (i.e., the prevailing harmonic �*).
The other sediment and fluid dynamic processes are
contained in some multiplicative coefficients of the evo-
lution equation and only affect the timescale of the
dynamics at timescales that are larger than the time to
reach cutoff. As a result, the dominant action of the cutoff
overwhelms the effect of the higher harmonics related to
the eigenvalues �j 6¼ �* that therefore are not able to
contribute to the long-term statistical properties.

4.2. Link With Empirical Laws

[33] The universal behavior obtained using the scale D0

is in substantial agreement with some empirical geo-
morphologic laws. The reason for the good scaling of
such empirical laws is probably due to the choice of
quantities that contain D0 or that directly depend on it.
For example, the well-known Hansen’s law [Hansen,
1967; Jansen et al., 1979], �l = 14H0/f (where f is the
friction factor of Darcy-Weisbach), which is in very good
agreement with the results of Figure 4 and thus confirms
the reliability of the simulations, can be written in terms
of D0 as �l/D0 = 14.

[34] More recently, Parker and Johannesson [1989]
reported the dimensionless ratio

Hk

bCf

¼ 2pb
�l

2D

b
¼ 4p

D

�l
¼ O 1ð Þ; ð13Þ

where k is the wave number made dimensionless with b.
Such a relationship implies a ratio between �l and D of
about 13, which is very close to the value of the Hansen’s
law. For example, previous theoretical works [Parker and
Andrews, 1986; Parker and Johannesson, 1989] report the
values of H = 1 m and Cf = 0.0064 for the Pembina River,
from which we can evaluate a ratio �l/D0 = 13.1. Also, the
results reported in Table 1 are also in agreement, with a
relative mean error of 13%, with the empirical law �l =
170Q0.46 (Q is the mean annual discharge) proposed by
Carlston [1965].
[35] The one-to-one link between D0 and �l indicates

that �l has the same physical meaning of D0 and thus
justifies the use of �l in place of D0 as a characteristic
length scale. This explains the good collapse obtained in
some empirical geomorphologic laws using �l (e.g., the
celebrated formula �l = 4.7�r0.98 of Leopold and Wolman
[1960] where �r is the mean radius of curvature). The use
of �l has the advantage that, in practical applications, it can

Figure 4. Evolution of (a) the river mean wavelength,
(b) the mean curvilinear wavelength, and (c) the mean
absolute curvature nondimensionalized with D0 and T0 for
different hydraulic conditions using all three models (D0

and T0 range in the intervals [45, 500] m and [100, 1000]
years, respectively).

Figure 5. Scaling of physical quantities characterizing the
river geometry with �l: (a) pdfs of the curvatures,
(b) autocorrelation functions of the curvatures, and (c) pdfs
of the river wavelength. The black lines refer to data from
real rivers, while the red lines mark the envelope of the
curves obtained by simulated rivers.
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be rather easily estimated using remote sensing techniques,
whereas the hydraulic parameters, and in particular the
dominant discharge, make it difficult to estimate D0. For
this reason in what follows we make use of �l for the
comparison with data from real rivers. Finally, we note
that the bed width, 2b, used as a typical length scale in
some geomorphological laws [Leopold et al., 1964; Jansen

et al., 1979], is closely related to the same hydraulic
characteristics that are contained in D (or D0). Therefore,
since D0 captures the fluid dynamic mechanisms that
regulate the long-term dynamics, b too is a physically
justified parameter to scale the planimetry river geometry.

4.3. Comparison With Data From Real Rivers

[36] We validated the universal behavior of simulated
river patterns using data from maps of Amazonian, North
American, and Russian rivers with minimal anthropic
perturbations. Forty-four reaches covering a wide range of
wavelengths have been considered (see Table 2). The real
data were obtained following the recommendations speci-
fied by Howard and Hemberger [1991] and consist of
segments with nearly uniform discharge [see also Stølum,
1998].
[37] The same geometrical quantities used to analyze the

simulated rivers were evaluated for the real rivers. Figure 5
shows the excellent agreement of the simulated and real pdf
and autocorrelation of the curvatures as well as of the pdf of
the meander wavelength, underlining the universal features
in the long-term river geometry. In particular, since the pdf
and the autocorrelation function completely define the linear
properties of a process [Kantz and Schreiber, 1997], their
remarkable collapse here implies the universality of all the
linear geometric characteristics of meandering rivers
[Perucca et al., 2005]. In Figure 5b, the autocorrelation

Figure 6. Links among the mean curvilinear wavelength,
�lc, the mean wavelength, �l, and the mean absolute radius of
curvature (obtained by averaging the local values along
the river) for both real and simulated rivers. The straight
lines highlight the scale invariance (i.e., a power law
dependence).

