1,296 research outputs found

    Disfunctions in the anthocyanin accumulation of Vitis vinifera L. varieties studied by a targeted resequencing approach

    Get PDF
    BACKGROUND: The pathway of anthocyanin biosynthesis, and its alterations leading to berry colour modification, are well known in grape skin. This variability could affect both quantity and quality of pigment accumulation. OBJECTIVE: The present work is focused on 15 grapevine cultivars selected to represent a high variability in the phenotypical colour traits in order to highlight new polymorphisms related to the flavonoid pathway. METHODS: Twenty-one genes involved in the biosynthetic pathway of anthocyanins were studied via targeted resequencing and were correlated with phenotypic data ( anthocyanin profiles and spectroscopy indices). RESULTS: Single nucleotide polymorphism (SNP) and InDel (insertion/deletion) polymorphisms were detected. Out of 1751 polymorphic loci, 68% were SNPs and 32% were InDels (568). Cluster analysis and SPLS-DA were used to investigate the genetic relationships among the cultivars, confirming the large range of phenotypical variability. Statistically significant correlations were detected between accumulation of 3\u2019 anthocyanins and genetic polymorphisms in two structural genes and one transcription factor putatively involved in the anthocyanin biosynthetic pathway. CONCLUSIONS: The understanding of the polymorphisms related to the anthocyanin accumulation could support future selection of new pink table grape varieties with increased appeal on the consumers

    Anchoring of proteins to lactic acid bacteria

    Get PDF
    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.

    Accuracy of complete-arch digital implant impression with intraoral optical scanning and stereophotogrammetry: An in vivo prospective comparative study

    Get PDF
    Objectives: To assess accuracy of intraoral optical scanning (IOS) and stereophotogrammetry (SPG), complete-arch digital implant impressions in vivo. Materials and Methods: Consecutive patients needing implant-supported screw-retained zirconia complete-arch fixed-dental prostheses (ISZ-FDP) were recruited. For each patient, three impressions were taken: IOS, SPG (tests), and open-tray plaster (reference). Linear (ΔX, ΔY, and ΔZ), three-dimensional (ΔEUC), and angular deviations (ΔANGLE) were evaluated and stratified according to scanning technology for each implant. Potential effects of impression device (IOS and SPG), arch (maxilla and mandible), and implant number (4 and 6) were evaluated through multivariable analysis. Significance level was set at.05. Results: A total of 11 complete arches (5 maxillae, 6 mandibles) in 11 patients were rehabilitated with ISZ-FDPs supported by 4 (n = 8) and 6 implants (n = 3). A total of 50 implants and 100 implant positions were captured by two investigated devices and compared to respective reference (mean ΔEUC IOS 137.2, SPG 87.6 μm; mean ΔANGLE 0.79, 0.38°). Differences between measurements (SPG-IOS) were computed for each implant, with negative values indicating better SPG accuracy. Significant mean ΔEUC difference of −49.60 μm (p =.0143; SD 138.15) and mean ΔANGLE difference of −0.40° (p <.0001; SD 0.65) were observed in favor of SPG. Multivariable analysis showed significant effect on ΔEUC (p =.0162) and ΔANGLE (p =.0001) only for impression devices, with SPG performing better. Conclusions: SPG experienced significantly higher linear and angular accuracy. No effect of type of arch or implant number was detected. Higher extreme deviations were experienced for IOS. SPG can be feasible for complete-arch digital impressions with caution, and rigid prototype try-in is recommended before screw-retained prosthesis manufacturing. © 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

    A Hierarchical Bayesian Approach to Neutron Spectrum Unfolding with Organic Scintillators

    Get PDF
    We propose a hierarchical Bayesian model and state-of-art Monte Carlo sampling method to solve the unfolding problem, i.e., to estimate the spectrum of an unknown neutron source from the data detected by an organic scintillator. Inferring neutron spectra is important for several applications, including nonproliferation and nuclear security, as it allows the discrimination of fission sources in special nuclear material (SNM) from other types of neutron sources based on the differences of the emitted neutron spectra. Organic scintillators interact with neutrons mostly via elastic scattering on hydrogen nuclei and therefore partially retain neutron energy information. Consequently, the neutron spectrum can be derived through deconvolution of the measured light output spectrum and the response functions of the scintillator to monoenergetic neutrons. The proposed approach is compared to three existing methods using simulated data to enable controlled benchmarks. We consider three sets of detector responses. One set corresponds to a 2.5 MeV monoenergetic neutron source and two sets are associated with (energy-wise) continuous neutron sources (252^{252}Cf and 241^{241}AmBe). Our results show that the proposed method has similar or better unfolding performance compared to other iterative or Tikhonov regularization-based approaches in terms of accuracy and robustness against limited detection events, while requiring less user supervision. The proposed method also provides a posteriori confidence measures, which offers additional information regarding the uncertainty of the measurements and the extracted information.Comment: 10 page

