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Abstract 

The present work examines optimal cutting configurations for the measurement of weld 

residual stresses (WRS) using the contour method. The accuracy of a conventional, single-cut 

configuration that employs rigid clamping is compared with novel, double-embedded cutting 

configurations that rely on specimen self-constraint during cutting. Numerical analyses examine 

the redistribution of WRS and the development of cutting-induced plasticity (CIP) in a three-pass 

austenitic slot weld (NeT TG4) during the cutting procedure for each configuration. Stress 

intensity factor (SIF) analyses are first used as a screening tool; these analyses characterise lower 

stress intensities near the cutting surface when double-embedded cutting configurations are 

used, relative to SIF profiles from a single-cut process. The lower stress intensities indicate the 

development of CIP – which will ultimately affect back-calculated WRS – is less likely to occur 

when using an embedded configuration. The improvements observed for embedded cutting 

approaches are confirmed using three-dimensional finite element (FE) cutting simulations. The 

simulations reveal significant localised plasticity that forms in the material ligaments located 

between the pilot holes and the outer edges of the specimen. This plasticity is caused by WRS 

redistribution during the cutting process. The compressive plasticity in these material ligaments is 

shown to reduce the overall tensile WRS near the weld region before this region is sectioned, 

thereby significantly reducing the amount of CIP when cutting through the weld region at a later 

stage of the cutting procedure. Further improvements to the embedded cutting configuration are 

observed when the equilibrating compressive stresses in material ligaments are removed entirely 

(via sectioning) prior to sectioning of the high WRS region in the vicinity of the weld. All numerical 

results are validated against a series of WRS measurements performed using the contour method 

on a set of NeT TG4 benchmark weld specimens.  
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1. Introduction  

Residual stresses are self-equilibrating stresses locked in a component or engineering structure 

in the absence of an external load. Weld residual stresses (WRS) arise as a result of shape misfits 

[1] between different regions of the weldment, caused by heterogeneous plastic deformation 

during the welding process. WRS can add to or subtract from operational stresses, and can thus 

lead to an unexpected overload and premature failure of a component. For instance, it is well 

understood that WRS plays a significant role in crack initiation and growth by providing the 

driving force for damage evolution [1]. It is therefore of technological importance to account for 

the magnitude and distribution of WRS in structural integrity assessments. 

A number of non-destructive
1
 (diffraction) and destructive

1
 (stress-relief) techniques for 

residual stress measurement are well established and readily available. Diffraction techniques 

might seem preferable as they allow measurement of more than one stress tensor component 

within the sample without affecting the integrity of the specimen under investigation. However, a 

number of limitations inherent to both neutron and synchrotron diffraction techniques exist: (i) 

the maximum allowable specimen thickness is limited by the beam absorption in a given material; 

(ii) the spatial resolution is limited by the beam size and the grain size of the material (<150 µm); 

(iii) stress-free
2
 reference specimens of the weld and parent materials are often required; (iv) the 

cost associated with the diffraction-based measurement is high; and (v) diffraction equipment is 

not readily available. As a result, stress-relief techniques (e.g. the contour method [2], slitting [3], 

deep-hole drilling [4] and hybrid techniques [5, 6]) are often an attractive alternative [7], 

particularly for industrial applications. 

One of the most popular destructive (stress-relief) techniques for residual stress measurement 

is the contour method [2, 8-10], which is based on a variation of Bueckner’s principle [11] of 

elastic superposition. The contour method is performed in four stages: (i) cutting the component 

along the plane-of-interest using electric discharge machining (EDM); (ii) measuring the resultant 

out-of-plane displacement (OoPD) caused by stress relief, often using a coordinate measuring 

machine (CMM); (iii) post-processing of the measured OoPD data to eliminate artefacts and noise 

introduced in the EDM cutting process; and (iv) back-calculation of the original (pre-cut) residual 

stresses using a fully elastic finite element (FE) analysis. An obvious limitation of the traditional 

contour method is that only one component of residual stress can be determined per cut, i.e. 

perpendicular to the plane-of-cut. On the other hand, the contour method is insensitive to 

microstructure variation (weld/parent metal), the sample thickness, and furthermore  required 

equipment is readily available.  

While the contour method for residual stress measurement is straightforward in principle, it 

relies on a number of theoretical assumptions [8, 12] that may lead to inaccuracies in recovered 

(back-calculated) residual stresses. Hence, when measuring residual stresses using the contour 

method, one needs considering the effect of both anti-symmetric and symmetric errors [12]. Anti-

symmetric errors introduce asymmetry in what should otherwise be symmetric OoPD (i.e. the 

recorded OoPD profile on one side of the cut should be a mirror image of OoPD profile on the 

opposite side of the cut). These errors are caused by shear stresses, crooked cutting, or artefacts 

introduced by the EDM cutting process, and can be easily removed in post-processing by 

averaging the measured OoPD on both sides of the cut [12]. Symmetric errors can be separated 

into two categories: errors dependent on the internal stress state of the component (i.e. 

                                                           
1
 The original internal residual stress field in the specimen is preserved during the measurement process. 

However, the extraction of a reference stress-free coupon from another specimen is often required.  
2
 The stress-free lattice spacing is essential for diffraction-based stress measurements in order to calculate 

corresponding elastic lattice strains, which can then be used in stress calculations using Hooke’s law.  
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magnitude of residual stresses); and errors that are independent of the stress state. Symmetric 

errors that do not depend on the stress state within the component can be either prevented [13-

16] or corrected by performing a stress-free cut to quantify the error, which can be then simply 

subtracted from the contour measurements in post-processing stage [2, 10, 12, 17-20]. In 

contrast, symmetric errors that depend on the internal stress state within the component - (i) 

cutting-induced plasticity (CIP) error [21-24] and so-called (ii) bulge [12] - cannot be readily 

corrected after the cut is performed, thus they need to be prevented or at least minimised during 

the contour cutting process. It is of technological importance to minimize the effect of these 

errors, because of their significant effect on the accuracy of the contour method for stress 

measurement. CIP is traditionally minimised through the use of significant mechanical restraint 

(clamping) on either side of the plane-of-cut during the cutting process. However, because such 

rigid clamping is hard to achieve in practice, recent work focuses on alternative cutting strategies 

that do not rely on specimen clamping.  

