550 research outputs found

    Mitochondrial haplogroup N1a phylogeography, with implication to the origin of European farmers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tracing the genetic origin of central European farmer N1a lineages can provide a unique opportunity to assess the patterns of the farming technology spread into central Europe in the human prehistory. Here, we have chosen twelve N1a samples from modern populations which are most similar with the farmer N1a types and performed the complete mitochondrial DNA genome sequencing analysis. To assess the genetic and phylogeographic relationship, we performed a detailed survey of modern published N1a types from Eurasian and African populations.</p> <p>Results</p> <p>The geographic origin and expansion of farmer lineages related N1a subclades have been deduced from combined analysis of 19 complete sequences with 166 N1a haplotypes. The phylogeographic analysis revealed that the central European farmer lineages have originated from different sources: from eastern Europe, local central Europe, and from the Near East via southern Europe.</p> <p>Conclusions</p> <p>The results obtained emphasize that the arrival of central European farmer lineages did not occur via a single demic diffusion event from the Near East at the onset of the Neolithic spread of agriculture into Europe. Indeed these results indicate that the Neolithic transition process was more complex in central Europe and possibly the farmer N1a lineages were a result of a 'leapfrog' colonization process.</p

    Head Position in Stroke Trial (HeadPoST)- sitting-up vs lying-flat positioning of patients with acute stroke: study protocol for a cluster randomised controlled trial

    Get PDF
    Background Positioning a patient lying-flat in the acute phase of ischaemic stroke may improve recovery and reduce disability, but such a possibility has not been formally tested in a randomised trial. We therefore initiated the Head Position in Stroke Trial (HeadPoST) to determine the effects of lying-flat (0°) compared with sitting-up (≥30°) head positioning in the first 24 hours of hospital admission for patients with acute stroke. Methods/Design We plan to conduct an international, cluster randomised, crossover, open, blinded outcome-assessed clinical trial involving 140 study hospitals (clusters) with established acute stroke care programs. Each hospital will be randomly assigned to sequential policies of lying-flat (0°) or sitting-up (≥30°) head position as a ‘business as usual’ stroke care policy during the first 24 hours of admittance. Each hospital is required to recruit 60 consecutive patients with acute ischaemic stroke (AIS), and all patients with acute intracerebral haemorrhage (ICH) (an estimated average of 10), in the first randomised head position policy before crossing over to the second head position policy with a similar recruitment target. After collection of in-hospital clinical and management data and 7-day outcomes, central trained blinded assessors will conduct a telephone disability assessment with the modified Rankin Scale at 90 days. The primary outcome for analysis is a shift (defined as improvement) in death or disability on this scale. For a cluster size of 60 patients with AIS per intervention and with various assumptions including an intracluster correlation coefficient of 0.03, a sample size of 16,800 patients at 140 centres will provide 90 % power (α 0.05) to detect at least a 16 % relative improvement (shift) in an ordinal logistic regression analysis of the primary outcome. The treatment effect will also be assessed in all patients with ICH who are recruited during each treatment study period. Discussion HeadPoST is a large international clinical trial in which we will rigorously evaluate the effects of different head positioning in patients with acute stroke. Trial registration ClinicalTrials.gov identifier: NCT02162017 (date of registration: 27 April 2014); ANZCTR identifier: ACTRN12614000483651 (date of registration: 9 May 2014). Protocol version and date: version 2.2, 19 June 2014

    Turbulence and galactic structure

    Full text link
    Interstellar turbulence is driven over a wide range of scales by processes including spiral arm instabilities and supernovae, and it affects the rate and morphology of star formation, energy dissipation, and angular momentum transfer in galaxy disks. Star formation is initiated on large scales by gravitational instabilities which control the overall rate through the long dynamical time corresponding to the average ISM density. Stars form at much higher densities than average, however, and at much faster rates locally, so the slow average rate arises because the fraction of the gas mass that forms stars at any one time is low, ~10^{-4}. This low fraction is determined by turbulence compression, and is apparently independent of specific cloud formation processes which all operate at lower densities. Turbulence compression also accounts for the formation of most stars in clusters, along with the cluster mass spectrum, and it gives a hierarchical distribution to the positions of these clusters and to star-forming regions in general. Turbulent motions appear to be very fast in irregular galaxies at high redshift, possibly having speeds equal to several tenths of the rotation speed in view of the morphology of chain galaxies and their face-on counterparts. The origin of this turbulence is not evident, but some of it could come from accretion onto the disk. Such high turbulence could help drive an early epoch of gas inflow through viscous torques in galaxies where spiral arms and bars are weak. Such evolution may lead to bulge or bar formation, or to bar re-formation if a previous bar dissolved. We show evidence that the bar fraction is about constant with redshift out to z~1, and model the formation and destruction rates of bars required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess, Dordrecht: Kluwer, in press (presented at a conference in South Africa, June 7-12, 2004). 19 pgs, 5 figure

