1,052 research outputs found
Focal plane wavefront sensor achromatization : The multireference self-coherent camera
High contrast imaging and spectroscopy provide unique constraints for
exoplanet formation models as well as for planetary atmosphere models. But this
can be challenging because of the planet-to-star small angular separation and
high flux ratio. Recently, optimized instruments like SPHERE and GPI were
installed on 8m-class telescopes. These will probe young gazeous exoplanets at
large separations (~1au) but, because of uncalibrated aberrations that induce
speckles in the coronagraphic images, they are not able to detect older and
fainter planets. There are always aberrations that are slowly evolving in time.
They create quasi-static speckles that cannot be calibrated a posteriori with
sufficient accuracy. An active correction of these speckles is thus needed to
reach very high contrast levels (>1e7). This requires a focal plane wavefront
sensor. Our team proposed the SCC, the performance of which was demonstrated in
the laboratory. As for all focal plane wavefront sensors, these are sensitive
to chromatism and we propose an upgrade that mitigates the chromatism effects.
First, we recall the principle of the SCC and we explain its limitations in
polychromatic light. Then, we present and numerically study two upgrades to
mitigate chromatism effects: the optical path difference method and the
multireference self-coherent camera. Finally, we present laboratory tests of
the latter solution.
We demonstrate in the laboratory that the MRSCC camera can be used as a focal
plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640
nm. We reach a performance that is close to the chromatic limitations of our
bench: contrast of 4.5e-8 between 5 and 17 lambda/D.
The performance of the MRSCC is promising for future high-contrast imaging
instruments that aim to actively minimize the speckle intensity so as to detect
and spectrally characterize faint old or light gaseous planets.Comment: 14 pages, 20 figure
Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed
Specific high contrast imaging instruments are mandatory to characterize
circumstellar disks and exoplanets around nearby stars. Coronagraphs are
commonly used in these facilities to reject the diffracted light of an observed
star and enable the direct imaging and spectroscopy of its circumstellar
environment. One important property of the coronagraph is to be able to work in
broadband light.
Among several proposed coronagraphs, the dual-zone phase mask coronagraph is
a promising solution for starlight rejection in broadband light. In this paper,
we perform the first validation of this concept in laboratory.
First, we recall the principle of the dual-zone phase mask coronagraph. Then,
we describe the high-contrast imaging THD testbed, the manufacturing of the
components and the quality-control procedures. Finally, we study the
sensitivity of our coronagraph to low-order aberrations (inner working angle
and defocus) and estimate its contrast performance. Our experimental broadband
light results are compared with numerical simulations to check agreement with
the performance predictions.
With the manufactured prototype and using a dark hole technique based on the
self-coherent camera, we obtain contrast levels down to between 5
and 17 in monochromatic light (640 nm). We also reach contrast
levels of between 7 and 17 in broadband
( nm, nm and %), which demonstrates the excellent chromatic performance of the dual-zone
phase mask coronagraph.
The performance reached by the dual-zone phase mask coronagraph is promising
for future high-contrast imaging instruments that aim at detecting and
spectrally characterizing old or light gaseous planets.Comment: 9 pages, 16 figure
A fragment merging approach towards the development of small molecule inhibitors of Mycobacterium tuberculosis EthR for use as ethionamide boosters.
With the ever-increasing instances of resistance to frontline TB drugs there is the need to develop novel strategies to fight the worldwide TB epidemic. Boosting the effect of the existing second-line antibiotic ethionamide by inhibiting the mycobacterial transcriptional repressor protein EthR is an attractive therapeutic strategy. Herein we report the use of a fragment based drug discovery approach for the structure-guided systematic merging of two fragment molecules, each binding twice to the hydrophobic cavity of EthR from M. tuberculosis. These together fill the entire binding pocket of EthR. We elaborated these fragment hits and developed small molecule inhibitors which have a 100-fold improvement of potency in vitro over the initial fragments.We also thank the Bill and Melinda Gates Foundation and the EU FP7 MM4TB Grant n°260872, the ERC-STG INTRACELLTB Grant n°260901, the Agence Nationale de la Recherche (ANR-10-EQPX-04-01), the Feder (12001407 (D-AL) Equipex Imaginex BioMed) and the Région Nord Pas de Calais, France, for providing funding to support this work.This is the final version of the article. It first appeared from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C5OB02630
Linac modeling for external beam radiotherapy quality assurance using a dedicated 2D pixelated detector
International audienceQuality assurance is a key issue in intensity modulated radiotherapy. Errors can occur in the dose delivery process induces significant differences between the planned treatment and the delivered one. In this context, the Medical Application Physics group of the LPSC is developing TraDeRa (Transparent Detector for Radiotherapy), a 2D pixelated matrix of ionization chambers located upstream to the patient. The signal map obtained with TraDeRa has to be processed to provide medical observables to quantify the quality of the treatment delivery. This relies on accurate Monte Carlo simulations benchmarked with measurements performed under a linear accelerator (Linac).The work described in this paper lies in the optimization of the Linac head simulation and the development of an innovative Monte Carlo/measurements comparison method to perform an accurate enough model of the X-ray production device. An optimized parametrization of the particles transport allowed an increase of the simulation efficiency by a factor 3. The characteristics of an electron beam of a reference Linac were matched with the simulation results by using dose deposition of the created X-ray beam in a water tank. Two parameters are particularly critical: the nominal energy of the electrons and the radial distribution of impact on the target. The innovative method was able to provide within minutes those two parameters for any Linac, achieving, for example, a 10 keV precision on the energy determination for a 6 MV operating Linac