The present study explores the potential of embedded cutting configurations in controlling CIP 

when applying the contour method to WRS measurements. This study focuses on the 

measurement of WRS in a three-pass austenitic steel slot weld specimen, designated NeT TG4 

[25]. A conventional single-cut configuration with rigid clamping is compared with double-

embedded cutting configurations, which rely on self-constraint of the specimen during the cutting 

process. The following cutting configurations are examined: (i) a conventional (1-Cut) 

configuration with rigid clamping; (ii) a 4-Cut double-embedded configuration with no clamping
3
; 

and (iii) a 5-Cut double-embedded configuration with no clamping. Detailed information 

regarding each strategy is provided in Section 3. The efficacy of these contour cutting 

configurations in mitigating the effects of CIP (and consequently on the accuracy of the measured 

WRS) is compared numerically using validated finite element (FE) simulations and fracture 

mechanics analyses. These numerical solutions are then validated experimentally using contour 

cutting measurements.  

2. The NeT TG4 benchmark weld specimen   

A Task Group (TG4) has been established by the European Network on Neutron Techniques 

Standardisation for Structural Integrity (NeT) to examine WRS in a three-pass austenitic steel 

weld, and provide best-practice guidelines for the measurement and numerical prediction of 

WRS. A series of benchmark weld specimens were manufactured under the auspices of NeT TG4. 

The weld design comprises a three-pass ER316L austenitic steel slot weld in solution heat-treated 

AISI 316LN austenitic steel plate. The nominal dimensions of the plate, shown in Fig. 1, are 150(X) 

× 18(Y) × 194(Z) mm
3
 with an 80-mm long and 6-mm deep centreline slot. The slot was filled with 

three superimposed weld passes via a mechanised tungsten inert gas (TIG) welding process to 

ensure welding process repeatability. These benchmark specimens were used in two ways: (i) 

WRS measurements were conducted using a variety of complementary techniques, allowing the 

development of best-practice measurement guidelines; and (ii) process variables (welding 

current, voltage, torch speed, etc.) from the benchmark problem were used as input data to 

develop physically-based FE welding simulations. The WRS predicted from these simulations were 

then validated against the WRS measurements, thus providing an opportunity to identify best 

practise for accurate welding simulation. The following sections highlight pertinent details of both 

                                                           

3
 While no significant mechanical restraint is provided, rigid body rotation is prevented during the numerical 

analysis. In reality, this rotation would be prevented by light clamping. 
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the diffraction measurement and modelling efforts; the reader is directed to Ref. [25, 26] should a 

more comprehensive review of each procedure be desired. 

2.1 WRS measurement 

      Neutron diffraction measurements were carried out using the KOWARI diffractometer at the 

Australian Nuclear Science and Technology Organisation (ANSTO) [25]. A gauge volume of (2 × 2 × 

2) mm
3
 was defined using primary and secondary sets of cadmium slits. The specimen was rocked 

(±)5° during the measurement to increase grain statistics since coarse grains were present in the 

weldment, particularly within the weld region. Diffraction measurements of residual stress are 

based on the measurement of residual elastic strains in at least two orthogonal sample directions 

(principal axes). In the present study, elastic residual strains in three principal directions (X = 

transverse, Y = normal, Z = longitudinal) were determined from the relative shift in the position of 

the {311} diffraction peak, from its position within the final post-weld specimen to its position 

within a stress-free coupon. The {311} reflection was chosen because intragranular (Type II) 

stresses have the smallest influence on strain measurements taken for this reflection [27]. The 

measured residual elastic strains were then used to calculate residual stresses via Hooke’s law, 

employing the following elastic diffraction constants [28]: E
311

 = 183.6 GPa; ν
311

 = 0.306. 

Longitudinal (Z) WRS profiles measured along lines B2 and B16 (Fig. 1) are shown in Figs. 2a and 

2b, respectively. The B2 line passes through the last of the three deposited weld beads. The B16 

line does not pass through weld metal but instead through the adjacent parent metal, which has 

experienced welding-induced cyclic loading. 

      Synchrotron diffraction measurements were carried out using the ID15A beamline at the 

European Synchrotron Radiation Facility (ESRF) [26]. Monochromatic high-energy synchrotron 

radiation with a wavelength of 0.0114 nm was focussed with Compound Refractive Lenses (CRLs) 

to a beam size of 14 µm x 14 µm. The spiral slit technique [29] was used to obtain a depth and 

phase
4
 resolved diffraction signal. To enhance the measurement statistics, the specimen was 

oscillated along the sample Z direction (ΔZ = 4 mm). Due to the coarse-grain microstructure, the 

resulting spotty diffraction patterns were subjected to a novel data analysis procedure [30] to 

determine the elastic residual strains. Rather than performing a powder-like analysis with the 

fitting of diffraction peaks, a procedure based on the centre-of-mass position of diffraction spots 

from individual grains was applied [26]. The diffraction spots of {111}, {220}, {311}, and {222} 

reflections were used to derive residual elastic strains, which were then used in the residual stress 

calculation (Hooke’s law) employing the same elastic diffraction constants as in the neutron 

diffraction analysis. Unlike in neutron diffraction measurements, synchrotron diffraction only 

allows measurement of transverse (X) and longitudinal (Z) residual strain components. Hence, the 

residual stress calculation was based on a biaxial stress-state assumption, i.e. plane stress was 

assumed in the normal (Y) direction. Synchrotron diffraction measurements of longitudinal WRS 

profiles are shown alongside the neutron diffraction measurements in Figs. 2a and 2b. Good 

agreement between independent diffraction techniques was achieved, thus validating the plane-

stress assumption used in synchrotron measurements. In addition to WRS profiles, the high spatial 

resolution and short data acquisition times of the synchrotron diffraction technique allowed for 

the construction of 2D stress maps. Longitudinal WRS along the plane-of-cut (plane B, Fig. 1), 

comprising of 246 individual measurements, is presented in Fig. 2c.   

                                                           
4
 Note that an elevated Cr content in the filler material causes stabilization of δ-ferrite (~5% by volume); this δ-

ferrite was neglected in both diffraction measurements and FE simulations.   
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2.2 WRS prediction 

The WRS in the NeT TG4 weld specimens have been predicted  via welding simulations 

developed using the ABAQUS commercial FE package [31-33]. A 3D half-model comprising of 

38,220 hexahedral quadratic elements (schematically shown in Fig. 1) was used to take advantage 

of specimen and process symmetry about the weld centreline, improving computational 

efficiency. A sequentially coupled thermo-mechanical FE simulation was performed, whereby the 

numerical solution from the thermal FE analysis was used as an input for the mechanical FE 

analysis. Thermal analyses use quadratic heat transfer elements (ABAQUS designation DC3D20) 

while mechanical analyses use reduced-integration quadratic stress elements (ABAQUS 

designation C3D20R).  

