57 research outputs found

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Keeping memory for intentions: a cTBS investigation of the frontopolar cortex.

    No full text
    The present study aimed to investigate the role of frontopolar cortex in prospective memory (PM) by means of inhibitory theta-burst stimulation (cTBS). "Experiment 1"-8 volunteers were evaluated after inhibitory cTBS over left Brodmann area (BA) 10, right BA10, and Cz. In the PM procedure, sequences of 4 words each were presented. During the intersequence delay, subjects had to repeat the sequence in the observed order (ongoing task forward) or in the reverse order (backward). At the occurrence of a target word, subjects had to press a key on the keyboard (PM task). Recall and recognition of the target words were also tested. PM accuracy was lower after cTBS over left BA10 compared with Cz (P = 0.012), whereas it was comparable in right BA10 and Cz conditions. No other significant differences between the 3 conditions were found. "Experiment 2"-8 subjects were administered the same experimental PM procedure as above after inhibitory cTBS over left BA46 and Cz. In this case, none of the tested effects were significant. Our findings corroborate the hypothesis that within the prefrontal cortex, the left BA10 is specifically involved in the mediation of processes related to the execution of delayed intentions

    Impaired reproduction of second but not millisecond time intervals in Parkinson's disease.

    No full text
    none11The basal ganglia have been associated with temporal processing in ranges of milliseconds and seconds. However, results from PD patient studies are elusive. Time perception in these patients has been tested with different approaches including repetitive movement tasks (i.e. finger tapping) and cognitive tasks (i.e. time reproduction), and both abnormal and normal performances have been reported for different time intervals. Furthermore, when PD patients were required to learn two target durations in the same session when they were off medication, they overestimated the short duration and underestimated the long duration in the seconds range. This pattern of temporal accuracy was described as a “migration effect” and was interpreted as a dysfunctional representation of memory for time (Malapani, C., Rakitin, B. C., Levy, R., Meck, W. H., Deweer, B., Dubois, B., et al. (1998). Coupled temporal memories in Parkinson’s disease: A dopamine-related dysfunction. Journal of Cognitive Neuroscience, 10, 316–331). Here, we controlled the emergence of similar behaviour also during millisecond time processing in PD patients. A time reproduction task was employed in which subjects were required to estimate intervals in millisecond (500 ms) and few second (2000 ms) ranges. In the first experiment, these intervals were tested in the same session to verify whether the migration effect was present also between time intervals in different millisecond and few second ranges. In a second experiment, they were not intermingled but were tested in two separate sessions to verify whether abnormalities depended on a selective perceptual deficit of the time intervals tested (i.e. millisecond or second ranges). All experiments were performed in both off and on therapy conditions. Our results demonstrated that PD patients showed no deficits in time estimation for time intervals in either the millisecond or few second range when the different time intervals were tested in separate sessions. This negative finding was obtained in both on and off conditions. However, when the different ranges were tested in the same session, we found that PD patients were impaired selectively for time intervals in the seconds range. Our data seem to indicate that time processing in PD patients for time intervals spanning up to 2 s is unimpaired and that abnormalities in such temporal scale may emerge only when patients have to deal with different durations, when timing involves further cognitive processes such as memory and attention.noneKoch G; Costa A; Brusa L; Peppe A; Gatto I; Torriero S; Gerfo EL; Salerno S; Oliveri M; Carlesimo GA; Caltagirone CKoch, G; Costa, A; Brusa, L; Peppe, A; Gatto, I; Torriero, S; Gerfo, El; Salerno, S; Oliveri, M; Carlesimo, Ga; Caltagirone,
    • 

    corecore