100 research outputs found

    The role of imprinted genes in humans

    Get PDF
    Detailed comprehensive molecular analysis using families and multiple matched tissues is essential to determine whether imprinted genes have a functional role in humans

    Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies

    Get PDF
    Genomic imprinting refers to a specialized form of epigenetic gene regulation whereby the expression of a given allele is dictated by parental origin. Defining the extent and distribution of imprinting across genomes will be crucial for understanding the roles played by imprinting in normal mammalian growth and development. Using mice carrying uniparental disomies or duplications, microarray screening and stringent bioinformatics, we have developed the first large-scale tissue-specific screen for imprinted gene detection. We quantify the stringency of our methodology and relate it to previous non-tissue-specific large-scale studies. We report the identification in mouse of four brain-specific novel paternally expressed transcripts and an additional three genes that show maternal expression in the placenta. The regions of conserved linkage in the human genome are associated with the Prader–Willi Syndrome (PWS) and Beckwith–Wiedemann Syndrome (BWS) where imprinting is known to be a contributing factor. We conclude that large-scale systematic analyses of this genre are necessary for the full impact of genomic imprinting on mammalian gene expression and phenotype to be elucidated

    Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Crossing plants of the same species but different ploidies can have dramatic effects on seed growth, but little is known about the alterations to transcriptional programmes responsible for this. Parental genomic imbalance particularly affects proliferation of the endosperm, with an increased ratio of paternally to maternally contributed genomes ('paternal excess') associated with overproliferation, while maternal excess inhibits endosperm growth. One interpretation is that interploidy crosses disrupt the balance in the seed of active copies of parentally imprinted genes. This is supported by the observation that mutations in imprinted FIS-class genes of <it>Arabidopsis thaliana </it>share many features of the paternal excess phenotype. Here we investigated gene expression underlying parent-of-origin effects in <it>Arabidopsis </it>through transcriptional profiling of siliques generated by interploidy crosses and FIS-class mutants.</p> <p>Results</p> <p>We found that fertilized <it>fis1 </it>mutant seeds have similar profiles to seeds with paternal excess, showing that the shared phenotypes are underpinned by similar patterns of gene expression. We identified genes strongly associated with enhanced or inhibited seed growth; this provided many candidates for further investigation including MADS-box transcription factors, cell cycle genes, and genes involved in hormone pathways.</p> <p>Conclusions</p> <p>The work presented here is a step towards understanding the effects on seed development of the related phenomena of parental genome balance and imprinting.</p

    A Screen for Retrotransposed Imprinted Genes Reveals an Association between X Chromosome Homology and Maternal Germ-Line Methylation

    Get PDF
    Imprinted genes undergo epigenetic modifications during gametogenesis, which lead to transcriptional silencing of either the maternally or the paternally derived allele in the subsequent generation. Previous work has suggested an association between imprinting and the products of retrotransposition, but the nature of this link is not well defined. In the mouse, three imprinted genes have been described that originated by retrotransposition and overlap CpG islands which undergo methylation during oogenesis. Nap1l5, U2af1-rs1, and Inpp5f_v2 are likely to encode proteins and share two additional genetic properties: they are located within introns of host transcripts and are derived from parental genes on the X chromosome. Using these sequence features alone, we identified Mcts2, a novel candidate imprinted retrogene on mouse Chromosome 2. Mcts2 has been validated as imprinted by demonstrating that it is paternally expressed and undergoes promoter methylation during oogenesis. The orthologous human retrogenes NAP1L5, INPP5F_V2, and MCTS2 are also shown to be paternally expressed, thus delineating novel imprinted loci on human Chromosomes 4, 10, and 20. The striking correlation between imprinting and X chromosome provenance suggests that retrotransposed elements with homology to the X chromosome can be selectively targeted for methylation during mammalian oogenesis

    A Case-by-Case Evolutionary Analysis of Four Imprinted Retrogenes

    Get PDF
    Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths

    Allele-specific demethylation at an imprinted mammalian promoter

    Get PDF
    A screen for imprinted genes on mouse Chromosome 7 recently identified Inpp5f_v2, a paternally expressed retrogene lying within an intron of Inpp5f. Here, we identify a novel paternally expressed variant of the Inpp5f gene (Inpp5f_v3) that shows a number of unusual features. Inpp5f_v3 initiates from a CpG-rich repeat region adjoining two B1 elements, despite previous reports that SINEs are generally excluded from imprinted promoters. Accordingly, we find that the Inpp5f_v3 promoter acquires methylation around the time of implantation, when many repeat families undergo de novo epigenetic silencing. Methylation is then lost specifically on the paternally derived allele during the latter stages of embryonic development, resulting in imprinted transcriptional activation on the demethylated allele. Methylation analyses in embryos lacking maternal methylation imprints suggest that the primary imprinting mark resides within an intronic CpG island ∼1 kb downstream of the Inpp5f_v3 transcriptional start site. These data support the hypothesis that SINEs can influence gene expression by attracting de novo methylation during development, a property likely to explain their exclusion from other imprinted promoters