A dedicated welding heat-source modelling tool (FEAT-WMT) [34] was used to calibrate an 

ellipsoidal Gaussian volumetric heat source. Calibration was performed using cross-weld fusion 

boundary information, as well as thermocouple data acquired whilst welding the NeT TG4 

specimens [25]. Once the heat source was calibrated, the transient thermal solution was supplied 

from FEAT-WMT to ABAQUS in the form of time- and spatially-resolved volumetric power density 

data (via the ABAQUS DFLUX subroutine). The mechanical analysis employed a Lemaitre-

Chaboche isotropic-kinematic plasticity model [35] to accurately capture the welding-induced 

cyclic hardening of 316LN alloy during the welding process. Sensitivity analyses [31] revealed that 

use of an isotropic-kinematic (mixed) cyclic hardening model results in the most accurate 

prediction of WRS and welding-induced plasticity (WIP) [36]. High-temperature annealing (i.e. the 

loss of accumulated isotropic plasticity at high temperatures) was controlled via a two-stage 

annealing functionality developed for ABAQUS [37]. While the annealing behaviour may not 

significantly affect WRS predictions, it does affect predictions of WIP [36] that are used in damage 

assessments.  

Figure 2 highlights the agreement between the numerical WRS solution from the welding 

simulation and both sets of diffraction measurements. Cross-weld longitudinal WRS predictions 

along lines B2 and B16 are presented in Figs. 2a and 2b respectively, alongside diffraction results. 

A two-dimensional contour plot of predicted longitudinal WRS along the B plane is shown in Fig. 

2d for direct comparison against the synchrotron-measured results shown in Fig. 2c. It is clear 

that quantitative accuracy in the predicted WRS distribution was achieved relative to the 

complementary diffraction measurements taken, thus validating the numerical welding 

simulation [25, 31]. Such validation is important for the present contour cutting analyses, as this 

FE solution is used as model input for the contour cutting simulations.  

3. Cutting configurations 

The present study examines the effect of three different cutting configurations on the accuracy 

of the contour method for residual stress measurement in the NeT TG4 benchmark specimen. 

These configurations are shown schematically in Fig. 3. The first configuration (Fig. 3a) represents 

a conventional (1-Cut) approach to the contour method, where a single cut is progressed from the 

one edge of the specimen to the other. The direction of EDM wire travel is in the transverse (X) 

direction. In this approach, WRS redistribution occurs predominantly near the cut tip as the 

stresses behind the cut relax, leading to stress intensification ahead of the cut and the possibility 

of cutting-induced plasticity (CIP). To mitigate CIP, mechanical restraint (i.e. clamping) is often 

applied to control WRS redistribution during the cutting process, thereby limiting CIP. The clamps 

for this 1-Cut configuration have been placed towards the outer edges of the specimen. It should 

be noted that the most effective clamping is applied closest to the plane-of-cut; however, weld 

and sample geometries often prevent external clamping at these locations.  
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Unlike the 1-Cut configuration, embedded configurations provide self-constraint and thus 

“internal clamping” of the specimen. These configurations can be used to control and/or redirect 

WRS redistribution away from the region of interest (e.g. weld region) during the cutting process. 

Figure 3b presents a 4-Cut, double-embedded
5
 cutting configuration. The first cut (Cut-1) is 

progressed from Pilot Hole 1 (PH1) towards the weld region, and is terminated once the cut has 

passed through the weld fusion zone (cut length = 75 mm). The second cut (Cut-2) progresses 

from Pilot Hole 2 (PH2), and terminates once the end of Cut-1 is reached (cut length = 65 mm). 

Finally, Cut-3 and Cut-4 are used to sever the material ligaments remaining near the sample 

edges. This double-embedded configuration has been shown to significantly reduce the effect of 

CIP and thus improve the accuracy of recovered WRS [38, 39].  

The 5-Cut double-embedded configuration (Fig. 3c) is similar to the 4-Cut configuration, with 

some minor but important distinctions that are believed to further improve the accuracy of WRS 

measurements. Firstly, both Cut-1 and Cut-2 approach the weld region, which is region of 

interest; however, neither of these cuts pass through the weld region. Cut-3 and Cut-4 are then 

applied to sever the outer material ligaments, which were used for specimen self-constraint, see 

Fig. 3c. These material ligaments contain the equilibrating compressive stresses in the specimen 

(see below). By releasing these compressive stresses, the redistribution of internal WRS leads to 

reduction of the high tensile WRS in the weld region (region of interest) – only the variation in 

WRS across the weld region causes some internal stresses to remain. Consequently, it is believed 

that the propensity for CIP when cutting through the weld region (Cut-5) can further reduced.  

Complementary numerical analyses and experimental measurements are carried out to 

examine the efficacy of these three contour cutting configurations in minimizing the effects of CIP 

and thus improving contour method accuracy. The answers to two questions are sought in the 

present work:  

(Q1): How well do embedded cutting configurations (4-Cut, 5-Cut), which are not subject to 

external mechanical restraint, perform relative to conventional (1-Cut) configurations with applied 

clamping? 

(Q2): What improvements are gained by releasing the outer equilibrating stresses prior to 

sectioning the weld region in an embedded cutting configuration? That is, does a 5-Cut 

configuration perform significantly better than its 4-Cut counterpart? 

4. Numerical analyses  

4.1 SIF analysis of contour cutting  

The EDM cutting process used for the contour method is analogous to the propagation of a 

full-penetration crack across the specimen plane-of-cut. As such, the severity of stress 

concentrations caused by stress redistribution near the leading edge of the cut (or “cut tip”) can 

be estimated by calculating the mode I stress intensity factor (SIF) KI at this position [40-42]. By 

having prior knowledge of the residual stress distribution in a specimen, a fully elastic FE 

simulation of the cutting process can be performed and linear elastic fracture mechanics (LEFM) 

used to calculate KI at the cut tip. By plotting KI as a function of cut tip location along the plane-of-

cut, the analyst can observe the severity of stress intensification expected during the cutting 

process and ultimately the likelihood of CIP. These analyses are less computationally expensive 

                                                           
5 The term “double-embedded” refers to the fact that two pilot holes have been drilled near the outer edges of 

the sample, and two embedded cuts are progressed from each of these pilot holes toward the weld region. 
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relative to three-dimensional FE contour cutting simulations due to three simplifications: (i) a 

two-dimensional idealisation is made of the WRS distribution in the sample; (ii) only the initial 

WRS along the plane-of-cut is required; and (iii) symmetry is assumed across the plane-of-cut. 

