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A Hierarchical Bayesian Approach to Neutron
Spectrum Unfolding with Organic Scintillators

Haonan Zhu, Yoann Altmann, Angela Di Fulvio, Stephen McLaughlin, Sara Pozzi, Alfred Hero

Abstract—We propose a hierarchical Bayesian model and state-
of-art Monte Carlo sampling method to solve the unfolding
problem, i.e., to estimate the spectrum of an unknown neu-
tron source from the data detected by an organic scintillator.
Inferring neutron spectra is important for several applications,
including nonproliferation and nuclear security, as it allows
the discrimination of fission sources in special nuclear material
(SNM) from other types of neutron sources based on the
differences of the emitted neutron spectra. Organic scintillators
interact with neutrons mostly via elastic scattering on hydrogen
nuclei and therefore partially retain neutron energy information.
Consequently, the neutron spectrum can be derived through
deconvolution of the measured light output spectrum and the
response functions of the scintillator to monoenergetic neutrons.
The proposed approach is compared to three existing methods
using simulated data to enable controlled benchmarks. We
consider three sets of detector responses. One set corresponds
to a 2.5 MeV monoenergetic neutron source and two sets are
associated with (energy-wise) continuous neutron sources (252Cf
and 241AmBe). Our results show that the proposed method
has similar or better unfolding performance compared to other
iterative or Tikhonov regularization-based approaches in terms
of accuracy and robustness against limited detection events,
while requiring less user supervision. The proposed method also
provides a posteriori confidence measures, which offers additional
information regarding the uncertainty of the measurements and
the extracted information.

Index Terms—Organic scintillators; Spectral unfolding;
Bayesian Inference; Markov-chain Monte Carlo methods

I. INTRODUCTION

Two main reactions are exploited in neutron detection:
scattering on a light nucleus or capture on elements such
as 6Li, 10B or 3He. Thermal neutrons (0.025 eV) are pref-
erentially detected via capture reactions because the afore-
mentioned elements exhibit high cross-sections for thermal
neutron absorption. Conversely, fast neutrons are detected
via scattering reactions on light elements, such as hydrogen
and deuterium. The detection of fast neutrons, such as those
emitted by SNMs, involves directly exploiting inelastic and
elastic scattering reactions, without the need to moderate the
source neutrons. Organic scintillators are typically hydrocar-
bon compounds and detect neutrons via elastic and inelastic
scattering reactions on hydrogen nuclei. The energy deposited
by scattered proton recoils depends on the scattering angle
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and it ranges from zero up to the neutron maximum energy.
The intensity of light pulses produced by the scintillator is
correlated to the energy deposited by the recoil protons [1].
This light production mechanism allows partial retention of
the energy of the impinging neutrons, however, the correlation
between the energy of the impinging neutron and the light
pulse produced is weak, and therefore deriving the neutron
spectrum from the measured data is particularly challenging.
Finding the energy spectrum of the neutrons impinging on
an organic scintillator from its light output response is an ill-
posed problem, which often admits multiple solutions [2]. This
problem is traditionally addressed using so-called unfolding
algorithms, which aim at recovering the spectrum that is most
likely to have produced the given measured response. Accurate
unfolding and spectrometry are critical in several applications,
such as radiation protection [3], nuclear physics [4], nonprolif-
eration [5] and safeguards [6]. In safeguards, nonproliferation,
and decommissioning applications, accurately discriminating
between different neutron sources, such as those based on
(alpha, n) reactions and those based on fission, would be a
valuable tool when characterizing neutron-emitting samples of
unknown composition.

Several parametric unfolding algorithms have been devel-
oped over the past decades [7]–[12]. They primarily differ by:
1) the way they model the acquisition process, in particular the
distribution of the observation noise, and 2) by the way they
combine the knowledge available about the neutron spectrum
to be recovered and the measured data. Bayesian methods have
been previously proposed [13]–[16] in the context of spectrum
unfolding. This family of methods aims to regularize ill-posed
problems by incorporating prior information about the neutron
spectrum to be recovered (denoted as φ) in a principled way. In
this study, we also review other existing approaches [11]–[14],
[17], [18] and also discuss how they can be (re)interpreted
in a Bayesian framework through the use of different prior
distributions. With the success of techniques from the artificial
intelligence community in a variety of research fields, there has
also been an increasing interest in applying such techniques to
the unfolding problem. For instance, Artificial Neural Network
(ANN) have been applied to recover the neutron spectra [19]
when a sufficiently large collection of ground truth spectra is
available and can be used as training set of the network. This
approach requires a significant amount of prior information
(through large sets of reference data) and may fail in analyzing
data/samples that are not in line with the training data (e.g.,
a new source). Heuristic adaptive search-based algorithms,
namely genetic algorithms (GA), have also been investigated
to obtain the unfolded spectra [20]–[22], but they do not
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provide convergence guarantees [23]. In this work, we present
a Bayesian hierarchical model for neutron unfolding and an
associated state-of-art Markov chain Monte Carlo (MCMC)
method to infer the unknown neutron spectrum. As it will be
shown, the algorithm is able to automatically tune the amount
of smoothness of the recovered spectrum (i.e., how sharply
it can vary as the energy changes) at a reduced additional
cost. Through several simulation results, we illustrate the
potential benefits of our method when compared to traditional
approaches.

