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Expectation-propagation for weak 
radionuclide identification at 
radiation portal monitors
Yoann Altmann1, Angela Di Fulvio2 ✉, Marc G. Paff3, Shaun D. Clarke4, Mike E. Davies5, 
Stephen McLaughlin1, Alfred O. Hero6 & Sara A. Pozzi4

We propose a sparsity-promoting Bayesian algorithm capable of identifying radionuclide signatures 
from weak sources in the presence of a high radiation background. The proposed method is relevant to 
radiation identification for security applications. In such scenarios, the background typically consists 
of terrestrial, cosmic, and cosmogenic radiation that may cause false positive responses. We evaluate 
the new Bayesian approach using gamma-ray data and are able to identify weapons-grade plutonium, 
masked by naturally-occurring radioactive material (NORM), in a measurement time of a few seconds. 
We demonstrate this identification capability using organic scintillators (stilbene crystals and EJ-309 
liquid scintillators), which do not provide direct, high-resolution, source spectroscopic information. 
Compared to the EJ-309 detector, the stilbene-based detector exhibits a lower identification error, on 
average, owing to its better energy resolution. Organic scintillators are used within radiation portal 
monitors to detect gamma rays emitted from conveyances crossing ports of entry. The described 
method is therefore applicable to radiation portal monitors deployed in the field and could improve 
their threat discrimination capability by minimizing “nuisance” alarms produced either by NORM-
bearing materials found in shipped cargoes, such as ceramics and fertilizers, or radionuclides in recently 
treated nuclear medicine patients.

The growing terrorism threat based on the use of special nuclear materials (SNMs), i.e., highly enriched ura-
nium (HEU), weapons-grade plutonium (WGPu), or high-activity radiological sources has reinforced the need 
for improved population protection mechanisms. Nuclear security aims to deter and detect the smuggling of 
these materials across state borders. One major defense mechanism involves the installation of radiation portal 
monitors (RPMs) at border crossings. These RPMs typically consist of 3He proportional counters embedded in 
polyethylene for neutron detection, and slabs of polyvinyl-toluene (PVT) scintillators for gamma-ray detection. 
Only a tiny fraction of the millions of vehicles and cargo containers entering a country like the United States are 
likely to be carrying radiological contraband. The International Atomic Energy Agency’s Incident and Trafficking 
Database (ITDB) merely counts a few dozen reported successful interdictions of nuclear and radiological mate-
rials globally per year1,2. The ITDB provides only a partial picture of the number of smuggling attempts. The 
reported figures should be considered a lower bound of the number of successful interdictions, because they 
include only successful interdictions, voluntarily reported by the member states.

Complicating matters, the radiological contraband might be well shielded. In 2017, the United Nations 
Conference on Trade and Development estimated the global container port throughput at over 750 million 
20-foot equivalent units3. As a consequence, RPMs are limited in measurement time to minimize unnecessary 
impediments to the flow of traffic and commerce. RPMs need to function rapidly while collecting sufficient data 
to positively identify the presence of a radiation source, which may produce a signal just slightly above the natural 
background.
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Border protection agents screen inbound vehicles and cargo containers for suspicious levels of radiation rel-
ative to the background, and flag these for a more thorough secondary inspection. Detecting smuggled nuclear 
and radiological material is analogous to finding a needle in a haystack, whereby SNMs can be difficult to detect, 
quantify, and locate. Nuisance alarms are radiation alarms caused by sources of radiation that pose no security 
threat. Many common goods shipped across border crossings contain sufficient naturally occurring radioactive 
material (NORM) to set off gamma alarms in RPMs4. Medical isotopes are another growing source of nuisance 
alarms. A patient may emit sufficient gamma radiation for days or even weeks after a procedure to set off an RPM 
gamma alarm4–7, depending on the nuclear medicine isotope used and its administered activity.

NORM-bearing cargo and nuclear medicine patients are significantly more prevalent than nuclear smug-
glers in cross-border traffic. Hence, customs and border protection agents spend an exorbitant amount of time 
processing nuisance alarms in secondary inspections that can last tens of minutes per offending vehicle or cargo 
container8. Due to the low signal to background ratio, simply alarming on the presence of a radioactive source is 
a challenge in itself for primary inspection. In the interest of saving time for both customs and border protection 
agents, as well as people crossing borders, combining primary and secondary inspections appears as an attractive 
solution. In an ideal scenario, the primary inspection would simultaneously detect, identify and quantify any 
source of radiation of interest, so that, for example, nuclear medicine patients avoid the discomfort caused by a 
lengthy secondary inspection. Identifying radionuclides, however, is even more sensitive to signal-to-background 
ratio than simply detecting the presence of a radiation source.

