31 research outputs found

    The Fate of Carbon in Sediments of the Xingu and TapajĂłs Clearwater Rivers, Eastern Amazon

    Get PDF
    The Xingu and Tapajós rivers in the eastern Amazon are the largest clearwater systems of the Amazon basin. Both rivers have “fluvial rias” (i.e., lake-like channels) in their downstream reaches as they are naturally impounded by the Amazon mainstem. Fluvial rias are widespread in the Amazon landscape and most of the sedimentary load from the major clearwater and blackwater rivers is deposited in these channels. So far, little is known about the role of Amazon rias as a trap and reactor for organic sediments. In this study, we used organic and inorganic geochemistry, magnetic susceptibility, diatom, and pollen analyses in sediments (suspended, riverbed, and downcore) of the Xingu and Tapajós rias to investigate the effects of hydrologic variations on the carbon budget in these clearwater rivers over the Holocene. Ages of sediment deposition (~100 to 5,500 years) were constrained by optically stimulated luminescence and radiocarbon. Major elements geochemistry and concentration of total organic carbon (TOC) indicate that seasonal hydrologic variations exert a strong influence on riverine productivity and on the input and preservation of organic matter in sediments. Stable carbon isotope data (ή13C from −31.04 to −27.49‰) and pollen analysis indicate that most of the carbon buried in rias is derived from forests. In the Xingu River, diatom analysis in bottom sediments revealed 65 infrageneric taxa that are mostly well-adapted to slack oligotrophic and acidic waters. TOC values in sediment cores are similar to values measured in riverbed sediments and indicate suitable conditions for organic matter preservation in sediments of the Xingu and Tapajós rias at least since the mid-Holocene, with carbon burial rates varying from about 84 g m−2 yr−1 to 169 g m−2 yr−1. However, redox-sensitive elements in sediment core indicate alternation between anoxic/dysoxic and oxic conditions in the water-sediment interface that may be linked to abrupt changes in precipitation. The variation between anoxic/dysoxic and oxic conditions in the water-sediment interface controls organic matter mineralization and methanogenesis. Thus, such changes promoted by hydrological variations significantly affect the capacity of Amazon rias to act either as sources or sinks of carbon

    Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation

    Get PDF
    Changes in heat transport associated with fluctuations in the strength of the Atlantic meridional overturning circulation (AMOC) are widely considered to affect the position of the Intertropical Convergence Zone (ITCZ), but the temporal immediacy of this teleconnection has to date not been resolved. Based on a high-resolution marine sediment sequence over the last deglaciation, we provide evidence for a synchronous and near-linear link between changes in the Atlantic interhemispheric sea surface temperature difference and continental precipitation over northeast Brazil. The tight coupling between AMOC strength, sea surface temperature difference, and precipitation changes over northeast Brazil unambiguously points to a rapid and proportional adjustment of the ITCZ location to past changes in the Atlantic meridional heat transport

    Equatorial Pacific forcing of western Amazonian precipitation during Heinrich Stadial 1

    Get PDF
    Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18–15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5–1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes

    Tectonic controls on the capture of the Orinoco river and formation of the Casiquiare canal, Venezuela

    No full text
    Presentation of: <div><div>Grohmann, C.H., Riccomini, C., Sawakuchi, A.O., 2012. Tectonic controls on the capture of the Orinoco river and formation of the Casiquiare canal, Venezuela.</div><div>GSA Annual Meeting 2012, Charlotte, North Carolina, USA.</div><div>http://carlosgrohmann.com/downloads/Grohmann_eatl_2012_GSA_Casiquiare.pdf</div></div><div><br></div><div>Presented at the GSA Annual Meeting of 2012</div

    (Table 1) Position, sampling season, tributary, sampling depth and dD values for river water samples in the Amazon Basin