In order to fairly compare the different algorithms, this
paper focuses on simulated data generated using a realistic and
widely used Monte Carlo-based simulator of detection events
discussed in Section II-A. This approach allows us

• to characterize precisely the response function of the
detector of interested (EJ-309 here), which would be diffi-
cult and extremely time consuming through measurement
campaigns;

• to obtain simulated detector responses resembling mea-
sured ones for known neutron sources (input of the Monte
Carlo simulator);

• to avoid signal distortion caused by potential experimen-
tal limitations (e.g., imperfect material shielding or room
returns).

In this work, we simulated the response of the detector to three
types of sources: a 2.5 MeV monoenergetic one, which can be
obtained from the measurement of a deuteron-deuteron fusion
reaction, an 241AmBe (α, n) spectrum and a 252Cf fission
spectrum.

The remainder of the paper is organized as follows. Section
II introduces how the simulated data have been generated
using a semi-empirical model and Monte Carlo simulation.
This section also reviews briefly the main existing unfolding
methods as well as the proposed method. The obtained results
and a quantitative comparison between the unfolding methods
are presented and discussed in Section III. Conclusions are
finally reported in Section IV.

II. METHODS

A. Organic Scintillator Response and Monte Carlo Simulation

Scintillators emit light upon interaction with ionizing radi-
ation. Organic scintillators are compounds of hydrogen and
carbon, and are suitable to detect fast neutrons. Neutron
elastic scatter on a hydrogen nucleus produces a scattered
neutron and a recoil proton. In the energy range of interest
(< 20 MeV neutrons), it can be assumed that the recoil
proton deposits all its energy within a detector of practical
size, e.g. 7.62-cm diam. by 7.62-cm length. The light output
response is approximately linear with the energy deposited by
electrons, Ee, with energy above approximately 40 keV [24].
Therefore, the detector light output is conveniently expressed
in terms of electron light output (ee: electron-equivalent units).
In practice, the upper edge of the known Compton electron
distribution produced by a monoenergetic gamma-ray source,
e.g. 137Cs, provides a suitable calibration point, commonly
referred to as the Compton edge, VCE . The light output in

electron equivalent units (yee) is therefore calculated at any
pulse height voltage V as in Eq. (1).

yee =
Ēee
VCE

V. (1)

In equation (1), Ēee is the maximum energy deposited by a
Compton-recoil electron, in electron-equivalent energy units.
Conversely, the light output response to charged particles
heavier than electrons, like neutron-produced recoil protons, is
not linear with the energy deposited. Throughout this paper, y
identifies the light output in electron-equivalent energy units,
e.g., keVee. A widely accepted set of models which semi-
empirically describes the dependence of the light output y with
the proton energy deposited Ep and the energy deposited-per-
unit-length dEp/dx was first introduced by Birks [1] and is
reported in Eq. (2) below

y(E′p) =

∫ E′
p

0

S dEp
(1 + kB dEp/dx)

. (2)

Equation (2) is the integral over energy of Eq. (3) in the
paper by Brooks et al. [25]. In Eq. (2), S is the scintillation
efficiency, in MeVee, and kB is a material-dependent constant,
in g/MeV cm2 , often referred to as the Birks’ coefficient [25].
We simulated the pulse height distributions, i.e. light output
spectra, of a 7.62-cm diam by 7.62 length EJ-309 detector in
response to monoenergetic neutrons, for 500 evenly distributed
neutron sources with energy between 0.1 MeV to 20 MeV,
using MCNPX-PoliMi [26]. We used MPPost, a MCNPX-
PoliMi post-processing code, to obtain the light output spec-
trum , i.e. the frequency of occurrence of pulse amplitudes in a
given measurement time [27]. An enhanced version of MPPost
allows the use of the semi-empirical model in equation (2) to
generate the detector-specific light output spectrum [28]. For
EJ-309, the coefficients S and kB that we used are 2.277
MeVee/MeV and 33.84 g/MeV cm2, respectively [28]. The
software also applies a Gaussian smear to account for the
detector’s energy resolution. The energy resolution function
that we implemented was measured by Enqvist et al. [29] for
the type of detector under investigation and is reported in Eq.
(3), where a = 0.113± 0.007, b = 0.065± 0.011MeV 2, and
c = 0.060± 0.005MeV .

(∆E/E) = (
√
a2 + b2/E + (c/E)2) (3)

Fig. 1 shows the simulated light output spectra produced
by irradiation with selected mono-energetic neutron sources
between 0.5 MeV and 5 MeV.

The energy deposited in the detector by recoil protons Ep
after elastic collision with neutrons of energy E depends on
the scattering angle of the charged recoil in the laboratory
system of reference: θ (see Eq. (4)).

Ep =
4A

(1 +A)2
cos2θ E (4)

In the elastic scattering kinematics equation (Eq. (4)), A
is the mass number of the target nucleus (A=1 for 1H).
Monoenergetic neutrons can thus produce proton recoils in
the energy range from Epmax = E, when θ = 0, to zero,
when θ = π

2 and consequently light pulses with amplitude
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Fig. 1. Simulated Response Functions for a 7.26 cm diam. by 7.26 cm
length EJ-309 detector in response to monoenergetic neutrons in the 0.5-5
MeV range. The solid diamonds show the light output corresponding to the
maximum energy deposited.

ranging form y(Epmax) to 0. Note that in Fig. 1, the light
output corresponding to the maximum energy deposited by
proton recoils is identified by solid diamonds. We determined
this light-output value as the minimum of the derivative of the
upper edge of the light output spectrum, following the same
method proposed by Kornilov and colleagues [30].