One concerning and challenging scenario involves the contextual presence of multiple radionuclides, i.e., 
mixed sources. In this case, strong NORM sources can mask a weaker SNM source, and further jeopardize the 
identification process. Gamma-ray spectroscopy inspections performed using inorganic scintillators or semi-
conductor detectors, such as NaI(Tl) or HPGe, respectively, are typically able to resolve most of the photope-
aks, which serve as fingerprints of the present radionuclides, and therefore facilitate the nuclide identification 
in a mixed source scenario9. The vast majority of deployed RPMs utilizes instead organic scintillators, i.e., PVT, 
because of the high intrinsic efficiency of these detectors, their relatively low cost, and suitability to be produced 
in large shapes. The response of organic scintillator-based RPMs is not characterized by sharp photopeaks, but 
rather by smooth edges and continuum regions that result from Compton scattering interactions. Therefore, the 
spectral response of an RPM organic scintillator to a mixed source will essentially be a smooth linear combination 
of the responses to individual sources. It is hence challenging to identify all the components of the mixed source 
and estimate the relative activities of the constituent sources.

The performance of a portal monitor in terms of sensitivity, i.e., maximization of the positive detection rate, 
is a function of the detection efficiency of the system and its form factor, which should be optimized for a specific 
application. Paff and colleagues8 have already shown that the system sensitivity can be optimized by selecting 
large detector panels. In this work, we focus on the capability of identifying multiple sources in a mixture of 
nuclides, following an alarm event.

The proposed method is also relevant to a number of other radiation identification and localization applica-
tions, such as radionuclide search with unmanned vehicles in a given environment, where the statistics of the 
signal of interest is poor compared to the background, because of short measurement time, distance between the 
detector and the source, low detection intrinsic efficiency and/or weakness of the source.

Algorithms for RPM signal unmixing
Radiation detection and characterization in the nuclear security area is challenging due to the low intensity of the 
signal of interest, typically much lower than the background. Two main detrimental components are added to the 
SNM signal of interest: spectra of additional NORM sources, either located inside the cargo or part of the natural 
background surrounding the portal monitor, and intrinsic observation Poisson noise (shot noise), which is not 
negligible for short measurement times and therefore can lead to poor signal-to-noise ratios. Bayesian inference 
is particularly attractive in such challenging scenarios, and advances in approximate methods10,11 allow complex 
models to be used with computational times compatible with real-time constraints.

Bayesian approaches to detect, classify, and estimate smuggled nuclear and radiological materials are not a 
new consideration6,12, and were extensively studied for the development of the Statistical Radiation Detection 
System at Lawrence Livermore National Laboratory. This group has used Bayesian model-based sequential 
statistical processing techniques to overcome the low signal-to-background ratio that complicates traditional 
gamma spectroscopy techniques with high-resolution HPGe and inorganic scintillation detectors13,14. Bayesian 
approaches have also been applied to radionuclide identification for NaI(Tl) detectors using a wavelet-based peak 
identification algorithm with Bayesian classifiers15, for LaBr3(Ce) using a sequential approach16, and to HPGe 
detectors using non-parametric Bayesian deconvolution to resolve overlapping peaks17. Bayesian approaches have 
been recently investigated for the detection of single and mixed gamma sources with short measurement times12. 
The use of related machine-learning-based methods was also recently demonstrated for source identification in 
spectra recorded using inorganic scintillators18.

Results
In this study, we considered two types of organic scintillation detectors, based on liquid EJ-309 and stilbene crys-
tal, respectively, as detailed in the “Methods” section. The functional difference between the two detectors most 
relevant to this work is their energy resolution as illustrated in Fig. 1, which depicts their integral-normalized 
response to a 201Tl (left) and to a 99mTc (right) source. This figure shows that stilbene exhibits sharper Compton 
edges than EJ-309, thanks to its better energy resolution.

Table 1 lists the 11 nuclides that were measured using the two different detectors, and the relative fractions 
used to generate synthetic mixtures and assess the performance of the new algorithm. For each mixture, several 
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data sets were created to obtain spectra with a total counts from 500 to 500 k, where the observation noise was 
modeled by Poisson noise.

We compared the unmixing performance of the new algorithm, referred to as MMSEBTG, to that of two 
Bayesian strategies, namely the maximum a-posteriori (MAP) and the minimum mean squared error (MMSEL1) 
approaches presented in12. These two approaches, denoted by MAPL1 and MMSEL1, respectively, are detailed in 
the “Methods” section.