Figure 7. Probabilistic characterization of the meander
belt. (a) Example of the frequency of the riverbed
occurrence during the steady state (ZS model, D0 =
250 m, T0 = 600 years, and �l = 3250 m). The darkest
shade refers to the lowest frequency, the green line marks
the planimetry of the river at a generic time, and the blue
arrow corresponds to 3.4�l. (b) Cumulative frequency of
river occurrence at steady state for some simulated rivers
(y is the coordinate transversal to the chord linking the
river extremes).

Figure 8. Planimetries of (a) Johnson Creek, (b) Pembina
River, and (c) Ukayali River rescaled using their mean
wavelength (equal to 435, 1021, and 7275 m, respectively);
the bold black lines mark width equal to 3.4�l.
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Figure 9. Rivers (a) Johnson-2, (b) Johnson-1, (c) Porcupine, (d) Johnson-1, (e) Hodzana, (f) Birch-2,
(g) Walla Walla, (h) White, (i) Birch-1, (j) Little, (k) Assainboine, (l) Johnson-4, (m) Old Crow-1,
(n) Black-1, (o) Black-2, (p) Old Crow-2, and (q) Man.
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function suggests a typical integral scale of about 0.2 with a
decay at about two fifth of the meander wavelength.
Therefore the long-term ‘‘geometric’’ memory of the river
is about 4–5 times larger than the ‘‘fluid dynamic’’ one
represented by D0. Figure 6 reports the links among the
mean curvilinear wavelength, �lc, the mean wavelength, �l,
and the mean absolute curvature, j�Cj. One can see the very
good agreement among real and simulated rivers and a
remarkable collapse on power laws, coherently with the
empirical formula by Leopold and Wolman [1960]. To this
regard, we note that differently from Leopold and Wolman
who studied the link between �l and the mean radius of
curvature, �r, measured from topographic maps, we used the
mean absolute curvature, j�Cj, to avoid overflow in the
computation of the mean radius of curvature at the inflec-
tion points from high-precision digital maps. To compare

our result to their formula we assumed �r ffi 1/j�Cj, and this
approximation explains the different value of the coefficient
in the power laws.

4.4. Analysis of the Meander Belt

[38] A correct and general characterization of the mean-
der belt is of great relevance for flood management,
riparian restoration, and oil deposit research [Swanson,
1993; Sun et al., 1996]. Conventionally, the definition of
meander belt refers to the zone between the tangents to the
outsides of the curves or meanders of the active stream
[Jefferson, 1902; Chang and Toebes, 1970; Chitale, 1970;
Allen, 1984]. With the aim of investigating the long-term
dynamics, a preferable definition would refer to a wider
region of the floodplain which comprises cutoffs as well as
the active channel [Matthes, 1941]. Accordingly, we define

Figure 10. Rivers (a) Purus-5, (b) Ukayali-3, (c) Purus-7, (d) Koyukuk-3, (e) Purus-6, (f) Juruá-4,
(g) Ukayali-2, (h) Purus-8, (i) Koyukuk-4, and (j) Juruá-5.
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as meander belt the portion of the floodplain having a
probability equal to 0.90 of containing the riverbed during
its long-term evolution.
[39] As expected, the spatial scale D0 (or �l) proves to

be useful also to scale the width of meander belt defined
in such a way. Figure 7a illustrates an example of the
frequency of the riverbed occurrence during a simulated
planimetric evolution at the steady state. Different colors
distinguish the probability of recurrence. It is clear again
the self-confining action of the cutoff. As shown in
Figure 7b, several simulations provide the same universal
width of meander belt of about 40–50D0, which is
equivalent to about 3.0–3.8�l (using the result �l ’
13.4D0 shown in Figure 4b). Figures 8a–8c compare
the planimetry of three real rivers with the belt 3.4�l
wide (marked by the bold black lines): the agreement is
remarkable and similar results are obtained for the other
rivers shown in Figures 9 and 10. Notice that all the
maps were rescaled by the respective value of �l (i.e., D0).
Because of this rescaling, the geometrical patterns of the
active channel appear to be visually indistinguishable,
thus confirming the scale invariance of the long-term
equilibrium condition. These pictures clearly show that a
meander belt equal to 3.4�l captures most part of the
oxbow lakes recorded on the floodplain. This is particu-
larly evident where the floodplain maintains visible traces
of the past river paths because of absence of agriculture
(e.g., for the rivers in Alaska).

