179 research outputs found

    Novel mutation of SACS gene in a Spanish family with autosomal recessive spastic ataxia

    Get PDF
    Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an inherited neurodegenerative disorder characterized by early-onset, spastic ataxia and peripheral neuropathy. It was originally described in an inbred population of Quebec and later in some other countries. We report a new missense SACS mutation (7848C>T) in a Spanish family whose phenotype is similar to that of the previously described ARSACS patients. 7848C>T is the first SACS mutation reported in Spain confirming worldwide distribution of the disease. (c) 2005 Movement Disorder Society

    Spinal Cord Infarction with Multiple Etiologic Factors

    Get PDF
    Spinal cord infarction is uncommon and usually presents with sudden onset of paralysis and sensory disturbances. A variety of causes are described, but rarely with multiple factors involved. We report a case of a 63-year-old man with a history of diabetes mellitus, hypertension, and osteoarthritis who presented with acute onset of chest pain, numbness, and weakness associated with episodic hypotension. He had incomplete tetraplegia and was areflexic without spasticity. Pain and temperature sensations were impaired below the C7 dermatome and absent below the T4 dermatome bilaterally. Proprioception and vibration sensations were diminished on the right below the C6 dermatome. Magnetic resonance imaging showed spinal cord infarction affecting C6–T3 segments, and severe cervical and lumbar spine degenerative changes. This case illustrates an unusual presenting symptom of spinal infarction, the need to identify multiple risk factors for spinal cord infarction, and the importance of optimal preventive therapy in patients at risk

    Validation of the scale knowledge and perceptions about edible insects through structural equation modelling

    Get PDF
    Edible insects have been suggested as a more sustainable source of protein, but their consumption varies according to geographical and sociocultural influences. Focusing on the different aspects that can influence people’s attitudes towards edible insects (EI), this work aimed to carry out the statistical validation of an instrument aimed at assessing different dimensions of this field: the KPEI (knowledge and perceptions about EI) scale. The instrument consists of 64 questions distributed by the following dimensions: Culture and Tradition, Gastronomic Innovation and Gourmet Kitchen, Environment and Sustainability, Economic and Social Aspects, Commercialization and Marketing, Nutritional Characteristics, and Health Effects. The data were collected in 13 countries (Croatia, Greece, Latvia, Lebanon, Lithuania, Mexico, Poland, Portugal, Romania, Serbia, Slovenia, Spain, and Turkey). The validation of the KPEI scale was made through Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM). The results revealed two acceptable models, both retaining 37 of the 64 initial items, distrusted by the seven dimensions as: Culture and Tradition (5 items), Gastronomic Innovation and Gourmet Kitchen (5 items), Environment and Sustainability (8 items), Economic and Social Aspects (5 items), Commercialisation and Marketing (4 items), Nutritional Aspects (6 items), Health Effects (4 items). Both multifactorial models resulting from the CFA/SEM analyses showed approximately equal goodness of statistical fit indices with values of Root Mean Square Error of Approximation (RMSEA), Root Mean Square Residual (RMR), and Standardized Root Mean Square Residual (SRMR) partially zero and values of Goodness of Fit Index (GFI) and Comparative Fit Index (CFI) approximately one, i.e., very close to a perfect fit. For the first-order model, the ratio between chi-square and degrees of freedom is χ 2/df = 13.734, GFI = 0.932, CFI = 0.930, RMSEA = 0.043, RMR = 0.042, SRMR = 0.042; and for the second-order model χ 2/df = 14.697, GFI = 0.926, CFI = 0.923, RMSEA = 0.045, RMR = 0.047, SRMR = 0.046). The values of composite reliability (CR = 0.967) and mean extracted variance (MEV = 0.448) are indicative of a good fit. Finally, the reliability analysis indicated a very good internal consistency (Cronbach’s α = 0.941). These results confirm the successful validation of the KPEI scale, making it a valuable instrument for future application at the international level.info:eu-repo/semantics/publishedVersio

    Genetic Cross-Interaction between APOE and PRNP in Sporadic Alzheimer's and Creutzfeldt-Jakob Diseases