UKIDSS detections of cool brown dwarfs - proper motions of 14 known T5 dwarfs and discovery of three new T5.5-T6 dwarfs
AIMS: We contribute to improving the census of cool brown dwarfs (late-T and
Y dwarfs) in the immediate solar neighbourhood. METHODS: By combining
near-infrared (NIR) data of UKIDSS with mid-infrared WISE and other available
NIR (2MASS) and red optical (SDSS -band) multi-epoch data we detect high
proper motion (HPM) objects with colours typical of late spectral types
(T5). We use NIR low-resolution spectroscopy for the classification of new
candidates. RESULTS: We determined new proper motions for 14 known T5.5-Y0
dwarfs, many of them being significantly (2-10 times) more accurate than
previous ones. We detected three new candidates, ULAS J0954+0623, ULAS
J1152+0359, and ULAS J1204-0150, by their HPMs and colours. Using previously
published and new UKIDSS positions of the known nearby T8 dwarf WISE J0254+0223
we improved its trigonometric parallax to 16520 mas. For the three new
objects we obtained NIR spectroscopic follow-up with LBT/LUCIFER classifying
them as T5.5 and T6 dwarfs. With their estimated spectroscopic distances of
about 25-30 pc, their proper motions of about 430-650 mas/yr lead to tangential
velocities of about 50-80 km/s typical of the Galactic thin disk population.Comment: 5 pages, 2 figures, plus 3 pages with 5 tables (online material),
accepted for publication in Astronomy and Astrophysic
Event-related potential correlates of sound organization: Early sensory and late cognitive effects
We tested whether incoming sounds are processed differently depending on how the preceding sound sequence has been interpreted by the brain. Sequences of a regularly repeating three-tone pattern, the perceived organization of which spontaneously switched back and forth between two alternative interpretations, were delivered to listeners. Occasionally, a regular tone was exchanged for a slightly or moderately lower one (deviants). The electroencephalogram (EEG) was recorded while listeners continuously marked their perception of the sound sequence. We found that for both the regular and the deviant tones, the early exogenous P1 and N1 amplitudes varied together with the perceived sound organization. Percept dependent effects on the late endogenous N2 and P3a amplitudes were only found for deviant tones. These results suggest that the perceived sound organization affects sound processing both by modulating what information is extracted from incoming sounds as well as by influencing how deviant sound events are evaluated for further processing
Preparing an unsupervised massive analysis of SPHERE high contrast data with the PACO algorithm
We aim at searching for exoplanets on the whole ESO/VLT-SPHERE archive with
improved and unsupervised data analysis algorithm that could allow to detect
massive giant planets at 5 au. To prepare, test and optimize our approach, we
gathered a sample of twenty four solar-type stars observed with SPHERE using
angular and spectral differential imaging modes. We use PACO, a new generation
algorithm recently developed, that has been shown to outperform classical
methods. We also improve the SPHERE pre-reduction pipeline, and optimize the
outputs of PACO to enhance the detection performance. We develop custom built
spectral prior libraries to optimize the detection capability of the ASDI mode
for both IRDIS and IFS. Compared to previous works conducted with more
classical algorithms than PACO, the contrast limits we derived are more
reliable and significantly better, especially at short angular separations
where a gain by a factor ten is obtained between 0.2 and 0.5 arcsec. Under good
observing conditions, planets down to 5 MJup, orbiting at 5 au could be
detected around stars within 60 parsec. We identified two exoplanet candidates
that require follow-up to test for common proper motion. In this work, we
demonstrated on a small sample the benefits of PACO in terms of achievable
contrast and of control of the confidence levels. Besides, we have developed
custom tools to take full benefits of this algorithm and to quantity the total
error budget on the estimated astrometry and photometry. This work paves the
way towards an end-to-end, homogeneous, and unsupervised massive re-reduction
of archival direct imaging surveys in the quest of new exoJupiters.Comment: Accepted for publication in A&
Muon capture on nuclei with N > Z, random phase approximation, and in-medium renormalization of the axial-vector coupling constant
We use the random phase approximation to describe the muon capture rate on
Ca,Ca, Fe, Zr, and Pb. With
Ca as a test case, we show that the Continuum Random Phase
Approximation (CRPA) and the standard RPA give essentially equivalent
descriptions of the muon capture process. Using the standard RPA with the free
nucleon weak form factors we reproduce the experimental total capture rates on
these nuclei quite well. Confirming our previous CRPA result for the
nuclei, we find that the calculated rates would be significantly lower than the
data if the in-medium quenching of the axial-vector coupling constant were
employed.Comment: submitted to Phys. Rev.
Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors
<p>Abstract</p> <p>Background</p> <p>Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices.</p> <p>Results</p> <p>We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices.</p> <p>Conclusions</p> <p>This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.</p
The SOPHIE search for northern extrasolar planets VIII. A warm Neptune orbiting HD164595
High-precision radial velocity surveys explore the population of low-mass
exoplanets orbiting bright stars. This allows accurately deriving their orbital
parameters such as their occurrence rate and the statistical distribution of
their properties. Based on this, models of planetary formation and evolution
can be constrained. The SOPHIE spectrograph has been continuously improved in
past years, and thanks to an appropriate correction of systematic instrumental
drift, it is now reaching 2 m/s precision in radial velocity measurements on
all timescales. As part of a dedicated radial velocity survey devoted to search
for low-mass planets around a sample of 190 bright solar-type stars in the
northern hemisphere, we report the detection of a warm Neptune with a minimum
mass of 16.1 +- 2.7 Mearth orbiting the solar analog HD164595 in 40 +- 0.24
days . We also revised the parameters of the multiplanetary system around
HD190360. We discuss this new detection in the context of the upcoming space
mission CHEOPS, which is devoted to a transit search of bright stars harboring
known exoplanets.Comment: 11 pages, 9 figure
- âŠ