    Spectrometric determination of flavonoids from Maytenus (Celastraceae) and Passiflora (Passifloraceae) leaves and comparison with an HPLC-UV method

    Get PDF
    Este trabalho apresenta uma modificação dos procedimentos descritos nas Farmacopéias Francesa e Européia para a análise de flavonoides de Passiflora incarnata L., Passifloraceae, por espectrometria UV-Visível e propõe a sua aplicação na determinação dos flavonoides totais das folhas da espinheira-santa (Maytenus aquifolium Mart. e Maytenus ilicifolia (Schrad.) Planch., Celastraceae) e do maracujá (Passiflora edulis Sims. e Passiflora alata Curtis, Passifloraceae). Os resultados obtidos por espectrometria no UV-Visível foram comparados aos obtidos por cromatografia líquida de alta eficiência (CLAE-UV), encontrando-se resultados estatisticamente similares entre os métodos espectrométrico modificado da Farmacopéia Francesa e CLAE-UV.This paper reports on a modification of the spectrometric procedures originally described in the French and European Pharmacopoeia for the analysis of Passiflora incarnata L. (Passifloraceae) flavonoids, proposing its application in the determination of total flavonoids from "espinheira-santa" (Maytenus aquifolium Mart. and Maytenus ilicifolia (Schrad.) Planch., Celastraceae) and "maracujá" leaves (Passiflora edulis Sims and Passiflora alata Curtis, Passifloraceae). A comparison was made of the results obtained by the spectrometric procedure with those obtained by high performance liquid chromatography (HPLC-UV), which demonstrated complete compatibility between the modified French Pharmacopoeia (spectrometric) and HPLC-UV methods.FAPESPCNPqCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    The evolution of galaxy star formation activity in massive halos

    Get PDF
    There is now a large consensus that the current epoch of the Cosmic Star Formation History (CSFH) is dominated by low mass galaxies while the most active phase at 1<z<2 is dominated by more massive galaxies, which undergo a faster evolution. Massive galaxies tend to inhabit very massive halos such as galaxy groups and clusters. We aim to understand whether the observed "galaxy downsizing" could be interpreted as a "halo downsizing", whereas the most massive halos, and their galaxy populations, evolve more rapidly than the halos of lower mass. Thus, we study the contribution to the CSFH of galaxies inhabiting group-sized halos. This is done through the study of the evolution of the Infra-Red (IR) luminosity function of group galaxies from redshift 0 to ~1.6. We use a sample of 39 X-ray selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and Hersche PACS. Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute <10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift >~1, the most IR-luminous galaxies (LIRGs and ULIRGs) are preferentially located in groups, and this is consistent with a reversal of the star-formation rate vs .density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z~1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Our results are consistent with a "halo downsizing" scenario and highlight the significant role of "environment" quenching in shaping the CSFH.Comment: 14 pages, 10 figures, accepted for publication by A&

    Determinants of antibody persistence across doses and continents after single-dose rVSV-ZEBOV vaccination for Ebola virus disease: an observational cohort study.

    Get PDF
    BACKGROUND: The recombinant vesicular stomatitis virus (rVSV) vaccine expressing the Zaire Ebola virus (ZEBOV) glycoprotein is efficacious in the weeks following single-dose injection, but duration of immunity is unknown. We aimed to assess antibody persistence at 1 and 2 years in volunteers who received single-dose rVSV-ZEBOV in three previous trials. METHODS: In this observational cohort study, we prospectively followed-up participants from the African and European phase 1 rVSV-ZEBOV trials, who were vaccinated once in 2014-15 with 300 000 (low dose) or 10-50 million (high dose) plaque-forming units (pfu) of rVSV-ZEBOV vaccine to assess ZEBOV glycoprotein (IgG) antibody persistence. The primary outcome was ZEBOV glycoprotein-specific IgG geometric mean concentrations (GMCs) measured yearly by ELISA compared with 1 month (ie, 28 days) after immunisation. We report GMCs up to 2 years (Geneva, Switzerland, including neutralising antibodies up to 6 months) and 1 year (Lambaréné, Gabon; Kilifi, Kenya) after vaccination and factors associated with higher antibody persistence beyond 6 months, according to multivariable analyses. Trials and the observational study were registered at ClinicalTrials.gov (Geneva: NCT02287480 and NCT02933931; Kilifi: NCT02296983) and the Pan-African Clinical Trials Registry (Lambaréné PACTR201411000919191). FINDINGS: Of 217 vaccinees from the original studies (102 from the Geneva study, 75 from the Lambaréné study, and 40 from the Kilifi study), 197 returned and provided samples at 1 year (95 from the Geneva study, 63 from the Lambaréné, and 39 from the Kilifi study) and 90 at 2 years (all from the Geneva study). In the Geneva group, 44 (100%) of 44 participants who had been given a high dose (ie, 10-50 million pfu) of vaccine and who were seropositive at day 28 remained seropositive at 2 years, whereas 33 (89%) of 37 who had been given the low dose (ie, 300 000 pfu) remained seropositive for 2 years (p=0·042). In participants who had received a high dose, ZEBOV glycoprotein IgG GMCs decreased significantly between their peak (at 1-3 months) and month 6 after vaccination in Geneva (p0·05). Neutralising antibodies seem to be less durable, with seropositivity dropping from 64-71% at 28 days to 27-31% at 6 months in participants from the Geneva study. INTERPRETATION: Antibody responses to single-dose rVSV-ZEBOV vaccination are sustained across dose ranges and settings, a key criterion in countries where booster vaccinations would be impractical. FUNDING: The Wellcome Trust and Innovative Medicines Initiative 2 Joint Undertaking