As the metric for estimation accuracy, we used the root-mean-square error (RMSE)

=
− ˆ

RMSE
N

z z
(1)

2
2

between the known nuclide fractions z and their estimated values ẑ, where N is the number of nuclides in the 
spectral library. Figure 2 compares the RMSEs obtained by the three methods mentioned above for the nine mix-
tures of Table 1, as the total number of counts increases (from 500 to 1 M) and using the stilbene detector. The new 
MMSEBTG method generally provides more robust results, compared to the MAPL1 and MMSEL1 approaches, 
yielding consistently lower RMSEs. The MMSEBTG RMSE becomes comparable to the MAPL1 RMSE when only 
500 counts are measured, and when the mixture contains nuclides with spectral similarities, e.g., 123I and 99mTc in 
the fourth mixture.

The RMSEs obtained using the MMSEBTG algorithm and simulated data show overall comparable perfor-
mances using either detector (see Fig. 3). The results using the stilbene detector are slightly better, i.e., present 
lower RMSEs, especially for mixtures of three or more nuclides, e.g., WGPu, 99mTc, and 67Ga (mixture 3). This 
result is expected because of the better energy resolution of stilbene, compared to EJ-309. Similar results have 
been obtained with the two other competing methods.

Figure 1.  Comparison of light output spectra of 201Tl (left) and 99mTc (right) sources measured using the EJ-
309 (blue curves) and the stilbene (red curves) scintillators. For comparison purposes, the spectra have been 
normalised to integrate to one.

241Am 133Ba 57Co 137Cs 123I 201Tl 67Ga I131 99mTc 111In WGPu

Mixture 1 1/6 0 0 5/6 0 0 0 0 0 0 0

Mixture 2 0 1/3 0 1/3 0 0 1/3 0 0 0 0

Mixture 3 0 0 0 0 0 0 1/3 0 1/3 0 1/3

Mixture 4 0 1/4 0 1/4 1/4 0 0 0 1/4 0 0

Mixture 5 0 1/2 0 0 0 0 0 1/3 0 0 1/6

Mixture 6 0 0 0 0 0 0 0 0 5/6 0 1/6

Mixture 7 0 0 0 0 0 0 0 0 6/7 0 1/7

Mixture 8 0 0 0 0 0 0 0 0 7/8 0 1/8

Mixture 9 0 0 0 0 0 0 0 0 8/9 0 1/9

Table 1.  Composition of the nine mixtures tested in this work. The fractions represent the ratio of the detected 
counts associated with each source.
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A significant advantage of the proposed MMSEBTG algorithm is that it directly provides uncertainty quanti-
fication, i.e., the estimated probability of the presence of each source from the library. The MMSEBTG algorithm 
generates theses estimates from the posterior distribution, which are not directly available from the MAPL1 and 

Figure 2.  RMSEs obtained with the MMSEBTG, MMSEL1 and MAPL1 algorithms for the mixtures described in 
Table 1 and measured with the stilbene detector, as a function of the detection counts.

Figure 3.  RMSE of the MMSEBTG algorithm calculated using the stilbene (red curves) and EJ-309 (blue curves) 
experimentally measured data.
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MMSEL1 algorithms. If the measured spectrum consists of more than 1000 counts, the algorithm correctly iden-
tifies with high probability the nuclides in the mixture and its performance slightly degrades as the number of 
sources that are present increases and the overall gamma counts per source decrease (see Fig. 4). In addition to 
providing estimated probabilities of source presence, the MMSEBTG yields superior performance, compared to 
the MAPL1 and MMSEL1 algorithms used in Fig. 2. Furthermore, in contrast to the proposed MMSEBTG approach, 
the MMSEL1 and MAPL1 algorithms require tuning of a threshold for source detection, whose optimal value (in 
terms of probabilities of false alarm and detection) is difficult to tune in practice, as it depends on the counts and 
the mixture composition. For this reason, we only report here the detection results obtained using the MMSEBTG 
approach.

In Fig. 4, an increasing number of isotopes not present in the actual mixture is identified as potentially present, 
when there are few gamma counts. For example, for sparse spectra (<1,000 counts) containing WGPu and 99mTc 
(mixtures 6–9), the algorithm suggests the potential presence of 123I. This can be explained by the similarity of 
the spectra of 123I and 99mTc (as shown in Fig. 5). The discrimination of these two nuclides becomes easier as the 
gamma counts increase.

Mixtures 6–9 simulate a specific scenario, where a WGPu source is detected together with an increasing 
amount of 99mTc, which is the most commonly used medical radioisotope and could, therefore, be used to mask 
(in terms of relative counts) the presence of WGPu. The results illustrate that the estimated probability of pres-
ence of WGPu decreases as its proportion decreases in the mixture (from mixture 6 to mixture 9), as could be 
expected.

