7 research outputs found
Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)
This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment, which is being developed for the Facility for Antiproton and Ion Research (FAIR) at Darmstadt, Germany. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface
Experimental access to Transition Distribution Amplitudes with the P̄ANDA experiment at FAIR
Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion (\u3c0N) TDAs from \uafpp \u2192 e+e 12\u3c00 reaction with the future PANDA detector at the FAIR facility. At high center- of-mass energy and high invariant mass squared of the lepton pair q2, the amplitude of the signal channel pp\uaf \u2192 e+e 12\u3c00 admits a QCD factorized description in terms of \u3c0N TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring \uafpp \u2192 e+e 12\u3c00 with the PANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. pp\uaf \u2192 \u3c0+\u3c0 12\u3c00 were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 0.5 in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the PANDA detector will allow to achieve a background rejection factor of 5 \ub7 107 (1 \ub7 107) at low (high) q2 for s = 5 GeV2, and of 1 \ub7 108 (6 \ub7 106) at low (high) q2 for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb 121 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with PANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing \u3c0N TDAs
Eperimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR
We address the possibility of accessing nucleon-to-pion (πN) Transition Distribution Amplitudes (TDAs) from p¯p→e+e−π0 reaction with the future \={P}ANDA detector at the FAIR facility. At high center of mass energy and high invariant mass of the lepton pair q2, the amplitude of the signal channel p¯p→e+e−π0 admits a QCD factorized description in terms of πN TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring p¯p→e+e−π0 with the \={P}ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, {\it i.e.} p¯p→π+π−π0 were performed for the center of mass energy squared s=5 GeV2 and s=10 GeV2, in the kinematic regions 3.00.5 in the proton-antiproton center of mass frame. Results of the simulation show that the particle identification capabilities of the \={P}ANDA detector will allow to achieve a background rejection factor at the level of 108 (2⋅107) at low (high) q2 while keeping the signal reconstruction efficiency at around 40% and that a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb−1 of integrated luminosity. The future measurement of the signal channel cross section with \={P}ANDA will provide a new test of perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing πN TDAs