Fig. 2. Example of the convolution between an ideal neutron spectrum with
two energy peaks and the detector response matrix.

As in any spectroscopy-capable sensor, the number of
counts at a given bin of the light output spectrum y(E′) (E′

in ee) is given by the convolution of the detector response
at that light output bin with the impinging neutron spectrum,
as formalized in the next section (Eq. (5)). Fig. 2 shows the
process of spectrum unfolding for two monoenergetic neutron
spectra on discretized data sets. One may notice that an ideal
monoenergetic neutron spectrum is a linear transformation of
one element of the canonical basis for the response matrix
and therefore selects only one corresponding light output
response, i.e. column of the response matrix. For organic
scintillation detectors, the number of neutron energy bins (N )
is of the same order of magnitude as the number of light-output

channels measured (M ). In neutron spectroscopy, this case
is usually referred to as multi-channel unfolding, as opposed
to few-channel unfolding, where M << N . Few-channel
unfolding applies to other types of detectors, e.g. Bonner
spheres [31] and superheated emulsions [32]. The size of the
response matrix used in this work is 600×149 (i.e., M = 600
and N = 149). These channel numbers correspond to a light
output bin width of 0.001 MeVee, in the 0.01-6 MeVee light-
output range, and a neutron energy bin width of 100 keV, in
the 0.1-15 MeV energy range.

B. Discretized observation model

The detector response function is denoted by R(E′, E).
More precisely, R(E′, E0) is the light output spectrum (with
E′ in eVee) in response to a monoenergetic neutron of energy
E0. The light output and unknown neutron energy spectral
fluence, i.e. the number of neutrons per unit area [33], also
referred to as neutron spectra throughout this paper, are related
through the following Fredholm integral equation [11], [13],
[14], [17], [18]

y(E′) =

∫ ∞
0

R(E′, E)φ(E)dE. (5)

For numerical computation, Eq. (5) can be approximated by
the following linear equation

y ≈ Rφ, (6)

where φ = [φ1, . . . , φN ]T ∈ RN+ denotes the neutron spectrum
discretized over N energy bins, y = [y1, . . . , yM ]T ∈ RM+
is light output spectrum discretized over M bins and R
is the M × N response matrix of the detector. Unfolding
methods aim at recovering φ from y such that Eq. (6) is
satisfied. However, they can differ by the similarity measures
or likelihood functions used to compare y and Rφ. A classical
approach to matching y and Rφ consists of considering a
quadratic similarity measure

||y −Rφ||2Σ = (y −Rφ)TΣ−1(y −Rφ), (7)

where the M ×M matrix Σ relates to the characteristic of
the measurement noise. If Σ is set to the identity matrix, Eq.
(7) reduces to the classical least-squares criterion ||y−Rφ||22
where ||·||2 denotes the standard `2 norm. Recovering φ using
the criterion in Eq. (7) implicitly assumes that y is a noisy
version of Rφ corrupted by Gaussian noise with covariance
matrix (proportional to) Σ, i.e.,

y|φ ∼ N (Rφ,Σ) , (8)

where y|φ reads ”y given φ”, ∼ reads ”is distributed ac-
cording to” and N (m,Σ) denotes the multivariate Gaussian
distribution with mean m and covariance matrix Σ. Indeed, it
can be easily shown that minimizing (7) with respect to (w.r.t.)
φ is equivalent to maximizing the likelihood (8) w.r.t. φ, as
will be discussed in the next section.

Since the acquisition process consists of detecting individual
neutrons (discrete number of events within a given time pe-
riod), it is reasonable to consider Poisson noise models. These
models enable the consideration of the correlation between
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the mean (expected) detection rates and the variance of the
observation noise. Moreover, such models are more suited
for low counts (e.g. less than 10 per bin), as investigated in
Section III where we consider scenarios with as few as 1 count
per light output bin on average. The classical Poisson noise
model assumes that the light output in the M energy bins are
mutually independent and Poisson distributed. The resulting
observation model becomes [15]

y|φ ∼ P (Rφ) , (9)

where P (·) denotes the element-wise Poisson distribution,
i.e., ∀m, ym|φ ∼ P (rm,:φ) with rm,: the mth row of R.
Consequently, the likelihood of the observed light output
spectrum y given the underlying neutron spectrum φ, denoted
f(y|φ) can be expressed as

f(y|φ) =

M∏
m=1

(rm,:φ)ym

ym!
exp [−rm,:φ] . (10)

In this subsection, we have discussed how the unfolding
problem can be formulated as a linear inverse problem and
discussed two main noise observation models. In the next
subsection, we review the primary existing unfolding methods
and their relation with the observation models discussed above.
These methods will then be used in Section III to assess the
performance of the proposed approach.