Figure 6 shows the empirical WGPu alarm rate, i.e., the fraction of the measurements containing WGPu for 
which the estimated probability of WGPu presence is larger than 50%, as a function of the total photon counts 
(top) and WGPu counts (bottom) for the different WGPu -based mixtures, using the stilbene detector. With a 
target WGPu alarm rate of 80%, a few hundreds of counts from the WGPu source would set off the portal alarm, 
even in the presence of up to three other highly-radioactive masking sources. The highest number of approxi-
mately 3000 overall counts to trigger an alarm state is needed for mixture 5, which includes WPGu, 133Ba, and 
131In. In similar irradiation conditions, in the presence of a mixed source, a detector similar to the one investigated 
would record approximately 130 counts during a 3-s vehicle scan time8. Assuming that the intrinsic efficiency 
scales with the volume of the detector and factoring an efficiency loss of 10% due to non-ideal light collection, a 
relatively small 2752 cm3 single module used in portal monitors19 would record approximately 3100 counts during 
a 3-s acquisition of a mixture of 133Ba, 131In, and WGPu. This acquisition time would be sufficient to set an alarm 
condition in the portal monitor. Regarding computational costs, the three competing methods (MMSEBTG, 

Figure 4.  Estimated marginal posterior probabilities of the presence of each of the library sources in the 
mixture as a function of the total photon count. The probabilities depicted have been obtained using the stilbene 
detection spectra, have been computed individually across 100 noise realizations, and finally averaged over these 
100 noise realizations.
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MMSEL1 and MAPL1) have been implemented using Matlab 2017b running on a MacBook Pro with 16 GB of 
RAM and a 2.9 GHz Intel Core i7 processor. Since the MMSEL1 is a simulation-based algorithm (see “Methods” 
section), its computational cost is significantly higher than the two other methods and it requires 66 s to analyze 
one spectrum (using 5000 iterations and assuming at most 11 sources in the mixture), on average. This prevents 
its use within portal monitors. Conversely, MAPL1 only takes 50–110 ms per spectrum and is the fastest method. 
Our new algorithm MMSEBTG is slower (approximately 1 s per spectrum) but still compatible with real-time mon-
itoring. While slower than MAPL1, MMSEBTG provides better estimates and allows automatic source detection and 
uncertainty quantification.

Discussion
RPMs must be able to detect weak SNM sources masked by a stronger NORM or nuisance radiation source. In 
this work, we overcame the limited energy resolution of organic scintillators by applying a new Bayesian algo-
rithm to decompose and identify mixed gamma-ray sources. Bayesian algorithms proved to be useful tools to 
improve the source detection accuracy even with limited statistics (few counts) and poor signal-to-background 
ratios.

The proposed Bayesian MMSEBTG technique is designed to allow more accurate source identification and 
quantification in the presence of one or more masking nuclides, with cumulative count integrals as low as 500 
counts. The automated identification obtained with the MMSEBTG method is more robust than using the MAPL1 
and MMSEL1 algorithms, which require unpractical parameter tuning. The main benefit of the proposed method 
is a more sensitive model that captures the sparsity of the mixing coefficients. The application of the MMSEBTG 
reduces, for instance, the average root-mean-square error between real and estimated nuclide fractions to .0 0177, 
compared to .0 0334 for MAPL1, and .0 0584 for MMSEL1 for the sixth mixture, containing 99mTc and WGPu, with 
only 1000 detection events. Our study also confirmed the importance of detector energy resolution. The stilbene 
crystal exhibits a better energy resolution than EJ-309 and, as a result, the stilbene data yielded a slightly better 
quantification accuracy, compared to EJ-309. Therefore, a slight improvement in the nuclide identification accu-
racy can be achieved by improving the energy resolution of the detector. Energy resolution improvement can be 
achieved either by using different materials, as we have shown in this study, and also by optimizing the detector’s 
light collection geometry20. A relevant feature of organic scintillators is their sensitivity to both neutrons and 
gamma rays. Neutron and gamma-ray interactions in the organic scintillators are distinguishable through pulse 

Figure 5.  Comparison of integral-normalized light output spectra emitted by 123I and 99mTc measured by the EJ-
309 detector. The zero-lagged cross-correlation coefficient between the two spectra is 0.97.

Figure 6.  Comparison of the WPGu alarm rates with the stilbene detector in the presence of mixtures with 
WGPu.
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shape discrimination. The neutron signature was not used in this work but could be further exploited to aid the 
classification of fissile and other neutron emitting materials.