    The role of massive halos in the Star Formation History of the Universe

    Get PDF
    The most striking feature of the Cosmic Star Formation History (CSFH) of the Universe is a dramatic drop of the star formation (SF) activity, since z~1. In this work we investigate if the very same process of assembly and growth of structures is one of the major drivers of the observed decline. We study the contribution to the CSFH of galaxies in halos of different masses. This is done by studying the total SFR-halo mass-redshift plane from redshift 0 to redshift z~1.6 in a sample of 57 groups and clusters by using the deepest available mid- and far-infrared surveys conducted with Spitzer MIPS and Herschel PACS and SPIRE. Our results show that low mass groups provide a 60-80% contribution to the CSFH at z~1. Such contribution declines faster than the CSFH in the last 8 billion years to less than 10% at z<0.3, where the overall SF activity is sustained by lower mass halos. More massive systems provide only a marginal contribution (<10%) at any epoch. A simplified abundance matching method shows that the large contribution of low mass groups at z~1 is due to a large fraction (>50%) of very massive, highly star forming Main Sequence galaxies. Below z~1 a quenching process must take place in massive halos to cause the observed faster suppression of their SF activity. Such process must be a slow one though, as most of the models implementing a rapid quenching of the SF activity in accreting satellites significantly underpredicts the observed SF level in massive halos at any redshift. Starvation or the transition from cold to hot accretion would provide a quenching timescale of 1 Gyrs more consistent with the observations. Our results suggest a scenario in which, due to the structure formation process, more and more galaxies experience the group environment and, thus, the associated quenching process. This leads to the progressive suppression of their SF activity shaping the CSFH below z~1.Comment: 18 pages, 21 figures, accepted for publication by A&

    Evolution of a TRIM5-CypA splice isoform in old world monkeys

    Get PDF
    The TRIM family proteins share a conserved arrangement of three adjacent domains, an N-terminal RING domain, followed by one or two B-boxes and a coiled-coil, which constitutes the tripartite-motif for which the family is named. However, the C-termini of TRIM proteins vary, and include at least nine evolutionarily distinct, unrelated protein domains. Antiviral restriction factor TRIM5alpha has a C-terminal B30.2/SPRY domain, which is the major determinant of viral target specificity. Here, we describe the evolution of a cyclophilin-A encoding exon downstream of the TRIM5 locus of Asian macaques. Alternative splicing gives rise to chimeric transcripts encoding the TRIM motif fused to a C-terminal CypA domain (TRIM5-CypA). We detected TRIM5-CypA chimeric transcripts in primary lymphocytes from two macaque species. These were derived in part from a CypA pseudogene in the TRIM5 locus, which is distinct from the previously described CypA insertion in TRIM5 of owl monkeys. The CypA insertion is linked to a mutation in the 3\u27 splice site upstream of exon 7, which may prevent or reduce expression of the alpha-isoform. All pig-tailed macaques (M. nemestrina) screened were homozygous for the CypA insertion. In contrast, the CypA-containing allele was present in 17% (17/101) of rhesus macaques (M. mulatta). The block to HIV-1 infection in lymphocytes from animals bearing the TRIM5-CypA allele was weaker than that in cells from wild type animals. HIV-1 infectivity remained significantly lower than SIV infectivity, but was not rescued by treatment with cyclosporine A. Thus, unlike owl monkey TRIMCyp, expression of the macaque TRIM5-CypA isoform does not result in increased restriction of HIV-1. Despite its distinct evolutionary origin, Macaca TRIM5-CypA has a similar domain arrangement and shares approximately 80% amino-acid identity with the TRIMCyp protein of owl monkeys. The independent appearance of TRIM5-CypA chimeras in two primate lineages constitutes a remarkable example of convergent evolution. Based on the presence of the CypA insertion in separate macaque lineages, and its absence from sooty mangabeys, we estimate that the Macaca TRIM5-CypA variant appeared 5-10 million years ago in a common ancestor of the Asian macaques. Whether the formation of novel genes through alternative splicing has played a wider role in the evolution of the TRIM family remains to be investigated
    corecore