C. Existing unfolding approaches

The first statistical approach to unfolding is a classical
method for inverse problems and is referred to as Maximum
Likelihood Estimation (MLE). MLE-based unfolding recov-
ers the neutron spectrum by finding φ that maximizes the
likelihood function [34]. Maximizing the likelihood f(y|φ) is
equivalent to minimizing the negative log-likelihood, (which is
often preferred for algorithmic stability since − log (f(y|φ))
is often a (nearly) quadratic function). Although we can
consider as many MLE-based algorithms as likelihood models,
we primarily focus on Gaussian and Poisson noise models
here. More precisely, using an isotropic Gaussian noise model
is equivalent to using a classical minimization of least square
loss, while the Poisson model is preferred for counting data
as discussed above. Under Poisson noise assumption, the log-
likelihood reduces to

log(f(y|φ))

=

M∑
m=1

ym log(rm,:φ)− log (ym!)− (rm,:φ) . (11)

Maximum likelihood estimation aims at recovering the
unknown spectrum from the data only, i.e., without additional
information), by inverting (or pseudo inverting) the response
matrix and using a cost function accounting for the statistical
properties on the observation noise. This is a simple inference
strategy but can provide poor results in the presence of noise,
especially when the response matrix is ill-conditioned (as it is
often the case in practice). Thus, maximum penalized likeli-
hood estimation methods based on Poisson likelihood models
have been proposed. Since we expect most of the unknown

neutron spectra to be recovered are relatively smooth, it makes
sense to add a regularization which reflects this prior belief.
Here we chose a regularization term that promotes small
second-order derivative (in the spectral dimension), which
results in the following objective function to be minimized

min
φ∈RN

+

M∑
m=1

− log(f(y|φ)) + λ||Lφ||22, (12)

where λ is a tuning parameter that controls the smoothness,
log(f(y|φ)) is defined in (11) and L denote the discrete
Laplace operator, which can be written as

L =



−2 1 0 · · · · · · · · · · · · 0

1 −2 1 0
...

0 1 −2 1
. . .

...
... 0

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

...
...

. . . 1 −2 1 0
... 0 1 −2 1
0 · · · · · · · · · · · · 0 1 −2


. (13)

There are multiple ways of solving the minimization prob-
lem in Eq. (12), e.g., using Alternating Direction Method of
Multipliers (ADMM) [35] as in Poisson image deconvolution
by augmented Lagrangian (PIDAL) (see [36]) or using sequen-
tial Gaussian approximations of the Poisson likelihood [37].
Here, we chose the ADMM implementation presented in [36]
for its simplicity and relatively low computational cost. It is
worth noting that the One-Step-Late (OSL) algorithm in [12],
[38] is an alternative method to approximate the solution of
Eq. (12). Note that Eq. (12) requires to select an appropriate
value of λ, which will affect the quality of the solution. This
point will be further discussed in Section III.

Under the Gaussian noise model, the unfolded spectrum is a
solution to the convex optimization problem as in (12) where
− log(f(y|φ)) is replaced with the standard quadratic loss
function ||y−Rφ||22. The non-negativity constraints imposed
on the unfolded spectrum prevent us from having a closed form
solution, thus we applied an ADMM algorithm with L-curve
method [39] to obtain the unfolded spectrum. This algorithm
will be referred to Tik (Tikhonov Regularizer) in remainder
of the paper.

Among the methods whose codes are available, we also used
GRAVEL presented in [9], [40]. The iterative update rule of
GRAVEL algorithm (at iteration (k + 1)) is given by

φ(k+1)
n = φ(k)n exp

∑mW
(k)
n,m log

(
ym

rm,:φ(k)

)
∑
mW

(k)
nm

 ,∀n, (14)

where φ(k) is estimated neutron spectrum at iteration k, σm
is an estimate of measurement error in the mth light output
bin, rm,n = [R]m,n and

W (k)
n,m =

rm,nφ
(k)
n∑

i

(
rm,iφ

(k)
i

) y2m
σ2
m

(15)
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GRAVEL allows the user to incorporate prior information,
when available, as an a priori known default spectrum. We
have used a flat spectrum for consistency with the other
methods. Regardless of the type of source, a flat initial
spectrum was used, whose boundaries are detailed in Table
I. The spectrum intensity had a negligible impact on the
final results. The boundaries of the light output spectra are
reported in Table I and vary according to the simulated data.
Light-output bins with a relative statistical error higher than
20% in the high-energy tail of the light output spectra were
excluded. The uncertainty associated with the simulated bins
was calculated as the square root of the counts. GRAVEL
stopping criterion is either the user-defined chi-squared per
degree of freedom (PDF) or the input maximum number of
iterations (to stop the algorithm after a given number of
iterations if the first criterion is not satisfied yet) [41]. In
our case, the number of degrees of freedom is M and the
chi-squared-PDF was set to one, while the maximum number
of iterations was 6000. For the 252Cf and 241AmBe spectra
(see Section III), the algorithm reached the desired chi-squared
PDF after few iterations (< 20), while the maximum number
of iterations criterion was adopted for the monoenergetic
spectrum, for which the relative fluctuation in the chi-squared
PDF was below 0.0004%, after 6000 iterations. The GRAVEL
parameters used in Section III are reported in Table I.

Parameters 241AmBe 252Cf 2.5 MeV
LOmin-LOmax (MeVee) 0.05-5.8 0.05-4.2 0.05-0.83
Emin-Emax (MeV) 0.5-15.0 0.5-15.0 0.5-3.0

TABLE I
SPECIFIC PARAMETERS AND SETTINGS USED TO UNFOLD THE NEUTRON

SPECTRA IN GRAVEL.