In this paper, we have applied new Bayesian algorithms for the identification of source mixtures that are not 
shielded. While this scenario applies to pedestrian portal monitors, it would be interesting to study the algorithm 
performance when sources are transported with other goods, or deliberately shielded. Effectively shielding SNMs 
and intense gamma-ray emitting radionuclides, such as 137Cs and 60Co, would require a combination of low- 
and high-atomic-number elements. The current algorithm could be enhanced by coupling it to spectra recon-
struction methods that we have recently developed21, to account for the spectral effect of shielding materials, 
given their known gamma-ray and neutron attenuation coefficients, as proposed by Lawrence and colleagues22. 
It should also be noted that containers carrying covert or overt amounts of metal are likely to prompt secondary 
inspections. For example, cargo containers carrying a large number of metal items typically undergo radiation 
inspection because orphan sources are often improperly disposed of as scrap metal and can be cast into metal 
parts23. Conversely, electro-magnetic inspection is performed on cargoes that are declared metal-free, and would 
promptly identify covert metal items.

Methods
Over the past years, our group has developed several radionuclide identification algorithms for EJ-309-based 
portal monitors6,8,12. This work proposes a novel computational Bayesian method for source identification that we 
have applied to both liquid EJ-309 and solid-state trans-stilbene scintillators. In this section, we first detail how 
our measured data have been collected and then the principle of the new computational method.

Experimental methods.  We have used two detectors: an EJ-309 organic liquid scintillator (7.6-cm diameter 
by 7.6-cm height) by Eljen Technology, and a cylindrical trans-stilbene crystal (5.08-cm diameter by 5.08-cm 
height) produced using the solution-growth technique by Inrad Optics. The detection system used can be easily 
scaled up to be a pedestrian portal by using an array of detector cells. Despite the similar composition, EJ-309 
and stilbene exhibit different properties (see Table 2). Noticeably, EJ-309 has a higher scintillation efficiency and 
higher density, compared to stilbene, which determines its higher intrinsic detection efficiency24. However, the 
stilbene crystal shows a favorable energy resolution, defined as the full width at half maximum (FWHM) of a 
spectrum peak in response to the energy deposited in the detector by monoenergetic charged recoils, divided 
by its centroid. This improved energy resolution can enhance isotope identification accuracy using stilbene over 
EJ-309. Note that the energy resolution of a scintillation detector is affected by both the scintillating material and 
the light collection and conversion process. The energy resolution at 478 keVee of stilbene and EJ-309 detectors of 
the same size as those used in this work is 9.64 ± 0.0625 and 19.33 ± 0.1826, respectively.

For completeness, Fig. 7 depicts the light output spectra of some of the mixtures analyzed, when approxi-
mately 1000 counts were acquired. Despite the spectra consisting of different nuclides, their overall distribution 
as a function of light output is similar. This effect is due to the scatter-based detection of organic scintillators and 
the low counting statistics.

We measured a variety of sources, including 241Am, 133Ba, 57Co and 137Cs sources with activities of approxi-
mately 500 kBq. The WGPu source (180 MBq) was measured at the Zero-Power Research Reactor of the Idaho 
National Laboratory27. In addition, 260 kBq liquid solution samples of the medical isotopes, i.e., 99mTc, 111In, 67Ga, 
123I, 131I, and 201Tl were measured at the University of Michigan C.S. Mott Children’s Hospital.

The on-the-fly radionuclide identification algorithms used in this work rely on a library of nuclides that 
is assumed to include the species potentially present in the mixtures. The detection of unknown sources is 
out of the scope of this work and is left for future work. The isotope library used in this work consists of a 
collection of light output spectra acquired over one hour to reduce shot-noise effects. As the two detectors 
exhibit slightly different light responses, calibration was necessary to detect the same portion of the energy 
spectrum with both detectors. The detectors were gain-matched using a 3.3-MBq 137Cs source, by aligning 
the 137Cs Compton edge to 1.8 V in the pulse-height detector response. Lower and upper detection thresholds 
of 40 keV-electron-equivalent (keVee) and 480 keVee, respectively, were applied to both stilbene and EJ-309 
detectors light output spectra. The electron-equivalent light output of a pulse in a scintillator, measured in 
electron-equivalent electron Volts, or eVee, refers to the energy required for an electron to produce a pulse 
with equivalent light output.

EJ-30939 Stilbene40,41

Chemical Formula n.a. C14H12

Geometric isomerism n.a. Trans

H:C ratio 1.25 0.86

Density (g cm−3) 0.959 1.15

Light output (% anthracene) 80% 120%

Maximum wavelength (nm) 424 382

Scintillation efficiency (photons/1 MeVee) 12300 9760

Flash point (°C) 144 n.a.