    Nondisjunction and transmission ratio distortion ofChromosome 2 in a (2.8) Robertsonian translocation mouse strain

    Get PDF
    Aneuploidy results from nondisjunction of chromosomes in meiosis and is the leading cause of developmental disabilities and mental retardation in humans. Therefore, understanding aspects of chromosome segregation in a genetic model is of value. Mice heterozygous for a (2.8) Robertsonian translocation were intercrossed with chromosomally normal mice and Chromosome 2 was genotyped for number and parental origin in 836 individuals at 8.5 dpc. The frequency of nondisjunction of this Robertsonian chromosome is 1.58%. Trisomy of Chromosome 2 with two maternally derived chromosomes is the most developmentally successful aneuploid karyotype at 8.5 dpc. Trisomy of Chromosome 2 with two paternally derived chromosomes is developmentally delayed and less frequent than the converse. Individuals with maternal or paternal uniparental disomy of Chromosome 2 were not detected at 8.5 dpc. Nondisjunction events were distributed randomly across litters, i.e., no evidence for clustering was found. Transmission ratio distortion is frequently observed in Robertsonian chromosomes and a bias against the transmission of the (2.8) Chromosome was detected. Interestingly, this was observed for female and male transmitting parents

    Epigenetic control of alternative mRNA processing at the imprinted Herc3/Nap1l5 locus

    Get PDF
    Alternative polyadenylation increases transcriptome diversity by generating multiple transcript isoforms from a single gene. It is thought that this process can be subject to epigenetic regulation, but few specific examples of this have been reported. We previously showed that the Mcts2/H13 locus is subject to genomic imprinting and that alternative polyadenylation of H13 transcripts occurs in an allele-specific manner, regulated by epigenetic mechanisms. Here, we demonstrate that allele-specific polyadenylation occurs at another im-printed locus with similar features. Nap1l5 is a retrogene expressed from the paternally inherited allele, is situated within an intron of a ‘host ’ gene Herc3, and overlaps a CpG island that is differen-tially methylated between the parental alleles. In mouse brain, internal Herc3 polyadenylation sites upstream of Nap1l5 are used on the pater-nally derived chromosome, from which Nap1l5 is expressed, whereas a downstream site is used more frequently on the maternally derived chromo-some. Ablating DNA methylation on the maternal allele at the Nap1l5 promoter increases the use of an internal Herc3 polyadenylation site and alters exon splicing. These changes demonstrate the influ-ence of epigenetic mechanisms in regulating Herc3 alternative mRNA processing. Internal Herc3 polyadenylation correlates with expression levels of Nap1l5, suggesting a possible role for transcrip-tional interference. Similar mechanisms may regulate alternative polyadenylation elsewhere in the genome

    Human imprinted retrogenes exhibit non-canonical imprint chromatin signatures and reside in non-imprinted host genes

    Get PDF
    Imprinted retrotransposed genes share a common genomic organization including a promoter-associated differentially methylated region (DMR) and a position within the intron of a multi-exonic ‘host’ gene. In the mouse, at least one transcript of the host gene is also subject to genomic imprinting. Human retrogene orthologues are imprinted and we reveal that human host genes are not imprinted. This coincides with genomic rearrangements that occurred during primate evolution, which increase the separation between the retrogene DMRs and the host genes. To address the mechanisms governing imprinted retrogene expression, histone modifications were assayed at the DMRs. For the mouse retrogenes, the active mark H3K4me2 was associated with the unmethylated paternal allele, while the methylated maternal allele was enriched in repressive marks including H3K9me3 and H4K20me3. Two human retrogenes showed monoallelic enrichment of active, but not of repressive marks suggesting a partial uncoupling of the relationship between DNA methylation and repressive histone methylation, possibly due to the smaller size and lower CpG density of these DMRs. Finally, we show that the genes immediately flanking the host genes in mouse and human are biallelically expressed in a range of tissues, suggesting that these loci are distinct from large imprinted clusters
    corecore