MAXED is another unfolding computer program available
within the UMG package [10]. MAXED applies the maximum
entropy principle to the deconvolution of spectrometer data.
The obtained results were similar to those calculated using
GRAVEL, therefore MAXED was not included as an addi-
tional comparison methods.

D. Novel Bayesian spectrum unfolding approach

Bayesian methods have been previously proposed [13]–
[16], [42] in the context of spectrum unfolding. As mentioned
earlier, they aim at regularizing ill-posed problems by incorpo-
rating a-priori information about φ in a principled way. More
precisely, such knowledge is incorporated through a so-called
prior distribution f(φ|δ), parameterized by δ. The selection of
the prior distribution f(φ|δ) is guided by the amount of prior
information available and the induced algorithm complexity
[15]. Moreover, the choice of this distribution can be crucial
when the amount of information contained in the data in
limited, e.g., in the presence of few observations and noisy
data. While informative prior distributions will greatly improve
the estimation performance if appropriately tailored, they will
negatively impact the estimation performance if the data
deviates from the the prior belief. In previous studies [13],
[14], empirical Bayes methods were used, in which the prior

distribution was built from previously acquired data. However,
such methods perform poorly if the neutron spectrum to
be recovered is not in agreement with the data-driven prior
distribution. Bayes’ theorem provides a formal way to combine
our prior belief f(φ|δ) with the observations (through the like-
lihood f(y|φ)) to obtain and exploit f(φ|y, δ). This so-called
posterior distribution is classically exploited using summary
statistics, including various Bayesian point estimators such as
the widely used maximum a posterior (MAP) estimator [13],
[14] (which can also be seen as maximum penalized likelihood
estimation) and posterior means (as in [15]) and a posteriori
measures of uncertainty (e.g., confidence regions). However,
the posterior distribution (e.g. its mode or mean) can highly
depend on the value of δ. A classical approach thus consists
of incorporating this parameter in the estimation process by
extending the Bayesian model and designing an additional
prior distribution f(θ). Applying the Bayes’ rule to that model
leads to

f(φ, δ|y) =
f(y|φ)f(φ|δ)f(δ)

f(y)
∝ f(y|φ)f(φ|δ)f(δ), (16)

where the posterior distribution f(φ, δ|y) summarizes the
complete information available about (φ, δ), having observed
y.

In a similar fashion to the penalized likelihood method in
(12), we choose to assume that the unknown neutron spectrum
to be recovered presents smooth variations across neighboring
energy bins. This is achieved by assigning φ a truncated
multivariate Gaussian distribution

φ|δ ∼ NR+(0, δΣ), (17)

to ensure the non-negativity of φ. In this work, we chose
Σ−1 = LTL, where L is defined as in (13) and the overall
amount of smoothness of the solution is governed by the pa-
rameter δ (in a similar fashion to λ in the ADMM algorithm).
The smaller δ, the smoother the solution. Note that if δ is
fixed (which is not the case here), the solution of PIDAL is
obtained using MAP estimation.

As shown in Eq. (16), we do not choose a fixed value of
δ but assigned to it an inverse-gamma conjugate prior distri-
bution, i.e., δ ∼ IG(α1, α2) with (α1, α2) fixed and selected
based on WAIC (Watanabe-Akaike Information Criteria) [43].
Since in practice N is large, f(φ|δ) dominates f(δ) (as noted
in Chapter 4 of [44]) and the prior distribution f(δ) has a
limited impact on the estimated neutron spectrum. Moreover,
as will be shown in the next paragraph, the conjugacy between
f(φ|δ) and f(δ) will also simplify the estimation procedure.

To exploit the posterior distribution f(φ, δ|y), in this work
we apply a Markov chain Monte Carlo (MCMC) method
which consists of generating random variables distributed
according to f(φ, δ|y). The generated samples are then used
to approximate the posterior mean of φ and associated a pos-
teriori uncertainty intervals. The pseudo-code of the proposed
method is summarized in Algo. 1.

The proposed approach is similar to the work in [16] in
the sense that we are also using MCMC methods to solve the
unfolding problem. However, several important differences can
be highlighted. First, as in [16], we estimate the regularization
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parameters δ, but this is achieved here through a hierarchical
Bayesian model (prior distribution assigned to δ) which yields
a more computationally efficient algorithm (fewer iterations
required) while this parameter is estimated via maximum
marginal likelihood estimation in [16]. This approach allows
us to also account for the fact that δ is unknown and the
additional uncertainty is automatically included when com-
puting confidence regions for φ. Second, here we use a
constrained Hamiltonian Monte Carlo methods (as discussed
below) which improves the sampler convergence and mixing
properties compared to traditional sequential Gibbs updates
and random walk-based Metropolis-Hastings updates (as in
[16]).