Table 2.  Physical properties of EJ-309 and stilbene detectors.
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Computational Method.  Bayesian estimation: competing methods.  Bayesian methods rely on exploiting 
the posterior distribution of variables of interest, by combining the observed data with additional prior infor-
mation available about those variables. Here, we are interested in finding the coefficients associated with a set of 
nuclides. Numerous strategies have been proposed to solve this problem and, before introducing the proposed 
method, we first discuss the two methods used in12, namely, the MAPL1 and the MMSEL1 methods, to motivate 
the new MMSEBTG method.

Consider an observed spectral response = …y yy [ , , ]M
T

1  observed in M non-overlapping energy bins 
( =M 232 for all the results presented here), which is associated with a mixture of up to N  known sources whose 
individual spectral responses are denoted by A{ }n n N:, 1, ,= …  and gathered in the ×M N  matrix 

= … = …A A A A A[ , , ] [ , , ]N
T

M
T T

:,1 :, 1,: ,: . Each Am,: is a row vector gathering the spectral responses of the N  
known sources in the mth energy bin. Note that the spectral signatures are normalised such that they integrate to 
one and that this normalization has been performed using spectra measured with long integration times to reduce 
as much as possible shot-noise effects during the normalization. The amount/coefficient associated with the nth 
source is denoted by xn and the N  coefficients are gathered in the vector = …x xx [ , , ]N

T
1 . A classical approach to 

source separation is to assume as a first approximation, a linear mixing model which can be expressed in matrix/
vector form as ≈y Ax. This model assumes that all the radiation sources present in the scene that are not 
included in the matrix A can be neglected. To avoid environment-dependent results, the background is neglected 
here. Our aim here is to study the nuclide identification and quantification in scenarios where the integration time 
is short and thus when the number of gamma detection events is low. In such cases, the observation noise cor-
rupting each measurement can be accurately modeled by Poisson noise, leading to Poissonian form of the 
likelihood.

= − ∀ = … .f y y m Mx A x A x( ) ( ) exp[ ]/ !, 1, , (2)m m
y

m m,: ,:m

Since A is known, it is omitted in all the conditional distributions hereafter. Note that Eq. (2) implies that the 
sources present a fixed activity (or are static) during the integration time. In more complex scenarios, more com-
plex models such as compound Poisson models might be used. Conditioned on the value of x, the entries of y are 
independently distributed, i.e., f f y f yy x x A x( ) ( ) ( )m

M
m m

M
m m1 1 ,:| = ∏ | = ∏ |= = . Bayesian methods for spectral 

unmixing rely on additional prior information available about x to enhance its recovery from y. Such methods 
formulate a priori information through a prior distribution f x( ) and the estimation of x can then be achieved 
using the posterior distribution | = |f f f fx y y x x y( ) ( ) ( )/ ( ). The maximum a posteriori (MAP) estimate can be 
obtained by solving the following optimization problem

= |ˆ fx x yargmax ( )
(3)x

while the minimum mean squared error (MMSE) estimate, or posterior mean, can be obtained by computing the 
expectation E x[ ]f x y( ) . Using a product of independent exponential prior distributions for x, leads to a model that 
is based on an 1-norm penalty. This is the model used in our preliminary work12. In that work, we compared two 
approaches, namely, MAP estimation and MMSE estimation, leading to two algorithms, MAPL1 and MMSEL1, 
respectively. It is important to mention that this choice of sparsity model is primarily motivated by the fact that 
the problem in (3) is convex and can be solved efficiently. While the MMSEL1 algorithm is based on Markov chain 
Monte Carlo (MCMC) methods and allows the estimation of a posteriori confidence intervals (which are not 
directly available with the MAPL1 method), we showed12 that the proportions estimated were generally worse than 
when using MAPL1. This is primarily due to the fact that although exponential prior distributions promote sparse 
MAP estimates; this family of distributions is not sparsity promoting (it only tends to concentrate the mass of the 
distribution around the origin). Hence, the resulting probabilistic estimates, such as means or covariances are 
questionable28. This observation is also confirmed with the results in Fig. 2. Our previous study12 also showed that 

Figure 7.  Comparison of light output spectra of mixtures 2, 3, and 5. The total number of counts in each 
distribution is approximately 1000.
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by constraining ≤K N  the maximum number of sources present in each mixture, it is possible to further improve 
the unmixing performance using MAPL1. This improvement however comes at a high computational cost as it 
requires comparing all the possible partitions of K  sources, out of N  sources in the original spectral library. This 
becomes rapidly intractable as N  increases. It also requires a level of supervision (to set K  properly) which is 
incompatible with practical, real-time applications.