5. Conclusions

[40] The numerical simulations, supported by an exten-
sive analysis of real data, suggest a twofold role of cutoffs
in providing a statistical equilibrium to meandering rivers
as well as in selecting the few fluid dynamic mechanisms
governing the long-term meandering dynamics. As a
consequence, two fundamental scales, D0 and T0, are
sufficient to describe the main features of the long-term
evolution. In particular, very good collapses have been
obtained by the spatial scale, D0, for several geometrical
quantities. This universal behavior, obtained on fluid
dynamic basis and not empirically, has been confirmed
by analyzing several real rivers with very different hy-
draulic characteristics. The agreement between numerical
simulations and statistics from real rivers also confirms the
reliability of the simulations and supports the use of linear
models to describe the long-term behavior of meandering
rivers.
[41] The results are also in agreement with some well-

known empirical geomorphological laws. In this respect, the
present analysis suggests that the success of these laws, in
spite of the complex fluid dynamic processes involved in
the meandering dynamics, is due to the filtering action of
the cutoffs and to the use of quantities directly linked to D0

to rescale the geometric characteristics.
[42] The statistical analysis of the recurrences of the

riverbed during the long-term evolution provides a proba-
bilistic characterization of the meander belt that is in good
agreement with aerial and satellite data. Although a more
detailed analysis would require the comparison with geo-
logical records of the fluvial recurrence, the oxbow lake
traces visually detected from maps have furnished an
encouraging indication of the goodness of the proposed

methodology and of its usefulness for geostatistical analysis
and engineering applications.

Appendix A: Coefficients of JP Model

[43] The coefficients in equation (6) are

s00 ¼
2rCf M

2

n0U0

ffiffi
q

p ; s01 ¼
b2Cf

n0H0U0

3� 2FTð Þ þ rH0

n0U0

ffiffi
q

p ðA1Þ

r00 ¼ 2b
Cf rffiffi
q

p F2a0 � 1
� �

� k3
ffiffiffiffiffiffi
Cf

p
 �
�1ð Þm ðA2Þ

r01 ¼ 2b
rH0a0ffiffi

q
p þ rH0a0k4ffiffiffiffiffiffi

Cf

p
r

þ bCf b
2

M2H0

" #
�1ð Þmþ1 ðA3Þ

r02 ¼
�2a0b

3 �1ð Þm

M2
ðA4aÞ

r ¼ 0:55 ðA4bÞ

F ¼ U0ffiffiffiffiffiffiffiffi
gH0

p : ðA4cÞ

The expressions of a0, FT, k3, and k4 are reported by Zolezzi
and Seminara [2001].

Appendix B: Numerical Computation of Ij
[44] Although the usual numerical integration methods

for the efficient computation of the integral Ij in (9) is the
Fast Fourier Transform, involving O(N2 ln N) operations, its
use here has some operative disadvantages. For instance, it
needs to fix the number of points to a power of 2 and it is
particulary sensitive to the extremes of the domain. We thus
used a different numerical procedure which takes advantage
of the particular exponential form of the kernel, and reduces
the number of the operations to less than N 2.
[45] Consider the computation of I2(s) (the same scheme

is valid also for the other integrals) and, for notational
simplicity, define Ii = I2(si), where i (i = 1, .., N) is the
sequential point at the coordinate curvilinear si (i.e., i =
si/Ds). First, the interval of integration [0, s] can be
truncated at [s-aDs, s] with a negligible error provided
that a is such that e��2aDs � h where h is the numerical
precision. Hence, using the extended Simpson’s rule and
defining fj

i = C( j)e�2(i�j)Ds, the numerical computation of Ii

can be written as

I i ’ Gi þ e�2iDs
Xi�3

j¼i�aþ3

C jð Þe��2 jDs

 !
Ds; ðB1Þ

where

Gi ¼
3

8
f ii�a þ f ii
� �

þ 7

6
f ii�aþ1 þ f ii�1

� �
þ 23

24
f ii�aþ2 þ f ii�2

� �
:
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[46] The key point to minimize computational efforts is
to compute the sum in (B1) only at the first point and,
for the next points, update the sum by subtracting the
first term and adding the new last term. To avoid
overflow in the exponential terms, such a procedure is
repeated only for limited windows of the domain with
width W < N (where W depends on h and �). It follows
that for the kth windows i = ik, .., ik + W � 1. Finally, if
we multiply and divide the second term in the r.h.s. of
(B1) by e�2FDs with F = ik � 1, at the generic kth
window we obtain

