669 research outputs found
Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition
The energy band structure of Cu2SnS3 (CTS) thin films fabricated by pulsed laser deposition was studied by photoreflectance spectroscopy (PR). The temperature-dependent PR spectra were measured in the range of T = 10–150 K. According to the Raman scattering analysis, the monoclinic crystal structure (C1c1) prevails in the studied CTS thin film; however, a weak contribution from cubic CTS (F-43m) was also detected. The PR spectra revealed the valence band splitting of CTS. Optical transitions at EA = 0.92 eV, EB = 1.04 eV, and EC = 1.08 eV were found for monoclinic CTS at low-temperature (T = 10 K). Additional optical transition was detected at EAC = 0.94 eV, and it was attributed to the low-temperature band gap of cubic CTS. All the identified optical transition energies showed a blueshift with increasing temperature, and the temperature coefficient dE/dT was about 0.1 meV/K
Rotation profiles of solar-like stars with magnetic fields
The aim of this work is to investigate rotation profile of solar-like stars
with magnetic fields. A diffusion coefficient of magnetic angular momentum
transport is deduced. Rotating stellar models with different mass are computed
under the effect of the coefficient. Then rotation profiles are obtained from
the theoretical stellar models. The total angular momentum of solar model with
only hydrodynamic instabilities is about 13 times larger than that of the Sun
at the age of the Sun, and this model can not reproduce quasi-solid rotation in
the radiative region. However, not only can the solar model with magnetic
fields reproduce an almost uniform rotation in the radiative region, but its
total angular momentum is consistent with helioseismic result at the level of 3
at the age of the Sun. The rotation of solar-like stars with magnetic
fields is almost uniform in the radiative region. But there is an obvious
transition region of angular velocity between the convective core and the
radiative region of models with 1.2 - 1.5 , where angular velocity
has a sharp radial change, which is different from the rotation profile of the
Sun and massive stars with magnetic fields. Moreover the changes of the angular
velocity in the transition region increase with the increasing in the age and
mass.Comment: Accepted for publication in ChjA
Probing the internal rotation of pre-white dwarf stars with asteroseismology: the case of PG 122+200
We put asteroseismological constraints on the internal rotation profile of
the GW Vir (PG1159-type) star PG 0122+200. To this end we employ a
state-of-the-art asteroseismological model for this star and we assess the
expected frequency splittings induced by rotation adopting a forward approach
in which we compare the theoretical frequency separations with the observed
ones assuming different types of plausible internal rotation profiles. We also
employ two asteroseismological inversion methods for the inversion of the
rotation profile of PG 0122+200. We find evidence for differential rotation in
this star. We demonstrate that the frequency splittings of the rotational
multiplets exhibited by PG 0122+200 are compatible with a rotation profile in
which the central regions are spinning about 2.4 times faster than the stellar
surface.Comment: 8 pages, 6 figures, 2 tables. To be published in MNRA
Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants
Context : We still do not know which mechanisms are responsible for the
transport of angular momentum inside stars. The recent detection of mixed modes
that contain the signature of rotation in the spectra of Kepler subgiants and
red giants gives us the opportunity to make progress on this issue.
Aims: Our aim is to probe the radial dependance of the rotation profiles for
a sample of Kepler targets. For this purpose, subgiants and early red giants
are particularly interesting targets because their rotational splittings are
more sensitive to the rotation outside the deeper core than is the case for
their more evolved counterparts.
Methods: We first extract the rotational splittings and frequencies of the
modes for six young Kepler red giants. We then perform a seismic modeling of
these stars using the evolutionary codes CESAM2k and ASTEC. By using the
observed splittings and the rotational kernels of the optimal models, we
perform inversions of the internal rotation profiles of the six stars.
Results: We obtain estimates of the mean rotation rate in the core and in the
convective envelope of these stars. We show that the rotation contrast between
the core and the envelope increases during the subgiant branch. Our results
also suggest that the core of subgiants spins up with time, contrary to the RGB
stars whose core has been shown to spin down. For two of the stars, we show
that a discontinuous rotation profile with a deep discontinuity reproduces the
observed splittings significantly better than a smooth rotation profile.
Interestingly, the depths that are found most probable for the discontinuities
roughly coincide with the location of the H-burning shell, which separates the
layers that contract from those that expand. These results will bring
observational constraints to the scenarios of angular momentum transport in
stars.Comment: Accepted in A&A, 27 pages, 18 figure
Deflection and Rotation of CMEs from Active Region 11158
Between the 13 and 16 of February 2011 a series of coronal mass ejections
(CMEs) erupted from multiple polarity inversion lines within active region
11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS)
flux rope model to determine the CME trajectory using both Solar Terrestrial
Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph
images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model
for nonradial CME dynamics driven by magnetic forces, to simulate the
deflection and rotation of the seven CMEs. We find good agreement between the
ForeCAT results and the reconstructed CME positions and orientations. The CME
deflections range in magnitude between 10 degrees and 30 degrees. All CMEs
deflect to the north but we find variations in the direction of the
longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with
both clockwise and counterclockwise rotations occurring. Three of the CMEs
begin with initial positions within 2 degrees of one another. These three CMEs
all deflect primarily northward, with some minor eastward deflection, and
rotate counterclockwise. Their final positions and orientations, however,
respectively differ by 20 degrees and 30 degrees. This variation in deflection
and rotation results from differences in the CME expansion and radial
propagation close to the Sun, as well as the CME mass. Ultimately, only one of
these seven CMEs yielded discernible in situ signatures near Earth, despite the
active region facing near Earth throughout the eruptions. We suggest that the
differences in the deflection and rotation of the CMEs can explain whether each
CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic
- …