Alternative prior model for sparse mixtures.  In this work, we first propose to use an alternative, more efficient, 
sparsity-promoting prior model for x. Precisely, we consider the following Bernoulli-truncated Gaussian (BTG) 
model

δ σ
π

| = − + ∀ = …
= = ∀ = …

+Nf x w w x w x n N
f w n N
( ) (1 ) ( ) ( ; 0, ), 1, ,
( 1) , 1, , , (4)

n n n n n n n

n n n

2

where δ(·) denotes the Dirac delta function which is equal to 1 when =x 0n  and 0 elsewhere and where 
N x( ; 0, )n

2σ+  is a truncated Gaussian distribution, defined on + to enforce the non-negativity of the elements 
of x. Moreover, 0 and σ2 are respectively the mean and variance of the Gaussian prior truncation. In Eq. (4), wn is 
a binary variable which relates to the presence ( =w 1n ) or absence ( =w 0n ) of the nth source and the probability 
πn is the prior probability of presence of the nth source. More precisely, the first line in Eq. (4) reduces to a mass at 
0 enforcing =x 0n  if =w 0n  (source absent) and to a truncated Gaussian distribution if =w 1n  (source present).

The joint prior model can then be expressed as = ∏ |=f f x w f wx w)( , ( ) ( )n
N

n n n n1  and the proposed unmixing 
algorithm aims at estimating jointly = …w wx w( , [ , , ] )N

T
1 , i.e., at performing jointly the source identification 

(through w) and quantification (through x). Note that {πn}n and σ{ }n
2  are assumed to be known here and can be 

used-defined. For the prior probabilities of presence, we set π = ∀N n1/ ,n  as we expect a limit number of sources 
to be simultaneously present in the mixture, while we do not wish to promote any specific source. While arbitrary 
large values could in principle be used for the variances σ{ }n

2 , reflecting the lack of information about the activity 
of the sources to be detected, this strategy can lead to poor detection29. If the variances cannot be set from prior 
knowledge, an alternative approach, adopted here consists of adjusting it using the current observation, in an 
empirical Bayes fashion. Since the matrix A is normalised, the variances σ{ }n

2  should scale with the photon counts, 
provided that few sources are expected simultaneously in the mixture. In this work we set σ = . ∑ = y0 1n m

M
m

2
1  for 

each source and for all the results presented and did not observed unexpectedly poor detection results.
Using the Bayes’ rule, the joint posterior distribution of x w( , ) is given by | = |f f f fx w y y x x w y( , ) ( ) ( , )/ ( ). 

Unfortunately, the posterior means E x[ ]f x w y( , )|  and |E w[ ]f x w y( , )  associated with this posterior distribution are 
intractable analytically and the traditional approach to exploit the posterior distribution consists of using a sim-
ulation method (as used in the MMSEL1 algorithm). In particular, constrained Hamiltonian Monte Carlo meth-
ods30 have been investigated to solve regression problems in the presence of Poisson noise12,31 (see also32 for 
comparison of samplers). However, efficient sampling from f x w y( , )|  is very difficult due to the Poisson likeli-
hood (2) coupled with the multimodality of the |f x w y( , ) induced by the joint model f x w( , ). Indeed, adopting a 
Gibbs sampling strategy to sample iteratively from f x w y x w( , , , )n n n n\ \| , where w\n contains all the elements of w 
but wn, leads to poor mixing properties for the resulting Markov chain and thus prohibitively long chains. 
Similarly, block Gibbs samplers yield low acceptance rates and also poor mixing properties.

Proposed algorithm using variational inference.  In this paper, we adopt an approximate Bayesian method and 
build an approximate distribution ≈ |Q fx w x w y( , ) ( , ) whose moments are much simpler to evaluate than those 
of |f x w y( , ). In particular, for the identification of the nuclides present in a mixture, one important quantity is 

wE [ ]f x w y( , )| , the vector of marginal a posteriori probabilities of presence of each nuclide. For the quantification of 
the nuclides, interesting quantities are the posterior mean and covariance of x, i.e., xE ( )f x w y( , )|  and xCov ( )f x w y( , )| . 
While the posterior mean is used as point estimate for the mixing coefficients, the posterior covariance matrix of 
x can be used to assess which sources are the most difficult to quantify. Here, we use the so-called expectation 
propagation (EP) method33 to provide approximate point estimates, e.g., x xE ( ) E ( )Q fx w x w y( , ) ( , )≈ |  and 

≈ |w wE [ ] E [ ]Q fx w x w y( , ) ( , ) , as well as approximations of the covariance of the posterior distribution of x, i.e., 
x xCov ( ) Cov ( )Q fx w x w y( , ) ( , )≈ | . While less well known than other Variational Bayes (VB) techniques, the EP has 

several recognized advantages34. It is particularly well suited to fast distributed Bayesian inference on partitioned 
data, giving it a high potential for real-time implementation.