I i ’ Gi þ e�2 i�Fð ÞDsFi

� �
Ds; ðB2Þ

with

Fi ¼ Fi�1 þ f Fi�3 � f Fi�aþ3 i ¼ ik þ 1; ::; ik þW � 1ð Þ;

Fik ¼
Xik�3

ik�aþ3

f Fik :

Appendix C: Algorithm for Searching Neck
Cutoff

[47] Define a grid A(j, k) ( j = 1, .., J; k = 1, .., K), with
square cells of side equal to the cutoff threshold distance
dc. Each point i (i = 1, .., N) of the discretized river
planimetry lies in a cell of the grid A(j, k). A second
matrix B(n, m) (n = 1, .., L = J � K; m = 1, .., M =

ffiffiffi
2

p
dc/Ds)

is introduced as an ‘‘address’’ matrix: each cell Aj,k

corresponds to the nth row (being n = J(k � 1) + j) of
B. Notice that, for smooth curves such as meanders, M is
the maximum number of points contained in a single cell.
Finally, the orthogonal coordinates (xi, yi) of the points i
are recorded in a third matrix C(N, 2) (namely Ci,1 = xi,
Ci,2 = yi).
[48] Initially, the matrix B is set to zero. The first step

consists in reducing the zone where cutoff is searched.
For each ith row of the matrix C, the algorithm identifies
the corresponding position in A, then it assigns the
sequential number i, which parameterizes the curve, to
the respective position of the address in B (Bn,1 = i). If
Bn,1 6¼ 0 then Bn,2 = i and so on.
[49] In the second step B is scanned and every time that a

row is not zero (namely, Bn,m 6¼ 0 and Bn,m+1 = 0), the
distances between the points contained in the adjacent cells
and in the cell itself are calculated, that is,

d1 ¼ Bn;m;Bp;1

�� ��; with p� n ¼ �1; 4; 5; 6; 1 ðC1Þ

d2 ¼ Bn;m;Bn;1

�� ��; if m > 1; ðC2Þ

where the norm is defined as

p; qj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cp;1 � Cq;1

� �2þ Cp;2 � Cq;2

� �2q
: ðC3Þ

[50] Finally, the cutoff condition is satisfied if d1 � dc or
MDs � d2 � dc.
[51] The first step involves N operations, whereas the

second step takes at maximum tmNDs/dc operations,
being tm the maximum tortuosity occurred during the
simulations. Hence, considering tm = 6, Ds = b/4 and
dc = 1.5b, we obtain 6N total operations, rather than
N(N � 1)/2 operations taken by a point-to-point distance
evaluation.

Notation

A lateral slope factor of the bed.
b river half-width (m).
C curvature (m�1).

j�Cj mean absolute curvature (m�1).
~C dimensionless curvature.
Cf friction factor.
Cf0 friction factor of the ‘‘straightened’’ river.
dm mean sediment diameter (m).
E coefficient of bank erodibility.
F Froude number.
f Darcy-Weisbach coefficient.
g metric coefficient of the curvilinear coordinates.
H average flow depth (m).
H0 average flow depth of the ‘‘straightened’’ river (m).
I overall bed slope.
k dimensionless river wave number defined by

equation (13).
m lateral mode of the Fourier decomposition of u(s, n).
n transversal coordinate (m).
n normal-to-curve versor.
Q mean annual discharge (m3 s�1).
R0 minimum radius of curvature (m�1).
r parameterized vector of the curve position (m).
s arc length coordinate (m).
S sinuosity.
t temporal variable (s).
U mean stream velocity (m s�1).
U0 mean stream velocity of the ‘‘straightened’’ river

(m s�1).
u longitudinal flow field perturbation (m s�1).
ub local excess bank longitudinal velocity.
um m mode of the lateral decomposition of u(s, n)

(m s�1).
V bank erosion velocity (m s�1).
~V dimensionless bank erosion velocity.
a purely descriptive parameter of the curve independent

of time (m).
b aspect ratio.
�j eigenvalues of the modeling equations.
z normal displacement of the curve (m).
h dimensionless bed elevation.
q Shield stress.
l linear wavelength (m).
lc curvilinear wavelength (m).
�l spatially averaged linear wavelength (m).
�lc spatially averaged curvilinear wavelength (m).
n0 ratio between the half-width and the minimum radius

of curvature.
rj coefficients of the nonhomogeneous part of the

modeling equations in the original dimensionless
framework.
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sj coefficient of the homogeneous part of the modeling
equations in the original dimensionless framework.

t tortuosity of river planimetry.
f angle between the local tangent to the river axis and

the x coordinate (rad).
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