    No full text
    Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers.Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the dD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The d13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our d13C results show depleted d13C values (-33 to -36‰) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33‰) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane dD analyses show more depleted values for the western tributaries, the Madeira and SolimĂ”es Rivers (-152 to -168‰), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154‰), yield more enriched values. The n-alkane dD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane dD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield dD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long-chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean

    Terrigenous biomarker proxies analysed in the Amazon River system

    No full text
    Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers. Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the dD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The d13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our d13C results show depleted d13C values (-33 to -36 per mil) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33 per mil) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane dD analyses show more depleted values for the western tributaries, the Madeira and SolimÔes Rivers (-152 to -168 per mil), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154 per mil), yield more enriched values. The n-alkane dD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane dD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield dD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long-chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean

    Origin and processing of terrestrial particulate organic carbon in the Amazon system: lignin phenols in river, shelf and fan sediments

    No full text
    Bulk organic parameters and stable and radiocarbon isotope compositions of organic carbon (ÎŽ13COC and Δ14COC) as well as various biomarkers (lignin phenols, plant waxes etc.) have been used to investigate the biogeochemical characteristics of organic carbon in the Amazon River system. However, the source, concentration and distribution pattern of lignin on the Amazon shelf and fan has not been assessed so far. In particular, the compound-specific stable carbon isotope compositions (ÎŽ13C) of lignin phenols have not been characterized in the Amazon River system. In order to study the distribution of lignin in the lower Amazon basin and its dispersal on the shelf and fan, we used riverbed sediments from the Amazon mainstream and its main tributaries and marine surface sediments on the Amazon shelf and fan. The samples were analyzed for particulate organic carbon content (POC), ÎŽ13COC, lignin phenol compositions and compound-specific ÎŽ13C of individual lignin phenols. The concentrations of aluminium and silicon (Al/Si) were used as a proxy for grain size[1]. The POC content in the main tributaries ranged from 0.13 to 3.99 wt-% and increased with Al/Si ratio in each tributary. ÎŽ13COC varied from -26.1‰ to -29.9‰ VPDB in riverbed sediments. Lignin content (represented by Λ8, sum of eight lignin phenols in OC, expressed as mg/100mg OC) ranged from 0.73 to 6.91 and is positively related with Al/Si ratio in the main tributaries except for the Xingu River, in which Λ8 decreased with Al/Si. Ratios of syringyl to vanillyl (S/V) and cinnamyl to vanillyl (C/V) varied from 0.70 to 1.51 and 0.08 to 0.47, respectively, suggesting that the dominant source of lignin is non-woody angiosperm tissue. The ratios of vanillic acid to vanillin (Ad/Al)v (0.26-0.71) and syringic acid to syringaldehyde (Ad/Al)s (0.15-0.57) indicated relatively fresh, non-degraded lignin. In marine sediments, the ÎŽ13COC ranged from -18.6‰ to -26.7‰ and is correlated with the Λ8 value (0.04-2.01). The decreasing Λ8 value along the coast from the Amazon River mouth towards the northwest implies that lignin is distributed by the North Brazil Current. A main plant source of non-woody angiosperm tissue was indicated by the S/V (0.59-1.62) and C/V (0.10-0.43) ratios on the marine samples. The agreement between riverbed and marine sediments suggests that processing of POC during transport from the basin to offshore does not change the plant source information of lignin. Highly degraded lignin on the Amazon fan and the southeast shelf is indicated by (Ad/Al)v (0.49-0.99). ÎŽ13C of lignin phenols of 9 marine sediments ranged from -28.6‰ to -33.3‰ and were consistently lower than ÎŽ13COC (-19.7‰ to -26.7‰). Depleted ÎŽ13C of lignin phenols indicate that the POC produced by the terrestrial biosphere is mainly derived from higher plants using C3 photosynthesis. References Bouchez, J., Galy, V., Hilton, R.G., Gaillardet, J., Moreira-Turcq, P., PĂ©rez, M.A., France-Lanord, C., Maurice, L., 2014. Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles. Geochemica et Cosmochimica Acta 133, 280-29
    corecore