40 research outputs found

    Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China

    Get PDF

    Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands

    Get PDF
    14 páginas.- 4 figuras.- 67 referencias.- The online version contains supplementary material available at https://doi.org/10.1038/s41477-024-01670-7Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.This research was supported by the European Research Council (ERC grant 647038 (BIODESERT) awarded to F.T.M.) and Generalitat Valenciana (CIDEGENT/2018/041). D.J.E. was supported by the Hermon Slade Foundation (HSF21040). J. Ding was supported by the National Natural Science Foundation of China Project (41991232) and the Fundamental Research Funds for the Central Universities of China. M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea Next Generation EU/PRTR and the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. O.S. was supported by US National Science Foundation (Grants DEB 1754106, 20-25166), and Y.L.B.-P. by a Marie Sklodowska-Curie Actions Individual Fellowship (MSCA-1018 IF) within the European Program Horizon 2020 (DRYFUN Project 656035). K.G. and N.B. acknowledge support from the German Federal Ministry of Education and Research (BMBF) SPACES projects OPTIMASS (FKZ: 01LL1302A) and ORYCS (FKZ: FKZ01LL1804A). B.B. was supported by the Taylor Family-Asia Foundation Endowed Chair in Ecology and Conservation Biology, and M. Bowker by funding from the School of Forestry, Northern Arizona University. C.B. acknowledges funding from the National Natural Science Foundation of China (41971131). D.B. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096), and A. Fajardo support from ANID PIA/BASAL FB 210006 and the Millennium Science Initiative Program NCN2021-050. M.F. and H.E. received funding from Ferdowsi University of Mashhad (grant 39843). A.N. and M.K. acknowledge support from FCT (CEECIND/02453/2018/CP1534/CT0001, SFRH/BD/130274/2017, PTDC/ASP-SIL/7743/2020, UIDB/00329/2020), EEA (10/CALL#5), AdaptForGrazing (PRR-C05-i03-I-000035) and LTsER Montado platform (LTER_EU_PT_001) grants. O.V. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096). L.W. was supported by the US National Science Foundation (EAR 1554894). Y.Z. and X.Z. were supported by the National Natural Science Foundation of China (U2003214). H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan. The use of any trade, firm or product names does not imply endorsement by any agency, institution or government. Finally, we thank the many people who assisted with field work and the landowners, corporations and national bodies that allowed us access to their land.Peer reviewe

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Splash distance and size distributions for various soils

    No full text
    International audienceSplash is an important process in interrill erosion because it produces movement of soil fragments. However, this process is technically difficult to measure and little is known about its size selectivity. In this study, a splash ring device was used to characterise the spatial variation of the quantity and the aggregate size distribution of splashed soil fragments. Soil aggregates were placed at the centre of an experimental device subjected to a 29 mm h−1 simulated rainfall with a kinetic energy of 17 J mm−1. Splashed soil fragments were collected in concentric rings and analysed for masses and fragment size distributions. Four different soils, with various textures, were tested. Soils fragments were splashed across the whole splash device up to 45 cm from the source, and the quantity of splashed fragments decreased exponentially with the distance. For the four tested soils, the splash parameters were significantly correlated to the results of aggregate stability measurements with r=−0.96 and r=0.95, respectively, for the total splashed mass and the mean weight diameter (MWD) of the whole splashed fragments. The measurement of the splashed fragment size distributions showed that fragments up to 2000 μm were transported by raindrop impacts. The mass percentage of the coarsest fractions of splashed soil fragments exponentially decreased with the distance from the source. The extent of this decrease depends on the soil type. The size distributions of splashed soil fragments were compared with those of soil fragments produced by breakdown. Comparison of splash data to aggregate breakdown data showed an enrichment of the 200–1000 μm size fraction in the splashed fragments. Keywords: Splash; Fragment size distribution; Splash distance; Aggregate breakdow

    Nitrogen fixation by microbial crusts from desiccated Sahelian soils (Niger)

    No full text
    Cyanobacterial crusts developing on the sandy and loamy soils of fallow lands in the Sahel (Niger) were investigated for their potential to fix nitrogen. Three sites were selected in this and environment, differing in sediment type and species composition. In the sandy sites heterocystous nitrogen-fixing cyanobacteria were present, whereas the loamy site did not contain such species. All sites showed light-dependent nitrogenase activity, starting within 2 h after re-wetting of the desiccated crust samples. Inhibition of photosystem II caused a decrease of nitrogenase activity in the samples with heterocystous cyanobacteria, but was stimulatory in the non- heterocystous crust. The results suggest that cyanobacterial crusts may be important for the improvement of the soil by enriching it with nitrogen. [KEYWORDS: nitrogen fixations; cyanobacteria; microbiotic crusts; arid and semi-arid environments Western negev desert; cyanobacteria; photosynthesis; mats]

    Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France

    No full text
    This study was conducted in Champagne vineyards in France, and the objectives were to compare the main cultivation practices in Champagne vineyards and to specify the conditions required for the optimum effect of inter-row grass cover on runoff and erosion in experimental plots of 0.25 m(2) under simulated rainfall. Three types of ground cover were studied. In the bark-and-vine-prunings plots, the runoff coefficient (RC) ranged from 1.3 to 4.0% and soil losses were <1 g/m(2) /h. In the bare soil (BS) plot, the highest RC of the study was found (80.0%) and soil losses reached 7.4 g/m(2)/h. In the grass cover plots, the RC and amount of eroded soil were highly variable: the RCs ranged from 0.4 to 77.0%, and soil losses were between less than 1 and 13.4 g/m(2)/h. Soil type, soil moisture, slope and agricultural practices did not account for the variability. In fact, the density of grass cover in the wheel tracks explained a portion of this variability. The lack of grass in the centre of the inter-row allowed for a preferential flow and created an erosion line in the wheel tracks where the soil was compacted. This study showed that grass cover in a vineyard was not necessarily sufficient to reduce surface runoff and prevent soil erosion. To be effective, the grass cover must be dense enough in the wheel tracks of agricultural machinery to avoid RCs close to the RC achieved with BS
    corecore