This latter simplification is useful because it allows the cutting process to be simulated through 

the incremental removal of a symmetry boundary condition located along the plane-of-cut of the 

FE half-model. A SIF analysis can thus be used for rapid assessment of a potential cutting 

configuration, making it a valuable screening tool for cutting process optimization. 

In the present work, SIF analyses of each cutting configuration (Fig. 3) were performed using 

the ABAQUS commercial FE package [37]. The 2D FE mesh comprised 4-node bilinear elements 

with reduced integration and hourglass control (ABAQUS designation CPS4R). A non-uniform 

mesh was used; near the vicinity of the cut tip, a relatively fine mesh of 0.4 x 0.4 mm
2
 elements 

was defined to capture the large stress gradients expected in this region. Cutting was simulated 

by the incremental release of the symmetry boundary condition used to constrain the plane-of-

cut. Simultaneously, stresses were applied along the newly created cut faces [40, 41]; these 

stresses represent the inverse of the WRS distribution in the NeT TG4 specimen at each point 

along the cut face. The longitudinal (Z) WRS measured along the B2 line using neutron diffraction 

(Fig. 2a) was used for this idealized 2D stress state; this line profile was chosen as it provides the 

most representative cross-weld WRS distribution from the measured data set. The application of 

these inverse stresses to a stress-free model is an extension of Bueckner’s principle of elastic 

superposition [43], which forms the basis of residual stress recovery using the contour method. As 

the contour cut progresses across the weld specimen, the SIF values at the cut tip are recorded. 

The resultant SIF profiles can be then used to examine regions where CIP is likely to occur during 

the cutting process.  

4.2 3D cutting simulations 

While the simplifications used in SIF analyses provide an efficient means of optimising the 

cutting process, more accurate predictive capabilities are used to directly quantify the magnitude 

of CIP across the plane-of-cut for a given cutting configuration. Greater predictive capability may 

be required for thick-section multi-pass welds since the two-dimensional simplifications of a SIF 

analysis – which assume a uniform WRS profile exists across the sample thickness – may not 

accurately capture through-thickness WRS variations. Three-dimensional FE cutting simulations 

containing the full WRS distribution of the sample are therefore used to predict CIP across the 

plane-of-cut. 

Elasto-plastic FE models were developed to simulate the cutting process and determine the 

extent of CIP for a given cutting configuration. While the SIF analyses used the neutron measured 

WRS profile along B2 line as the reference stress state, the 3D contour cutting simulations used 

full tensor values of WRS and WIP distributions across the entire NeT TG4 specimen. These 

distributions were obtained using the validated weld simulation for NeT TG4 [25]. All relevant 

data (post-weld residual stresses, plastic strains)  was transferred from the FE weld model to the 

FE cutting model, which has a different FE mesh and set of boundary conditions dependent on the 

configuration analysed (Fig. 3). It should be noted that both the magnitude and direction of the 

accumulated plastic strain and associated backstress tensor from welding are captured, as 

Bauschinger effects must also be considered for the subsequent cutting process. As mentioned, 

both weld and parent metals use a Lematire-Chaboche cyclic work hardening model [35] to 

account for such effects. Prior to data transfer, the welding-induced distortion was omitted from 

the analysis in order to simplify the cutting model geometry. This omission was achieved by 

running an additional mechanical analysis step after the weld simulation wherein the nodal 

displacements were not recorded, thus removing all welding-induced distortion information. It 
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has been confirmed that the omission of the welding-induced distortion has a negligible effect on 

the magnitude and distribution of the predicted WRS and WIP [44]. The results of the symmetric 

welding solution was then mirrored about the symmetry plane (plane D in Fig. 1) and mapped 

onto the cutting models.  

Optimization of the cutting model focused on significant FE mesh refinement near the plane-

of-cut to accurately capture the redistribution of WRS and the evolution of CIP during the cutting 

process. Even though the element type for the cutting simulation is the same as that used for the 

mechanical weld analysis (ABAQUS designation C3D20R), the number of elements increased from 

38,220 to 396,626. The contour cutting process was simulated by successive removal of through-

thickness vertical element sets
6
 measuring 0.32(X) × 18(Y) × 0.32(Z) mm

3
 (schematically shown in 

Fig. 1) with an advance rate of one element set per second. Note that these numerical analyses 

are time-independent and the time step was arbitrarily chosen as one second. After completion 

of the cutting simulation, the OoPD of nodes on both sides of the cut (i.e. both cut surfaces) was 

obtained and used to back-calculate the original (pre-cut) distribution of WRS using a fully elastic 

stress analysis. This procedure is identical to that used when back-calculating WRS using 

experimental data (Section 6). In addition, CIP was directly calculated across the cut surface for 

each cutting configuration. This calculation was performed by taking the post-cut longitudinal 

plastic strain at each nodal point on the cut surface, and subtracting the pre-cut longitudinal 

component of WIP from this amount. Both the back-calculated WRS and predicted CIP are then 

used to compare the efficacy of each cutting configuration in limiting the adverse effects of CIP on 

the contour method.   

5. Numerical results 

5.1 Relative probability assessment of CIP via SIF analysis 

Figure 4 compares the variation of SIF as function of the cut length along the plane-of-cut for 

both embedded contour cutting configurations (4-Cut, 5-Cut) with the conventional single-cut 

configuration (1-Cut). In the case of double-embedded configurations, the SIF values are reported 

for the moving as well as stationary tips. These stationary tips are created at the pilot holes (PH1, 

PH2) and at the cut stops (the end of Cut-1 for the 4-Cut configuration, and the ends of Cut-1 and 

Cut-2 for the 5-Cut configuration, see Fig. 3).  