ALGORITHM 1

HMC unfolding algorithm

Fixed input parameters: (α1, α2), σ
2, number of burn-in

iterations Nbi, total number of iterations Niter.
Initialization (k = 0)
Set φ(0) = 1, δ(0) = α2/(1 + α1)
for k = 1, . . . Niter do

Sample φ(k) ∼ f(φ|y, δ(k)) using HMC
Sample δ(k) ∼ f(δ|y,φ(k)) from (18)

end for
Set φ̂ = 1/(Niter −Nbi)

∑Niter
k=Nbi+1 φ

(k)

Sampling from f(φ, δ|y) is achieved by sampling iteratively
from f(φ|y, δ) and f(δ|y,φ) (lines 5 and 6 of Algo. 1). It
can be easily shown using f(δ|y,φ) ∝ f(φ|δ)f(δ) that

δ|(y,φ) ∼ IG

(
N

2
+ α1,

φTΣ−1φ

2
+ α2

)
, (18)

which is straightforward to sample from. The conditional
distribution f(φ|y, δ) is a non-standard distribution and ac-
cept/reject procedures are required to update φ. Due to the
potentially large dimensionality of φ (large number N of bins)
and the high correlation between these variables, we resort to
a constrained Hamiltonian Monte Carlo (HMC) update which
uses the local curvature of the distribution f(φ|y, δ) to pro-
pose candidates in regions of high probability. This approach
allows better mixing properties than more standard random
walk alternative strategies. The interested reader is invited to
consult [45] for additional details about Hamiltonian Monte
Carlo sampling and [46] for an example of application to
linear inverse problems involving Poisson noise. The marginal
posterior mean φ̂ is approximated by averaging the generated
variables after having removed the first Nbi iterations of the
sampler which correspond to the burn-in period of the sampler.
Similarly, the marginal 95% credible interval for each φn is
computed from the generated samples {φ(k)n }k. The duration
of the transient period Nbi and the total number of iterations
Niter are set by visual inspection of the chains from preliminary
runs. These values are then kept unchanged throughout all the
experiments. Note that as mentioned above, by embedding
δ in the Bayesian model through f(δ) and sampling from
f(φ, δ|y), the posterior mean and confidence regions already
account for the fact that δ is unknown (they are computed
according to f(φ|y)). For completeness, the main parameters

of the TiK, PIDAL, and MCMC algorithms are summarized in
Table II below, while the settings used for the three different
sources in GRAVEL have been already introduced in Table I.

Method Nb. of parameters Parameters Value(s)
Tik 1 λ L-curve [39]

PIDAL 1 λ user-defined
MCMC 2 (α1, α2) using [43]

TABLE II
PARAMETERS AND SETTINGS USED TO UNFOLD THE NEUTRON SPECTRA.

III. UNFOLDING RESULTS AND DISCUSSION

We assess the performance of proposed algorithm (referred
to as MCMC in the remainder of the paper) with GRAVEL [9],
[41], [47], Tik (Tikhonov regularization with L-curve method)
[39] and PIDAL [36] applied to simulated neutron sources.
We consider three sources: 2.5 MeV monoenergetic neutron
source, 252Cf and 241AmBe. The data simulation has been
performed using the Monte Carlo method detailed in Section
II-A that takes into account the physical process of light output
detection with a total number of 5.107 detection events, and we
use the semi-empirical response matrix described in Section
II-A to unfold the measured light output. In the following
experiments, we use the precision matrix Σ−1 = LTL as
discussed in Section II-D for the MCMC algorithm and Tik
to be consistent with the PIDAL algorithm. In this paper, we
select the optimal (in the sense of the performance measure in
Eq. (19)) smoothing parameter of PIDAL based on the ground
truth, and the resulting method is denoted as PIDAL-O, which
stands for oracle PIDAL, in the sense that this approach uses
the value of the smoothing parameter which gives the best
reconstruction performance, which is in practice impossible
to obtain without knowing the spectrum to be recovered. This
method assumes access to the ground truth spectra, so it can
be seen as the optimal MAP estimator and serves as a way to
evaluate the difficulty of the unfolding problem.

Fig. 3 shows the unfolded spectra obtained by Tik,
GRAVEL, PIDAL-O and MCMC for the simulated 2.5 MeV
monoenergetic neutron source. All methods are able to iden-
tify the intensity of the peak. MCMC provides additional
uncertainty quantification tools through a posteriori Credible
Interval (CI). Here we used a 95% CI corresponding to the
high density region that contains 95% of the samples drawn
from the full posterior distribution (leaving 2.5% on each
side). MCMC identifies a false peak in the lower energy
region within which the response matrix is particularly ill-
conditioned. This is reflected by the broad posterior confidence
region (light blue region) around the posterior mean spectrum.
This result is expected since Tik, PIDAL-O and MCMC all
impose additional smoothness constraints on the spectrum.

Figs. 4 and 5 depict the unfolded spectra for the two con-
tinuous source (252Cf and 241AmBe). Tik, GRAVEL, PIDAL-
O and MCMC all show strong agreement with the ground
truth spectrum. In addition, the credible intervals provided
by the MCMC algorithm provides additional evidence about
regions with higher uncertainty. Fig. 6 shows the relative error
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Fig. 3. Examples of unfolded spectra of the simulated 2.5 MeV monoenergetic
neutron source (5.107 detection events per light output spectrum). MCMC
provides additional uncertainty evaluation through credible intervals (CIs),
defined here as the high density regions that contain 95% of the samples
drawn from the full posterior distribution (leaving 2.5% on each side). Note
PIDAL-O (PIDAL-Oracle) assumes full knowledge about ground truth spectra,
so it serves as an estimate of the optimal unfolding algorithm and it is not
attainable in actual experimental settings.

associated with the unfolded spectra with respect to ground
truth for the 241AmBe source. Fig. 7 shows the light output
obtained as the convolution between the unfolded spectra
and the response matrix compared to the ground truth light
output. The four methods show very good agreement with the
ground truth. This result illustrates one of the main challenges
of the neutron unfolding problem, where several different
unfolded spectra can lead to similar fits to the data to be
deconvolved. Note that the relative error plots and generated
light output plots for 252Cf lead to the same conclusions as
those presented using 241AmBe, thus they are omitted here to
reduce redundancy.

