33 research outputs found

    Detection of π+π\pi^+\pi^-atoms with the DIRAC spectrometer at CERN

    Full text link
    The goal of the DIRAC experiment at CERN is to measure with high precision the lifetime of the π+π\pi^+\pi^- atom (A2πA_{2\pi}), which is of order 3×10153\times10^{-15} s, and thus to determine the s-wave ππ\pi\pi-scattering lengths difference a0a2|a_{0}-a_{2}|. A2πA_{2\pi} atoms are detected through the characteristic features of π+π\pi^+\pi^- pairs from the atom break-up (ionization) in the target. We report on a first high statistics atomic data sample obtained from p Ni interactions at 24 GeV/cc proton momentum and present the methods to separate the signal from the background.Comment: 19 pages, 12 figures, 1 tabl

    First measurement of the π+π\pi^+\pi^- atom lifetime

    Get PDF
    The goal of the DIRAC experiment at CERN (PS212) is to measure the π+π\pi^+\pi^- atom lifetime with 10% precision. Such a measurement would yield a precision of 5% on the value of the SS-wave ππ\pi\pi scattering lengths combination a0a2|a_0-a_2|. Based on part of the collected data we present a first result on the lifetime, τ=[2.910.62+0.49]×1015\tau=[2.91 ^{+0.49}_{-0.62}]\times 10^{-15} s, and discuss the major systematic errors. This lifetime corresponds to a0a2=0.2640.020+0.033mπ1|a_0-a_2|=0.264 ^{+0.033}_{-0.020} m_{\pi}^{-1}.Comment: 18 pages, 6 figure

    Barriers to Non-Viral Vector-Mediated Gene Delivery in the Nervous System

    Get PDF
    Efficient methods for cell line transfection are well described, but, for primary neurons, a high-yield method different from those relying on viral vectors is lacking. Viral transfection has several drawbacks, such as the complexity of vector preparation, safety concerns, and the generation of immune and inflammatory responses when used in vivo. However, one of the main problems for the use of non-viral gene vectors for neuronal transfection is their low efficiency when compared with viral vectors. Transgene expression, or siRNA delivery mediated by non-viral vectors, is the result of multiple processes related to cellular membrane crossing, intracellular traffic, and/or nuclear delivery of the genetic material cargo. This review will deal with the barriers that different nanoparticles (cationic lipids, polyethyleneimine, dendrimers and carbon nanotubes) must overcome to efficiently deliver their cargo to central nervous system cells, including internalization into the neurons, interaction with intracellular organelles such as lysosomes, and transport across the nuclear membrane of the neuron in the case of DNA transfection. Furthermore, when used in vivo, the nanoparticles should efficiently cross the blood-brain barrier to reach the target cells in the brain

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Acute Pancreatitis: A Rare Complication in a Patient with Senior Loken Syndrome

    No full text
    No Abstract

    Iatrogenic neonatal bladder perforation

    No full text
    Neonatal bladder rupture is rare as a complication of bladder obstruction due to abnormal anatomy or iatrogenic causes. The present study describes the case of a 3-day-old infant with ascites due to bladder perforation secondary probably to manual decompression of the bladder. The infant underwent successful surgical repair of the perforation
    corecore