The EP framework used for regression with Gaussian noise35 and generalised linear models36, approximates 
each exact factor | =f y qA x A x( ) ( )m m m m,: ,:  (resp. =f x w g x w( ) ( , )n n n n n ) with a simpler factor q A x( )m m ,:

 (resp. 


g x h w( ) ( )n n n n ) so that







f q g x w f w

q g x h w f w Q
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≈ =
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where all the approximate factors belong to the same family of distributions. Here, in a similar fashion to the work 
by Hernandez-Lobato et al.37, the approximate factors dependent on x are Gaussian and those associated with 
each wn are discrete probabilities (see Fig. 8). This choice allows a more computationally attractive EP algorithm 
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and direct access to the moments of the posterior distribution. Moreover, it is important to note that using the 
splitting ≈ 

f x w g x h w( ) ( ) ( )n n n n n n , the approximate distribution Q x w( , ) can be written =Q Q Qx w x w( , ) ( ) ( )x w , 
i.e., the approximation does not explicitly capture the correlation a posteriori between x and w. Nonetheless, this 
type of separable approximation is classically used in variational inference and the parameters of ⋅Q ( )x  and ⋅Q ( )w  
are in practice highly dependent. To optimize Q x w( , ) so that ≈f Qx w y x w( , ) ( , ), EP sequentially refines the 
factors 

q A x{ ( )}m m m,:  and 

g x h w{ ( ), ( )}n n n n n
 by minimizing the following Kullback-Leibler (KL) divergences


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where the so-called cavity distributions satisfy 
Q Q qx w x w A x( , ) ( , )/ ( )m

m m
\

,:=  and Q Qx w x w( , ) ( , )/n\ =


g x h w( ( ) ( ))n n n n . Solving the first row of Eq. (6) reduces to matching the mean and covariance of Q x( )x  and of the 
so-called tilted distributions q Q d mA x x w w( ) ( , ) ,m m

m
,:

\∫ ∀ . In the work by Ko et al.38, the authors showed that these 
problems can be solved analytically by computing sequentially one-dimensional integrals (see also11 for additional 
details). The second row of Eq. (6) can be solved by using the method presented by Hernández-Lobato and colleagues37. 
Since the approximation of g x w( , )n n n  is separable (g x h w( ) ( )n n n n




), it is sufficient to compute the mean of wn with respect 

to the tilted distribution ∫ g x w Q dx w w( , ) ( , )n n n
n\  as well as the mean and covariance of the tilted distribution 

g x w Q dx w w( , ) ( , )n n n
n\∫ , which in turn reduces to computing the first and second-order moments of 

g x w Q d dx w w x( , ) ( , )n n n
n

n
\

\∫ ∫ , with respect to xn. This last distribution can be shown to be a Bernoulli truncated 
Gaussian distribution whose moments can be computed analytically. Finally, in a similar fashion to the procedure pro-
posed by Hernández-Lobato and colleagues37, we used a damping strategy to reduce convergence issues. We fixed the 
damping factor to ε = .0 7 and did not observe convergence issues with this value. When the algorithm has converged, 
we obtain Q x( )x  which is a multivariate Gaussian distribution, and Q w( )w  which is a product of N  independent 
Bernoulli distributions, whose parameters have been optimized via the EP algorithm such that ≈f Qx w y x w( , ) ( , ) 
The approximate posterior mean and covariance matrix of x are given by the mean and covariance matrix of Q x( )x , 
respectively. To compute the estimated mixture fractions in Eq. (1), from any estimated mixture coefficients x̂ (e.g., by 
MMSEBTG, MAPL1 or MMSEL1), we then consider =ˆ ˆ ˆz x x/ 1. The parameters of the Bernoulli distributions in Q w( )w  
provide the approximate marginal posterior probabilities of presence, for each source. Thus, the source identification 
can be preformed using Q w( )w , without resorting to thresholding the estimated mixture coefficients. Choosing the 
most appropriate decision rule for the source identification based on the marginal posterior distribution ultimately 
reduces to choosing an acceptable threshold for the probability of presence. Here, we consider a detection when the 
probability of presence is larger than the probability of absence, effectively using a marginal MAP criterion. If costs 
associated with the probabilities of false alarm and misdetection are available for each source, similar decision rules can 
also be easily derived using the output of the proposed method, based on a minimum cost criterion instead of the mar-
ginal MAP criterion. However, the study of such decision rules is out of scope of this paper. The current version of the 
algorithm is available at the url: https://gitlab.com/yaltmann/sparse_unmixing_poisson_noise_ep.
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