We use the Spectral Angle Mapper (SAM) [48] between
the unfolded spectrum (φ̂) and the known ground truth (φ) to
quantify the unfolding performance of the different methods.
Because the ground truth neutron spectra and response matrix
have different neutron energy resolutions, we adopted SAM
as opposed to standard Mean Square Error (MSE) as SAM
is scale-invariant. Indeed, the SAM criterion relies on the
spectral angle between φ and φ̂, which is small when φ and
φ̂ present similar shapes. As a result, similar spectra lead to
values of SAM close to 0. The energy bounds listed in Table
1 were applied to the GRAVEL unfolded spectra to calculate
the SAM.

SAM(φ, φ̂) = arccos

(
φT φ̂

||φ||2||φ̂||2

)
. (19)

Table III summarizes all the SAMs which appear to be in
agreement with the qualitative results as shown in Figs. 3 to 5.
Notably, MCMC, PIDAL and Tik all provided the competitive
results based on SAM for the two continuous source, but

Fig. 4. Examples of unfolded spectra of the simulated 241AmBe neutron
source (5.107 detection events per light output spectrum).

Fig. 5. Examples of unfolded spectra of the simulated 252Cf neutron source
(5.107 detection events per light output spectrum).

MCMC automatically estimates the amount of regularization
required from the data with additional credible interval.

hhhhhhhhhhhNeutron Source
Method Tik GRAVEL PIDAL-O MCMC

DD 3.54 14.23 3.97 18.75
241AmBe 6.26 4.6 13.30 6.29 5.13

252Cf 2.97 4.73 14.14 3.47 2.69
TABLE III

SPECTRAL ANGLE MAPPER (DEGREES) OBTAINED USING THE DIFFERENT
UNFOLDING METHODS FOR THE THREE SOURCES (5.107 DETECTION

EVENTS PER LIGHT OUTPUT SPECTRUM). NOTE PIDAL-O
(PIDAL-ORACLE) ASSUMES FULL KNOWLEDGE ABOUT GROUND TRUTH

SPECTRA, SO IT SERVES AS AN ESTIMATE OF THE DIFFICULTY OF THE
UNFOLDING PROBLEM AND IT IS NOT ATTAINABLE IN ACTUAL

EXPERIMENTAL SETTINGS

In safeguards, security, and non-proliferation applications,
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Fig. 6. Relative error plots of unfolded spectra of the simulated 241AmBe
neutron source (5.107 detection events per light output spectrum) with respect
to the Ground truth. Note PIDAL-O (PIDAL-Oracle) assumes full knowledge
about ground truth spectra, so it serves as an estimate of the optimal unfolding
algorithm and it is not attainable in actual experimental settings.

Fig. 7. Examples of light output spectra generated using the unfolded spectra
of the simulated 241AmBe neutron source (5.107 detection events per light
output spectrum) compared with ground truth light output. Note PIDAL-O
(PIDAL-Oracle) assumes full knowledge about ground truth spectra, so it
serves as an estimate of the optimal unfolding algorithm and it is not attainable
in actual experimental settings

it is often realistic to have a weak neutron signal that can
be overwhelmed by an intense gamma-ray background [49].
Therefore, it is of considerable interest to examine the robust-
ness of the algorithms as the number of detection event de-
creases (weak source and/or short integration time). We assess
the robustness of the different algorithms using simulated data
of 252Cf and 241AmBe, for event counts ranging from 5×102

up to 5 × 106. Note that for the most challenging scenarios,
e.g., using only 5 × 102 total counts across the M = 600
light output bins, the average counts per bin fall below 1 for
both 252Cf and 241AmBe, with 480 empty bins on average for

241AmBe and 520 empty bins for 252Cf. This further motivates
the use of the Poisson noise model in our unfolding procedure.
The results are summarized in Fig. 6 and Table III. Note that
GRAVEL failed to converge for both sources at numbers of
counts lower than 5× 104, which is denoted as N/A.

As mentioned in Section II-D, PIDAL can be seen as
a special case of the proposed hierarchical model where
the hyperparameter δ is fixed as opposed to random. With
appropriately tuned regularization parameters, Tik, PIDAL
and MCMC demonstrated the competitive robustness against
low counts. However, the proposed MCMC algorithm auto-
matically adjusts this parameter and does not require exact
knowledge about the ground truth.