Let us first examine the SIF distribution for the conventional 1-Cut contour cutting 

configuration so a direct comparison with the embedded contour cutting configurations can be 

made. Two extrema in the 1-Cut SIF profile (Fig. 4) can be observed: (i) -55 MPa√m at X = -50 mm, 

suggesting that the release of equilibrating compressive WRS (Z) outside of the weld region (see 

Fig. 2) might result in compressive CIP in this region; and (ii) +60 MPa√m at X = +15 mm, 

indicating the likelihood of tensile CIP when cutting through the tensile WRS region near the weld. 

By comparing the 1-Cut SIF profile with both embedded-configuration SIF profiles in Fig. 4, it 

becomes clear that embedded configurations reduce the magnitude of the compressive SIF at the 

beginning of the contour cutting process. This improvement is more pronounced in the 5-Cut 

configuration (Fig. 4b) relative to the 4-Cut counterpart (Fig.4a). Hence, there is a lower 

probability for CIP to occur in this region in double-embedded configurations, relative to the 1-Cut 

configuration. The global extrema in 4-Cut and 5-Cut SIF distributions are observed in different 

parts of the specimen during cutting. For the 4-Cut configuration a tensile extremum is observed 

                                                           
6
 The size of the removed element set is based on the EDM wire diameter (0.25mm) used in the experiments. The 

width of cut also accounts for the material evaporated around the wire during cutting. 
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at X = +5 mm (+51 MPa√m), in the weld region where the Cut-1 meets Cut-2. For the 5-Cut 

configuration a compressive extremum is observed at X = +15 mm (-52 MPa√m), as Cut-5 

approaches the end of Cut-2.  These results suggest the greatest likelihood of CIP when using an 

embedded cutting configuration exists in these regions; however, this likelihood is smaller than 

that observed for conventional single-cut configurations. It is further important to point out the 

high SIF values present in both embedded cutting configurations located near the stationary tips, 

which suggest a high probability for CIP to develop close to both pilot holes, and near cut ends. 

Such a finding implies any cutting configuration should be planned such that pilot holes and cut 

ends should be located outside any regions of interest (e.g. the near-weld region). 

The results of these SIF analyses help to answer the first question that forms the basis of this 

work: 

How well do embedded cutting configurations (4-Cut, 5-Cut), which are not subject to external 

mechanical restraint, perform relative to conventional (1-Cut) configurations with applied 

clamping? 

Comparison of SIF profiles in the 4-Cut and 5-Cut configurations relative to the 1-Cut 

configuration shows a reduction in stress extrema, which confirms these embedded strategies are 

less likely to produce CIP and thus lead to more accurate WRS measurements. It is evident that 

the WRS within the released material of an embedded cut is redistributed to two functional 

locations (i.e. either end of the embedded cut), while conventional cuts only have one functional 

location for WRS redistribution (i.e. the leading cut tip). Further optimization of these cutting 

configurations (e.g. pilot hole location, cut length, etc.) can be performed using parametric SIF 

analyses. 

5.2 Quantitative and qualitative assessment of CIP via FE simulations 

SIF analyses have confirmed the stress intensification present when using a conventional 

single-cut (1-Cut) configuration is greater than that calculated for double-embedded cutting 

configurations (4-Cut, 5-Cut). This intensification will often lead to the development of CIP in the 

material, which will consequently affect the measured OoPD and ultimately the accuracy of the 

back-calculated WRS across the plane-of-cut. The following numerical analyses will quantify the 

improvement of 4-Cut and 5-Cut configurations relative to the 1-Cut approach. Quantification is 

carried out through direct comparison of the predicted CIP across the plane-of-cut for each 

cutting configuration; predicted CIP for each configuration is presented in Fig. 5(a-c). Note that all 

configurations predict levels of CIP that are greater than the original WIP distributions predicted 

along the NeT TG4 plane-of-cut (Fig. 5d). Of the three approaches, the 5-Cut configuration (Fig. 

5c) has the lowest CIP extrema. While the 4-Cut extrema (Fig. 5b) are greater than those 

predicted for the 1-Cut approach (Fig. 5a), it is evident these extrema are highly localized in the 

outer material ligaments formed between the pilot holes and the edge of the specimen, near the 

stationary cut tips, which SIF have confirmed to be regions of high KI. However, the magnitude of 

CIP alone will not dictate the overall influence it has on accuracy of back-calculated WRS; the 

location and distribution of CIP is also an important feature. Figure 5(e-g) presents the back-

calculated longitudinal (Z) WRS profiles obtained using the predicted OoPD data (Fig. 6) from each 

cutting simulation. When comparing these results against the initial (pre-cut) WRS profile taken 

along the plane-of-cut (Fig. 5h), it is evident that the highly localised nature of CIP in the outer 

material ligaments when using embedded cutting configuration (Fig. 5b,c) have little influence on 

the overall accuracy of the corresponding back-calculated WRS distribution (Fig. 5f) relative to the 

WRS profile recovered using the 1-Cut approach (Fig. 5e). The WRS contours recovered using both 
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embedded configurations more closely represent the original longitudinal WRS distribution, 

thereby confirming the qualitative assessment performed via SIF analysis. 

To further elucidate the effect of CIP on the accuracy of WRS back-calculation, it is useful to 

examine the predicted OoPD profiles for each cutting configuration. Figure 6 compares the 

predicted OoPD across the plane-of-cut using elasto-plastic FE simulations against those obtained 

from idealized, fully elastic FE simulations that will not produce CIP
7
. Note that greater agreement 

between the elasto-plastic OoPD profile and the idealized fully elastic OoPD profile leads to 

greater accuracy in the back-calculated WRS. Figure 6a shows us that even though the 1-Cut 

configuration produces a relatively small amount of CIP (Fig. 5a), the contribution of this CIP to 

the OoPD is significant as evidenced by the deviations in the elasto-plastic OoPD profile relative to 

the fully elastic prediction. The situation is different in both embedded cutting configurations 

(Figs. 6b,c), which effectively localise CIP (to roughly -7% strain) within narrow ligaments formed 

beyond the pilot holes on both sides of the specimen (see appendix). The OoPD data obtained 

beyond the pilot holes (X < -5 mm, X > +70 mm) are completely removed from the subsequent 

WRS back-calculation in embedded cutting simulations, leading to a loss of usable data in these 

regions.  

In the case of the 4-Cut configuration (Fig. 6b), significant localisation (roughly +4% strain) is 

also observed within the region where Cut-2 approaches the end of Cut-1. In contrast, a similar 

localization is not observed in the predicted 5-Cut OoPD data (Fig. 6c). This leads us to the second 

question that forms the basis of this work: 

What improvements are gained by releasing the outer equilibrating stresses prior to sectioning 

the weld region in an embedded cutting configuration? That is, does a 5-Cut configuration perform 

significantly better than its 4-Cut counterpart? 

