378 research outputs found

    Evaluation of a self-equilibrium cutting strategy for the contour method of residual stress measurement

    Get PDF
    An assessment of cutting-induced plasticity (CIP) is performed, by finite element (FE) prediction of the plastic strain accumulation along the cut tip when the EDM wire sections the NeT TG4 weld benchmark specimen along two cutting directions. The first direction corresponds to a conventional (C) cutting strategy, whereby the EDM wire cuts through the thickness of the weld specimen and travels in a direction transverse to the weld. The second direction corresponds to a self-equilibrating cutting (SE) strategy, whereby the EDM wire cuts across the transverse direction of the weld specimens and travels through the thickness of the plate. The cutting thus progresses simultaneously through the compression-tension-compression regions of present weld residual stress (WRS) field. This type of cutting strategy is believed to minimize the CIP by minimising residual stress redistribution during cutting, due to stress equilibration across the sectioned material. The simulated cutting procedures are conducted under a range of clamping conditions to assess whether mechanical restraint has a primary or secondary influence on CIP accumulation. Both predictions of CIP and the resultant back-calculated WRS demonstrate that (i) mechanical restraint is the primary variable influencing CIP development, and (ii) under no circumstance does a self-equilibrating cutting strategy perform significantly better than a conventional cutting approach. The reason that self-equilibrating cuts are not effective is illustrated by calculating the Mode I (KI) stress intensity factor (SIF) along the cut tip, and correlating trends in KI to CIP development

    Investigating optimal cutting configurations for the contour method of weld residual stress measurement

    Get PDF
    The present work examines optimal cutting configurations for the measurement of weld residual stresses (WRS) using the contour method. The accuracy of a conventional, single-cut configuration that employs rigid clamping is compared with novel, double-embedded cutting configurations that rely on specimen self-constraint during cutting. Numerical analyses examine the redistribution of WRS and the development of cutting-induced plasticity (CIP) in a three-pass austenitic slot weld (NeT TG4) during the cutting procedure for each configuration. Stress intensity factor (SIF) analyses are first used as a screening tool; these analyses characterise lower stress intensities near the cutting surface when double-embedded cutting configurations are used, relative to SIF profiles from a single-cut process. The lower stress intensities indicate the development of CIP – which will ultimately affect back-calculated WRS – is less likely to occur when using an embedded configuration. The improvements observed for embedded cutting approaches are confirmed using three-dimensional finite element (FE) cutting simulations. The simulations reveal significant localised plasticity that forms in the material ligaments located between the pilot holes and the outer edges of the specimen. This plasticity is caused by WRS redistribution during the cutting process. The compressive plasticity in these material ligaments is shown to reduce the overall tensile WRS near the weld region before this region is sectioned, thereby significantly reducing the amount of CIP when cutting through the weld region at a later stage of the cutting procedure. Further improvements to the embedded cutting configuration are observed when the equilibrating compressive stresses in material ligaments are removed entirely (via sectioning) prior to sectioning of the high WRS region in the vicinity of the weld. All numerical results are validated against a series of WRS measurements performed using the contour method on a set of NeT TG4 benchmark weld specimens

    Quantifying the modern recharge of the "fossil" Sahara aquifers

    Get PDF
    The North-Western Sahara Aquifer System (NWSAS), one of the world's largest groundwater systems, shows an overall piezometric decline associated with increasing withdrawals. Estimating the recharge rate in such a semiarid system is challenging but crucial for sustainable water development. In this paper, the recharge of the NWSAS is estimated using a regional water budget based on GRACE terrestrial water storage monthly records, soil moisture from the GLDAS (a land data system that assimilates hydrological information), and groundwater pumping rates. A cumulated natural recharge rate of 1.40 +/- 0.90 km(3) yr(-1) is estimated for the two main aquifers. Our results suggest a renewal rate of about 40% which partly contradicts the premise that recharge in this area should be very low or even null. Aquifer depletion inferred from our analysis is consistent with observed piezometric head decline in the two main aquifers in the region. Annual recharge variations were also estimated and vary between 0 and 4.40 km(3) yr(-1) for the period 2003-2010. These values correspond to a recharge between 0 and 6.75 mm yr(-1) on the 650,000 km(2) of outcropping areas of the aquifers, which is consistent with the expected weak and sporadic recharge in this semiarid environment. These variations are also in line with annual rainfall variation with a lag time of about 1 year

    A CpG island hypermethylation profile of primary colorectal carcinomas and colon cancer cell lines