Neutron Source Counts Tik GRAVEL PIDAL-O MCMC

241AmBe

5× 106 8.99 (1.96) 14.71 (2.99) 7.47 (0.77) 7.99 (0.29)
5× 105 9.87 (0.46) 15.81 (1.90) 8.93 (0.86) 9.89 (0.40)
5× 104 11.84 (0.49) N/A 10.96 (1.24) 12.79 (0.65)
5× 103 15.25 (0.62) N/A 14.64 (1.54) 17.06 (1.11)
5× 102 19.40 (3.75) N/A 17.18 (1.41) 22.04 (2.61)

252Cf

5× 106 4.69 (0.45) 14.59 (1.02) 4.54 (0.60) 4.28 (1.12)
5× 105 5.05 (0.84) 15.51 (1.60) 5.78 (0.75) 4.62 (1.06)
5× 104 7.06 (1.11) N/A 7.20 (1.02) 6.33 (1.68)
5× 103 12.25 (1.14) N/A 10.35 (2.03) 10.01 (2.26)
5× 102 16.97 (2.51) N/A 14.57 (3.22) 22.73 (1.96)

TABLE IV
UNFOLDING PERFORMANCE (AVERAGE SAM, IN DEGREE) AS A

FUNCTION OF THE TOTAL NUMBER OF DETECTION EVENT (BEST RESULT
PER ROW IN BOLD). VALUES IN BRACKETS REPRESENT STANDARD

DEVIATIONS COMPUTED OVER 50 MONTE CARLO REALIZATIONS. NOTE
PIDAL-O (PIDAL-ORACLE) ASSUMES FULL KNOWLEDGE ABOUT
GROUND TRUTH SPECTRA, SO IT SERVES AS AN ESTIMATE TO THE

DIFFICULTY OF THE UNFOLDING PROBLEM AND IT IS NOT ATTAINABLE IN
ACTUAL EXPERIMENTAL SETTINGS.

In practical applications, systematic errors in the unfolded
spectra may arise because of an inaccurate calibration of the
detector or a drift in the operating conditions, e.g. temperature.
In such cases, the presented methods are expected to exhibit
a similar energy bias in the reconstructed spectrum since no
strong prior information is incorporated into the algorithms.
The unfolding of a known monoenergetic spectrum, e.g., from
137Cs, with suitable gamma-ray response matrix, could be
used to mitigate and correct for such systematic errors. We
implemented the Tik, PIDAL-O and the proposed MCMC
unfolding algorithm in Matlab R2017b on an 2GHZ Intel
processor with 6GB of RAM. The maximum number of
iteration for Tik and PIDAL are fixed at 24000 but the
algorithms generally converge and are stopped well before
this number of iterations. Within the MCMC algorithm, we
generated sequentially 24000 samples (after the burn-in period
of the sampler) for all the simulation results presented in this
paper. Tik and PIDAL-O calls Tik and PIDAL to search for
the best smoothing parameter. The tuning of hyperparameters
of MCMC algorithm is done using WAIC (Watanabe-Akaike
Information Criteria) [43]. We used the compiled version of
GRAVEL available through RSICC (UMG package version
3.3). The average run time of the algorithms to analyze one
spectrum is presented in Table V. As shown in Table V,
the enhanced unfolding performance of the MCMC method
comes with a significantly higher computational cost than Tik,
GRAVEL and PIDAL (for a fixed value of the smoothing
parameter) because the sequential nature of the sampler and
the number of iterations required to estimate the posterior
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mean and credible intervals. Different choices of parameters
for MCMC results in the significant discrepancy of run time
for 241AmBe and 252Cf. In actual experiment, Tik (with L-
curve Method) and PIDAL-O are called 70 times to perform a
log scale search to find the best smoothing parameter prior a
full run, while MCMC are called 6 times to perform a log scale
search. However, it is worth noting that the hyperparameter
selection procedure and the algorithm implemented has not
been optimized for fast analysis, and it is possible to accelerate
the method using C/C++ implementations.
hhhhhhhhhhhNeutron Source

Method Tik GRAVEL PIDAL MCMC
241AmBe 0.38 900 0.45 83.39

252Cf 0.71 60 0.53 40.42

TABLE V
AVERAGE COMPUTATIONAL TIME TO ANALYZE ONE SPECTRUM (IN
SECONDS) OVER 100 RUNS. NOTE ALL THE REPORTED TIME HERE

EXCLUDES THE ADDITIONAL PARAMETER TUNING TIME COST.

IV. CONCLUSIONS

We have proposed a hierarchical Bayesian approach to solve
the neutron spectrum unfolding problem, which differs from
previous work [15], [16] by using an efficient constrained
Hamiltonian Monte Carlo method and a hyper-prior on the
hyper-parameter. The new MCMC algorithm shows improve-
ment in performance compared to traditional approaches, such
as Tik [39], GRAVEL [9], [47], [50] and PIDAL [36] on
simulated data (252Cf and 241AmBe) in terms of accuracy
with additional uncertainty evaluation through credible inter-
val. This work further demonstrates the potential benefits of
Bayesian methods for solving unfolding problems, because
they provide a formalized manner in which to integrate
existing prior knowledge within the estimation procedure.
In this work, we have focused on synthetic data generated
from reference neutron spectra and a known response matrix
(ground truth available). In future work, the performance of
the algorithm will be evaluated using measured data (simulated
and measured response matrices) for organic scintillators.
Efforts should in particular concentrate on robustness of the
methods with respect to detector imperfections and back-
ground/spurious detections. Additional types of detectors with
spectroscopic capability, e.g., Bonner sphere spectrometers,
silicon telescopes, and superheated emulsions will also be
investigated. The present unfolding method could also be
coupled to classification algorithms to infer the type and
amount of fissile material in unknown neutron sources, for
nonproliferation and safeguarding applications. Approximate
Bayesian methods will also be investigated for robust unfold-
ing with reduced processing burden.
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