As discussed above, it is evident from the back-calculated WRS shown in Fig. 5(e-g) that the 5-

Cut configuration leads to the most accurate back-calculated WRS in the region of interest (i.e. 

the near-weld region). However, to gain a deeper understanding of why the 5-Cut configuration 

seems to be more effective in eliminating the effects of CIP when compared to the 4-Cut 

configuration, it is necessary to look into the redistribution of WRS and evolution of CIP during the 

contour cutting process for both configurations. Figure 7 presents the predicted redistribution of 

WRS and the associated development of CIP along the B9 line (Fig. 1), as a function of cutting 

progress. One can directly observe the redistribution of WRS during the cutting process that leads 

to stress concentrations at the cut tips. From Fig. 7 it is clear that both embedded cutting 

configurations effectively direct the CIP to the outer material ligaments located beyond the pilot 

holes. As compressive WRS continue to accumulate in these ligaments, they ultimately cause the 

material to yield; this trend is supported by the high levels of compressive CIP within the 

ligaments as shown in Figs. 5(b,c). The main difference between the 4-Cut and 5-Cut 

configurations lies in the way they deal with high tensile stresses in the weld region. The 

proposed benefit of the 5-Cut configuration is to first relieve the high tensile WRS located in the 

weld region as much as possible before cutting through it. This relaxation is achieved by first 

removing the material ligaments beyond the pilot holes (Cut-3, Cut-4), which contain equilibrating 

compressive stresses. Figure 7b shows the relaxation in tensile WRS within the near-weld region 

between the “Cut-2 Stop” line and “Cut-4 Stop” line. As a result, the ligament formed when Cut-5 

                                                           
7 Since a fully elastic cutting simulation will produce no CIP, the resultant back-calculated WRS distribution will be 

identical to the original (pre-cut) WRS. As a result, the fully elastic OoPD results presented in Fig. 6 are identical 

regardless of cutting configuration. 
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approaches the end of Cut-2 does not contain significant WRS intensification, and CIP is notably 

lower than what is predicted for the 4-Cut configuration (Fig. 7a).  

While the 5-Cut approach is more effective at mitigating CIP, there are ways of improving the 

4-Cut results that largely circumvent these plasticity errors. Improvements come largely from data 

filtering. For example, the OoPD data in the near-weld region that was affected by CIP in the 4-Cut 

approach (the shaded region in Fig. 6b) was removed when back-calculating WRS. This data was 

replaced by an interpolated dataset to produce the back-calculated WRS profile shown in Fig. 5f. 

Note that this data filtering could only be performed since we are aware of the significant CIP that 

accumulates in this region; in reality – when the analyst does not have the luxury of a well-

characterised benchmark specimen – it may not be possible to identify data affected by CIP. 

Regardless, it appears the use of pilot holes provides the greatest improvement of measurement 

accuracy in double-embedded cutting configurations; however, care must be taken to ensure the 

ligaments formed between the pilot holes and the outer edges of the sample are of a size suitable 

to mitigate plasticity in the region of interest (i.e. the weld region). A parametric study illustrating 

the selection of optimal pilot-hole locations is appended (see appendix). 

6. Experimental validation  

To check the validity of the present numerical analyses, two nominally identical NeT TG4 weld 

specimens were experimentally sectioned using the 4-Cut and 5-Cut configurations. The 

specimens were sectioned at specimen mid-length along the transverse plane to recover the 

longitudinal component of WRS, based on the measured OoPD across the plane-of-cut. To 

implement these double-embedded cutting configurations, two 1.8-mm diameter pilot holes 

were drilled at a 5 mm transverse offset distance from each of the specimen edges (schematically 

shown in Fig. 3). EDM-induced cutting artefacts close to the surfaces of the specimen were 

prevented by bonding sacrificial layers of stainless steel on the top and back faces of the weld 

specimen [13, 14]. In addition, finger clamps were used to prevent the specimen moving on the 

EDM table during cutting. Note that the sacrificial layers and the finger clamps were omitted from 

the contour cutting simulations present above (though rigid-body motion is prevented in the FE 

models).  

After the cutting was completed, a Zeiss Eclipse CMM fitted with a Micro-Epsilon triangulating 

laser probe and a 4-mm diameter ruby-tipped Renishaw PH10M touch trigger probe was used for 

contour measurement of the cut surfaces. First the perimeter of the surface was measured with 

the touch probe using a 2-mm pitch, and then the OoPD in the longitudinal (Z) direction was 

measured using the triangulating laser sensor on a (0.125 × 0.125) mm grid. The as-measured 

OoPD profiles for the 4-Cut and 5-Cut configurations are shown in Figs. 6d and 6e, respectively. 

As-measured OoPD data were then processed using the standard approach described in Refs. [45, 

46] to remove asymmetric errors and signal noise. In addition, the OoPD measurements strongly 

affected by CIP were removed in a manner similar to that used for the predicted OoPD data: (i) 

the measured OoPD data beyond the pilot holes were discarded; and (ii) the data in the region 

where the Cut-2 meets Cut-1 in the 4-Cut configuration (4 mm < X > 11 mm) and the data where 

Cut-5 meets Cut-2 in the 5-Cut configuration (19 mm < X > 21 mm) were removed and replaced by 

interpolated data. The refined dataset for the 4-Cut and 5-Cut contour measurements are shown 

alongside unrefined data in Figs. 6d and 6e, respectively.  

When comparing the simulations with the experimental results, it is evident that observed 

OoPD discontinuities exist in the material ligaments located beyond the pilot holes that are also 

predicted in the numerical simulations. Similarly, observed discontinuities in the OoPD profile in 

the region where the Cut-2 meets Cut-1 for the 4-Cut configuration and where Cut-5 meets Cut-2 
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in the 5-Cut configuration are captured in the simulations; however, the magnitude of these 

measured discontinuities do not agree with predicted values. This discrepancy is most likely 

caused by the inaccuracies in the weld simulation used to provide the original (pre-cut) WRS for 

the cutting simulations (Fig. 5h), and simplifications in the FE cutting simulations themselves (e.g. 

the omission of finger clamps and sacrificial layers). Nevertheless, the present contour cutting 

simulations capture the general OoPD profile, implying a realistic prediction CIP contribution.  