    The −675 4G/5G Polymorphism in Plasminogen Activator Inhibitor-1 Gene Is Associated with Risk of Asthma: A Meta-Analysis

    Get PDF
    BACKGROUND: A number of studies assessed the association of -675 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor (PAI)-1 gene with asthma in different populations. However, most studies reported inconclusive results. A meta-analysis was conducted to investigate the association between polymorphism in the PAI-1 gene and asthma susceptibility. METHODS: Databases including Pubmed, EMBASE, HuGE Literature Finder, Wanfang Database, China National Knowledge Infrastructure (CNKI) and Weipu Database were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association in the dominant model, recessive model, codominant model, and additive model. RESULTS: Eight studies involving 1817 cases and 2327 controls were included. Overall, significant association between 4G/5G polymorphism and asthma susceptibility was observed for 4G4G+4G5G vs. 5G5G (OR = 1.56, 95% CI 1.12-2.18, P = 0.008), 4G/4G vs. 4G/5G+5G/5G (OR = 1.38, 95% CI 1.06-1.80, P = 0.02), 4G/4G vs. 5G/5G (OR = 1.80, 95% CI 1.17-2.76, P = 0.007), 4G/5G vs. 5G/5G (OR = 1.40, 95% CI 1.07-1.84, P = 0.02), and 4G vs. 5G (OR = 1.35, 95% CI 1.08-1.68, P = 0.008). CONCLUSIONS: This meta-analysis suggested that the -675 4G/5G polymorphism of PAI-1 gene was a risk factor of asthma

    Superelasticity of Carbon Nanocoils from Atomistic Quantum Simulations

    Get PDF
    A structural model of carbon nanocoils (CNCs) on the basis of carbon nanotubes (CNTs) was proposed. The Young’s moduli and spring constants of CNCs were computed and compared with those of CNTs. Upon elongation and compression, CNCs exhibit superelastic properties that are manifested by the nearly invariant average bond lengths and the large maximum elastic strain limit. Analysis of bond angle distributions shows that the three-dimensional spiral structures of CNCs mainly account for their unique superelasticity

    Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells

    Get PDF
    Obesity confers an increased risk of developing specific cancer forms. Although the mechanisms are unclear, increased fat cell secretion of specific proteins (adipokines) may promote/facilitate development of malignant tumors in obesity via cross-talk between adipose tissue(s) and the tissues prone to develop cancer among obese. We searched for novel adipokines that were overexpressed in adipose tissue of obese subjects as well as in tumor cells derived from cancers commonly associated with obesity. For this purpose expression data from human adipose tissue of obese and non-obese as well as from a large panel of human cancer cell lines and corresponding primary cells and tissues were explored. We found expression of ceruloplasmin to be the most enriched in obesity-associated cancer cells. This gene was also significantly up-regulated in adipose tissue of obese subjects. Ceruloplasmin is the body's main copper carrier and is involved in angiogenesis. We demonstrate that ceruloplasmin is a novel adipokine, which is produced and secreted at increased rates in obesity. In the obese state, adipose tissue contributed markedly (up to 22%) to the total circulating protein level. In summary, we have through bioinformatic screening identified ceruloplasmin as a novel adipokine with increased expression in adipose tissue of obese subjects as well as in cells from obesity-associated cancers. Whether there is a causal relationship between adipose overexpression of ceruloplasmin and cancer development in obesity cannot be answered by these cross-sectional comparisons

    Controlled Growth of WO3Nanostructures with Three Different Morphologies and Their Structural, Optical, and Photodecomposition Studies

    Get PDF
    Tungsten trioxide (WO3) nanostructures were synthesized by hydrothermal method using sodium tungstate (Na2WO4·2H2O) alone as starting material, and sodium tungstate in presence of ferrous ammonium sulfate [(NH4)2Fe(SO4)2·6H2O] or cobalt chloride (CoCl2·6H2O) as structure-directing agents. Orthorhombic WO3having a rectangular slab-like morphology was obtained when Na2WO4·2H2O was used alone. When ferrous ammonium sulfate and cobalt chloride were added to sodium tungstate, hexagonal WO3nanowire clusters and hexagonal WO3nanorods were obtained, respectively. The crystal structure and orientation of the synthesized products were studied by X-ray diffraction (XRD), micro-Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM), and their chemical composition was analyzed by X-ray photoelectron spectroscopy (XPS). The optical properties of the synthesized products were verified by UV–Vis and photoluminescence studies. A photodegradation study on Procion Red MX 5B was also carried out, showing that the hexagonal WO3nanowire clusters had the highest photodegradation efficiency
    corecore