154 research outputs found

    MaGICC baryon cycle: the enrichment history of simulated disc galaxies

    Get PDF
    Using cosmological galaxy formation simulations from the MaGICC (Making Galaxies in a Cosmological Context) project, spanning stellar mass from ∼107 to 3 × 1010 M⊙, we trace the baryonic cycle of infalling gas from the virial radius through to its eventual participation in the star formation process. An emphasis is placed upon the temporal history of chemical enrichment during its passage through the corona and circumgalactic medium. We derive the distributions of time between gas crossing the virial radius and being accreted to the star-forming region (which allows for mixing within the corona), as well as the time between gas being accreted to the star-forming region and then ultimately forming stars (which allows for mixing within the disc). Significant numbers of stars are formed from gas that cycles back through the hot halo after first accreting to the star-forming region. Gas entering high-mass galaxies is pre-enriched in low-mass proto-galaxies prior to entering the virial radius of the central progenitor, with only small amounts of primordial gas accreted, even at high redshift (z ∼ 5). After entering the virial radius, significant further enrichment occurs prior to the accretion of the gas to the star-forming region, with gas that is feeding the star-forming region surpassing 0.1 Z⊙ by z = 0. Mixing with halo gas, itself enriched via galactic fountains, is thus crucial in determining the metallicity at which gas is accreted to the disc. The lowest mass simulated galaxy (Mvir ∼ 2 × 1010 M⊙, with M⋆ ∼ 107 M⊙), by contrast, accretes primordial gas through the virial radius and on to the disc, throughout its history. Much like the case for classical analytical solutions to the so-called ‘G-dwarf problem’, overproduction of low-metallicity stars is ameliorated by the interplay between the time of accretion on to the disc and the subsequent involvement in star formation – i.e. due to the inefficiency of star formation. Finally, gas outflow/metal removal rates from star-forming regions as a function of galactic mass are presented

    The stellar spheroid, the disk, and the dynamics of the cosmic web

    Full text link
    Astrophysical Journal Letters 800.2 (2015): L30 reproduced by permission of the AASModels of the advanced stages of gravitational instability predict that baryons that form the stellar populations of current galaxies at z = 0 displayed a web-like structure at high z, as part of the cosmic web (CW). We explore details of these predictions using cosmological hydrodynamical simulations. When the stellar populations of the spheroid and disk components of simulated late-type galaxies are traced back separately to high zs we found CW-like structures where spheroid progenitors are more evolved than disk progenitors. The distinction between the corresponding stellar populations, as driven by their specific angular momentum content j, can be explained in terms of the CW evolution, extended to two processes occurring at lower z. First, the spheroid progenitors strongly lose j at collapse, which contrasts with the insignificant j loss of the disk progenitors. The second is related to the lack of alignment, at assembly, between the spheroid-to-be material and the already settled proto-disk, in contrast to the alignment of disk-to-be material, in some cases resulting from circumgalactic, disk-induced gravitational torques. The different final outcomes of these low-z processes have their origins in the different initial conditions driven by the CW dynamicsThis work was partially supported by the MICINN and MINECO (Spain) through the grants AYA2009-12792-C03-02, AYA2009-12792-C03-03, and AYA2012-31101 from the PNAyA, as well as by the "Supercomputación y e-Ciencia" Consolider-Ingenio CSD2007-0050 project. A.O. was financially supported through a FPI contract from AYA2009-12792-C03-03 and C.B.B. through a contract from AYA2012-3110

    Gas Accretion and Galactic Chemical Evolution: Theory and Observations

    Full text link
    This chapter reviews how galactic inflows influence galaxy metallicity. The goal is to discuss predictions from theoretical models, but particular emphasis is placed on the insights that result from using models to interpret observations. Even as the classical G-dwarf problem endures in the latest round of observational confirmation, a rich and tantalizing new phenomenology of relationships between MM_*, ZZ, SFR, and gas fraction is emerging both in observations and in theoretical models. A consensus interpretation is emerging in which star-forming galaxies do most of their growing in a quiescent way that balances gas inflows and gas processing, and metal dilution with enrichment. Models that explicitly invoke this idea via equilibrium conditions can be used to infer inflow rates from observations, while models that do not assume equilibrium growth tend to recover it self-consistently. Mergers are an overall subdominant mechanism for delivering fresh gas to galaxies, but they trigger radial flows of previously-accreted gas that flatten radial gas-phase metallicity gradients and temporarily suppress central metallicities. Radial gradients are generically expected to be steep at early times and then flattened by mergers and enriched inflows of recycled gas at late times. However, further theoretical work is required in order to understand how to interpret observations. Likewise, more observational work is needed in order to understand how metallicity gradients evolve to high redshifts.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. 29 pages, 2 figure