The post-processed OoPD measurement data were then used in the elastic WRS back-

calculation using the following material parameters: � = 195.6 GPa; � = 0.29. A fully-elastic 3D FE 

model was generated using the specimen perimeter measurements and meshed using linear 

hexahedral elements with reduced integration (ABAQUS designation C3D8R). The element length 

along the cut surface was 1 mm. The element size was biased away from the cut surface to allow 

for larger elements away from the region of interest, thus reducing computational expense. Post-

processed OoPD measurement data was applied as a boundary condition at the nodes of the cut 

surface to back-calculate the WRS perpendicular to the plane-of-cut (Z). Figure 8 compares back-

calculated longitudinal (Z) WRS as recovered using contour method measurements for the 

embedded cutting configurations. As with the model predictions shown in Fig. 5, WRS 

measurements employing the 5-Cut contour method (Fig. 8d) produces a more accurate 

measurement over the 4-Cut approach (Fig. 8c), when comparing back-calculated longitudinal 

WRS to the complementary synchrotron diffraction measurements [26] and the FE welding 

simulations [25] presented in Fig. 2. Looking at the comparison along the B2 and B16 lines (Figs. 

8a,b) it is clear that even though the overall WRS profiles are qualitatively captured, a number of 

quantitative discrepancies exist between the WRS captured using contour measurements, 

diffraction measurements and numerical simulations. Firstly, the WRS profiles recovered from 

contour measurements are asymmetric, while those measured using diffraction techniques and 

predicted from the FE welding simulation are symmetric. This discrepancy is a result of the cutting 

process asymmetry, which leads to a higher amount of CIP in the first half of the cut when the 

WRS are still high (see Figs. 5,7). Quantitative agreement between contour measurements and 

the complementary WRS datasets improves as the cut progresses, due to WRS relaxation up to 

the point that they no longer cause significant yielding of material at the cut tip. Hence, the OoPD 

is less affected by contribution from CIP in the second half of the cut and the back-calculated WRS 

are more accurate.   

7. Conclusions 

The present work examines optimal cutting configurations for the measurement of WRS in a 

multi-pass austenitic slot weld sample (NeT TG4) using the contour method. Numerical analyses 

are conducted to examine key features inherent to the cutting process. Stress intensity factor 

(SIF) analysis is first used as a screening tool to confirm whether or not novel double-embedded 

cutting configurations (4-Cut, 5-Cut) are more effective than a conventional single-cut (1-Cut) 

configuration in limiting the effect of CIP on OoPD along the plane-of-cut, thus improving the 

accuracy of the contour method.  

A notable reduction in KI extrema indicates the WRS redistribution that occurs during a 

double-embedded cut is less likely to cause plasticity near the cut tip as it progresses through the 

specimen, thereby improving the accuracy of the contour method for WRS measurement. This 

improvement is confirmed using three-dimensional FE cutting simulations, which allow direct 

comparisons of CIP for each cutting configuration. The simulations also reveal significant 

localisation of CIP in the material ligaments formed between the pilot holes and the outer edges 

of the specimen when using double-embedded contour cutting configurations. The plasticity in 

these material ligaments is caused by the WRS redistribution during the cutting process. This 
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ligament plasticity causes an overall relaxation of internal stresses, thus reducing the likelihood of 

CIP along the moving cut tip. In contrast, when employing the 1-Cut configuration, CIP 

accumulates along the first half of the cut that leads to significant asymmetry of the back-

calculated WRS along the plane-of-cut.  

Overall, the 4-Cut and 5-Cut embedded configurations perform somewhat similar, however it 

is clear that removal of the outer material ligaments before cutting through the weld region 

relaxes the high tensile WRS in its vicinity, leading to a lower likelihood of CIP at the moving cut 

tip when cutting through this region at later stage of the contour cutting – and thus, higher 

accuracy of the back-calculated WRS across the region of interest. In general, any successful 

cutting strategy for contour measurement should delay cutting through the region of interest if it 

contains significant internal stresses, until these stresses are relaxed via release of the 

equilibrating stresses found outside the region of interest. It is clear from present results that the 

localisation of CIP occurs near the end of the final cut of the 4-Cut configuration, which is 

undesirable since this region lies adjacent to the weld region. In contrast, the 5-Cut configuration 

– which first removes the equilibrating outer material ligaments before sectioning the weld region 

– reduces the tensile WRS across the weld region prior to sectioning, thereby limiting CIP and 

improving contour measurement accuracy.  

All numerical results are validated against a series of WRS measurements performed using the 

contour method and the cutting configurations of interest. Cutting was performed on a series of 

benchmark weld specimens produced under the auspices of NeT TG4; as such, the specimens 

were previously subjected to rigorous examination, including repeat measurement of WRS using 

complementary neutron and synchrotron diffraction techniques. Agreement between numerical 

results, diffraction data and the recovered longitudinal WRS profiles obtained using the contour 

method were established.  
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Appendix  

Considerable advantage can be made of the self-constraining nature of double-embedded 

cuts for reducing the influence of CIP across the region of interest (in the present example, the 

weld region). It has been shown that the material ligaments formed between the pilot holes and 

the outer edges of the specimen mitigate CIP when cutting progresses across the weld region. 

This mitigation occurs due to two processes: 

1. The ligaments act as self-constraint, allowing a portion of the WRS to be redistributed 

into the ligament and away from the cut tip. The ligament thus limits short-range 

stress intensification near the cut tip (and consequently, CIP). The ligaments are not 

rigid; the material will behave in an elasto-plastic manner. 

2. Once local stresses in the ligament exceed the material yield strength, this ligament 

will deform plastically. In the case of our weldment, compressive equilibrating stresses 

near the outer edge of the specimen lead to compressive plasticity. This bulk 

compression leads to a relaxation of the overall, long-range tensile stresses in the weld 

region, hence to a lower likelihood of CIP when cutting through the weld region at a 

later stage of the cutting procedure. 