    Get PDF
    BACKGROUND: Tumor cell lines are commonly used as experimental tools in cancer research, but their relevance for the in vivo situation is debated. In a series of 11 microsatellite stable (MSS) and 9 microsatellite unstable (MSI) colon cancer cell lines and primary colon carcinomas (25 MSS and 28 MSI) with known ploidy stem line and APC, KRAS, and TP53 mutation status, we analyzed the promoter methylation of the following genes: hMLH1, MGMT, p16(INK4a )(CDKN2A α-transcript), p14(ARF )(CDKN2A β-transcript), APC, and E-cadherin (CDH1). We compared the DNA methylation profiles of the cell lines with those of the primary tumors. Finally, we examined if the epigenetic changes were associated with known genetic markers and/or clinicopathological variables. RESULTS: The cell lines and primary tumors generally showed similar overall distribution and frequencies of gene methylation. Among the cell lines, 15%, 50%, 75%, 65%, 20% and 15% showed promoter methylation for hMLH1, MGMT, p16(INK4a), p14(ARF), APC, and E-cadherin, respectively, whereas 21%, 40%, 32%, 38%, 32%, and 40% of the primary tumors were methylated for the same genes. hMLH1 and p14(ARF )were significantly more often methylated in MSI than in MSS primary tumors, whereas the remaining four genes showed similar methylation frequencies in the two groups. Methylation of p14(ARF), which indirectly inactivates TP53, was seen more frequently in tumors with normal TP53 than in mutated samples, but the difference was not statistically significant. Methylation of p14(ARF )and p16(INK4a )was often present in the same primary tumors, but association to diploidy, MSI, right-sided location and female gender was only significant for p14(ARF). E-cadherin was methylated in 14/34 tumors with altered APC further stimulating WNT signaling. CONCLUSIONS: The present study shows that colon cancer cell lines are in general relevant in vitro models, comparable with the in vivo situation, as the cell lines display many of the same molecular alterations as do the primary carcinomas. The combined pattern of epigenetic and genetic aberrations in the primary carcinomas reveals associations between them as well as to clinicopathological variables, and may aid in the future molecular assisted classification of clinically distinct stages

    The influence of constitutive material models on accumulated plastic strain in finite element weld analyses

    Get PDF
    Recent studies in computational weld mechanics have revealed the importance of the material plasticity model when predicting weld residual stresses. The present work seeks to extend this level of understanding to include the effects of the assumed material annealing behaviour, particularly when modelling multi-pass welds that comprise several thermo-mechanical loading cycles. A series of numerical analyses are performed to examine the variability in predicted residual stress profiles for different material models, using a validated finite element model for a three-pass slot weld in AISI 316LN austenitic steel. The material models consider both the work hardening and annealing assumptions for the chosen material. Model sensitivity is established not only from a weld residual stress perspective, but also from an assessment of the post-weld plastic strain accumulated in the weldment. Predictions are compared with indirect measurements acquired using cross-weld micro-hardness maps taken from benchmark specimens. Sensitivity studies reveal that the choice of annealing behaviour will have a significant impact on plastic flow predictions, which is dependent on the annealing temperature specified. Annealing assumptions will have a varying impact on the weld residual stress predictions, such that the extent of sensitivity is dependent on the plasticity model chosen. In contrast, the choice of plasticity model will have a significant effect on the predicted weld residual stresses, but relatively little effect on predictions of equivalent plastic strain

    Numerical analysis of the effect of weld-induced residual stress and plastic damage on the ballistic performance of welded steel plate

    Get PDF
    The current paper presents numerical analyses that elucidate the effects of post-weld residual stress and associated plastic damage on the ballistic performance of 316L austenitic steel plate. Impact simulations of an 18 mm thick plate with a centreline three-pass slot weld by hemispherical-nosed and flat-nosed projectiles are performed, with initial velocities in the range of 300-800 m/s. The numerical framework consists of three interdependent stages: (i) a weld model was developed in Abaqus/Standard and validated using two independent experimental data sets; (ii) a Johnson-Cook material model is calibrated and validated along with the shear failure fracture criterion available in Abaqus/Explicit for impact models; and (iii) the weld modelling results were transferred to an impact model built in Abaqus/Explicit, which employs the validated material and fracture models to predict the ballistic performance of welded plate. It is shown that the associated plastic strain damage accumulated during the welding process - and its distribution - has an adverse effect on the ballistic performance. It has also been determined that a fracture criterion that accounts for pre-existing damage in the weldment must be used for accurate impact analyses of welded structures. Crown Copyright (C) 2012 Published by Elsevier B.V
    corecore