    Impact capacities of food industry on elimination of iodine deficiency

    Get PDF
    School of Public Health Management, Nicolae Testemitsanu State University of Medicine and Pharmacy, Chisinau, the Republic of MoldovaBackground: Salt iodization is the strategy approved by the Moldovan Government to eliminate and prevent iodine deficiency. The impacts of salt iodization requires data on food industry involvement and commitment in reaching two of main objectives of the national public health programs. The aim of the survey was to investigate food industry understanding and attitudes as the main stakeholders in the implementation of salt iodization strategy to control iodine deficiency. Material and methods: Cross-sectional survey of 386 representatives of food industry across the country was compiled. A self-administered questionnaire was used to assess food industry knowledge, perception and attitudes related to salt iodization to control iodine deficiency. Results: general knowledge about salt iodization to prevent iodine deficiency was relatively good. Food industry is committed to be a partner for the Government in the sustainable elimination of Iodine deficiency. Conclusions: Consumer education, rising of consumer demand for iodized salt, mandatory use of iodized salt in food production, revising of old food standards and technologies and providing of evidence on iodized salt using in food production are the main supports the industry needs to accomplish their role

    Stellar populations of bulges at low redshift

    Full text link
    This chapter summarizes our current understanding of the stellar population properties of bulges and outlines important future research directions.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen E., Peletier R., Gadotti D., Springer Publishing. 34 pages, 12 figure

    Origin of the Metallicity Distribution in the Thick Disc

    Get PDF
    Aims. Using a suite of cosmological chemodynamical disc galaxy simulations, we assess how (a) radial metallicity gradients evolve with scaleheight; (b) the vertical metallicity gradients change through the thick disc; and (c) the vertical gradient of the stellar rotation velocity varies through the disc. We compare with the Milky Way to search for analogous trends. Methods. We analyse five simulated spiral galaxies with masses comparable to the Milky Way. The simulations span a range of star formation and energy feedback strengths and prescriptions, particle- and grid-based hydrodynamical implementations, as well as initial conditions/assembly history. Disc stars are identified initially via kinematic decomposition, with a posteriori spatial cuts providing the final sample from which radial and vertical gradients are inferred. Results. Consistently, we find that the steeper, negative, radial metallicity gradients seen in the mid-plane flatten with increasing height away from the plane. In simulations with stronger (and/or more spatially-extended) feedback, the negative radial gradients invert, becoming positive for heights in excess of !1 kpc. Such behaviour is consistent with that inferred from recent observations. Our measurements of the vertical metallicity gradients show no clear correlation with galactocentric radius, and are in good agreement with those observed in the Milky Way’s thick disc (locally). Each of the simulations presents a decline in rotational velocity with increasing height from the mid-plane, albeit the majority have shallower kinematic gradients than that of the Milky Way. Conclusions. Simulations employing stronger/more extended feedback prescriptions possess radial and vertical metallicity and kinematic gradients more in line with recent observations. The inverted, positive, radial metallicity gradients seen in the simulated thick stellar discs originate from a population of younger, more metal-rich, stars formed in-situ, superimposed upon a background population of older migrators from the inner disc; the contrast provided by the former increases radially, due to the inside-out growth of the disc. A similar behaviour may be responsible for the same flattening seen in the radial gradients with scaleheight in the Milky Way

    Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception

    Get PDF
    The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species. © 2012 Neely et al

    The Milky Way Bulge: Observed properties and a comparison to external galaxies

    Full text link
    The Milky Way bulge offers a unique opportunity to investigate in detail the role that different processes such as dynamical instabilities, hierarchical merging, and dissipational collapse may have played in the history of the Galaxy formation and evolution based on its resolved stellar population properties. Large observation programmes and surveys of the bulge are providing for the first time a look into the global view of the Milky Way bulge that can be compared with the bulges of other galaxies, and be used as a template for detailed comparison with models. The Milky Way has been shown to have a box/peanut (B/P) bulge and recent evidence seems to suggest the presence of an additional spheroidal component. In this review we summarise the global chemical abundances, kinematics and structural properties that allow us to disentangle these multiple components and provide constraints to understand their origin. The investigation of both detailed and global properties of the bulge now provide us with the opportunity to characterise the bulge as observed in models, and to place the mixed component bulge scenario in the general context of external galaxies. When writing this review, we considered the perspectives of researchers working with the Milky Way and researchers working with external galaxies. It is an attempt to approach both communities for a fruitful exchange of ideas.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen E., Peletier R., Gadotti D., Springer Publishing. 36 pages, 10 figure
    corecore