 It is thus important that these material ligaments are stiff enough to provide self-constraint 

for the specimen during cutting (to limit short-range stress intensification), but simultaneously 

they need to be compliant enough to generate compressive plasticity (leading to long-range 

stress relaxation). The strength of these material ligaments is dictated by the ligament size, as 

determined by the position of the pilot holes from the outer edge of the specimen. If these holes 

are placed too far from the outer edges of the specimen, self-constraint is assured but the analyst 

will no longer benefit from long-range stress relaxation. Conversely, if the holes are placed too 

close to the outer edges, the ligaments formed will not provide sufficient self-constraint for the 

specimen during the cutting process and significant short-range stress redistribution results, 

leading again to a higher likelihood of CIP along the moving cut tip. It follows that a means of 

optimising pilot hole location is necessary to identify the ideal trade-off between these two 

competing effects. 

The FE model developed to simulate the 4-Cut process was modified to examine the effect of 

different pilot hole locations. Apart from these locations, the 4-Cut procedure as shown in Fig. 3b 

remained identical. Figure A1 presents the elasto-plastic OoPD profile extracted from nodal points 

along the FE model plane-of-cut from four different analyses. These analyses comprise pilot holes 

located the following distances from the outer sample edges: (Fig. A1a) 5 mm; (Fig. A1b) 1 mm; 

(Fig. A1c) 10 mm; and (Fig. A1d) 20 mm. Each profile is presented alongside an idealised elastic 

OoPD profile, which was extracted from a fully elastic FE analysis and does not contain CIP. It is 

clear that using pilot holes at distance greater than 5 mm from the outer edge of the specimen 

limits the amount of CIP accumulated in the outer material ligaments, thereby limiting WRS 

relaxation near the weld region and causing significant CIP along the moving cut tip when the 

highly tensile region is sectioned. The effect of CIP is manifested by a greater deviation of elasto-

plastic OoPD profile form the fully elastic OoPD profile across the weld region. In contrast, pilot 

holes inserted less than 5 mm from the outer specimen edges lead to ligaments that cannot 

provide sufficient restraint. CIP continuously accumulates along the moving cut tip as a result, 

particularly during the first half of the cut as one would expect in a conventional cutting approach 

(i.e. no pilot holes and external clamping). Based on this analysis, pilot holes located 5 mm from 

the outer sample edge were selected for the double-embedded configurations studied in the 

present work. 
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Fig. 1: Schematic of the NeT TG4 benchmark specimen, and its representation for numerical 

FE analyses (X = transverse direction, Y = normal direction, Z = longitudinal direction). The FE 

welding analysis used a half-model (highlighted), taking advantage of process symmetry. The FE 

cutting analysis must use a full model due to asymmetry about the weld centreline in the cutting 

process. Planar sectioning of the model is performed along the plane-of-cut, which is comprised 

of a series of element sets that are progressively removed to simulate the cutting process. In 

cases where clamping is not used, a set of pin constraints (blue dots in the figure) are applied to 

the model to prevent rigid body rotation; U() defines the direction of nodal constraint 

(1,2,3=X,Y,Z).  
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Fig. 2: Longitudinal WRS distribution along the plane-of-cut for the NeT TG4 benchmark weld 

specimen. Cross-weld stress profiles are shown alone Line B2 (a) and Line B16 (b), located 2 mm 

and 16 mm below the top surface of the specimen, respectively. For synchrotron diffraction 

measurements (c) and FE model predictions (d), the profiles were extracted from WRS contours 

obtained along the plane-of-cut and presented alongside neutron diffraction measurements. 
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Fig. 3: Schematic diagrams outlining the FE representation of the cutting configurations under 

investigation: (a) conventional (1-Cut) configuration with external (clamping) constraint; and (b) 

4-Cut and (c) 5-Cut double-embedded cutting configurations, which use two pilot holes for self-

constraint and only light clamping to prevent rigid body motion.  
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Fig. 4:  Stress intensity factor (SIF) distributions obtained using a 2D elastic FE analysis 

containing the neutron-diffraction measured WRS distribution along Line B2 (Fig. 2a). The SIF 

distribution for the 1-Cut configuration is compared to that obtained for 4-Cut (a) and 5-Cut (b) 

configurations.  
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Fig. 5: Contour plots of the predicted longitudinal component of CIP (a-c) and the resultant 

back-calculated WRS (e-g) for the following configurations: (a,e) 1-Cut; (b,f) 4-Cut; and (c,g) 5-Cut. 

Numerical solutions are compared to the original, pre-cut WIP (d) and WRS (h)  used for the NeT 

TG4 benchmark weld specimen. 
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Fig. 6: Out-of-plane displacement (OoPD) profiles for (a) 1-Cut, (b,d) 4-Cut and (c,e) 5-Cut 

configurations. For the double-embedded configurations, both model predictions (b,c) and 

experimental contour measurements (d,e) are presented. For all simulation results, the predicted 

OoPD from the elasto-plastic FE models are presented alongside the idealised OoPD profile 

(shown in black) obtained using a fully elastic FE model that does not account for CIP. 
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Fig. 7: The transient redistribution of WRS and development of CIP for 4-Cut (a) and 5-Cut (b) 

simulations. Predictions are taken along Line B9 (Fig. 1). The ordinate axis refers to the number of 

element sets (from the total of 470) removed. The stop points of each cut are identified for each 

simulation, allowing the analyst to observe the evolution of WRS and CIP at all points during the 

cutting procedure.  
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Fig. 8: Experimental contour measurements, extracted from two NeT TG4 benchmark weld 

specimens subjected to 4-Cut and 5-Cut double-embedded cutting configurations. Longitudinal 

WRS profiles along Line B2 (a) and Line B16 (b), recovered using the contour method, are 

compared against numerical predictions and diffraction measurements of the original (pre-cut) 

WRS profiles (Figs. 2a,b). Contour plots of the back-calculated WRS distribution along the plane-

of-cut for both the 4-Cut (c) and 5-Cut (d) configuration are also shown.   
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Fig. A1: Out-of-plane displacement (OoPD) data extracted from the 4-Cut FE cutting 

simulation, performed using different pilot hole distances from the outer sample edges: (a) 5 mm; 

(b) 1 mm; (c) 10 mm; and (d) 20 mm. Results from the elasto-plastic FE simulations (in colour) are 

presented alongside idealised OoPD profiles from a fully elastic FE simulation (in black), which 

does not contain the influence of CIP. 
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- The cutting process of the contour method was simulated via finite element analysis 

- Several cutting strategies were examined to minimise cutting-induced plasticity 

- Cutting strategies were varied through clamping and cutting direction/orientation 

- A double-embedded cutting strategy produced the lowest measurement error 

- For welded specimens, sectioning should be performed through the weld region last 