    Get PDF
    Alzheimer's disease (AD) and Creutzfeldt-Jakob disease (CJD) represent two distinct clinical entities belonging to a wider group, generically named as conformational disorders that share common pathophysiologic mechanisms. It is well-established that the APOE ε4 allele and homozygosity at polymorphic codon 129 in the PRNP gene are the major genetic risk factors for AD and human prion diseases, respectively. However, the roles of PRNP in AD, and APOE in CJD are controversial. In this work, we investigated for the first time, APOE and PRNP genotypes simultaneously in 474 AD and 175 sporadic CJD (sCJD) patients compared to a common control population of 335 subjects. Differences in genotype distribution between patients and control subjects were studied by logistic regression analysis using age and gender as covariates. The effect size of risk association and synergy factors were calculated using the logistic odds ratio estimates. Our data confirmed that the presence of APOE ε4 allele is associated with a higher risk of developing AD, while homozygosity at PRNP gene constitutes a risk for sCJD. Opposite, we found no association for PRNP with AD, nor for APOE with sCJD. Interestingly, when AD and sCJD patients were stratified according to their respective main risk genes (APOE for AD, and PRNP for sCJD), we found statistically significant associations for the other gene in those strata at higher previous risk. Synergy factor analysis showed a synergistic age-dependent interaction between APOE and PRNP in both AD (SF = 3.59, p = 0.027), and sCJD (SF = 7.26, p = 0.005). We propose that this statistical epistasis can partially explain divergent data from different association studies. Moreover, these results suggest that the genetic interaction between APOE and PRNP may have a biological correlate that is indicative of shared neurodegenerative pathways involved in AD and sCJD

    IL-6-174 G/C and -572 C/G Polymorphisms and Risk of Alzheimer’s Disease

    Get PDF
    Associations between interleukin 6 (IL-6) polymorphisms and Alzheimer’s disease (AD) remain controversial and ambiguous. The aim of this meta-analysis is to explore more precise estimations for the relationship between IL-6-174 G/C and -572 C/G polymorphisms and risk for AD. Electronic searches for all publications in databases PubMed and EMBASE were conducted on the associations between IL-6 polymorphisms and risk for AD until January 2012. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated using fixed and random effects models. Twenty-seven studies were included with a total of 19,135 individuals, involving 6,632 AD patients and 12,503 controls. For IL-6-174 G/C polymorphism, the combined results showed significant differences in recessive model (CC vs. CG+GG: OR = 0.65, 95%CI = 0.52–0.82). As regards IL-6-572 C/G polymorphism, significant associations were shown in dominant model (CG+GG vs. CC: OR  = 0.73, 95% CI = 0.62–0.86) and in additive model (GG vs. CC, OR  = 0.66, 95% CI = 0.46–0.96). In conclusion, genotype CC of IL-6-174 G/C and genotype GG plus GC of IL-6-572 C/G could decrease the risk of AD

    The dopamine β-hydroxylase -1021C/T polymorphism is associated with the risk of Alzheimer's disease in the Epistasis Project

    Get PDF
    Contains fulltext : 88930.pdf (publisher's version ) (Open Access)BACKGROUND: The loss of noradrenergic neurones of the locus coeruleus is a major feature of Alzheimer's disease (AD). Dopamine beta-hydroxylase (DBH) catalyses the conversion of dopamine to noradrenaline. Interactions have been reported between the low-activity -1021T allele (rs1611115) of DBH and polymorphisms of the pro-inflammatory cytokine genes, IL1A and IL6, contributing to the risk of AD. We therefore examined the associations with AD of the DBH -1021T allele and of the above interactions in the Epistasis Project, with 1757 cases of AD and 6294 elderly controls. METHODS: We genotyped eight single nucleotide polymorphisms (SNPs) in the three genes, DBH, IL1A and IL6. We used logistic regression models and synergy factor analysis to examine potential interactions and associations with AD. RESULTS: We found that the presence of the -1021T allele was associated with AD: odds ratio = 1.2 (95% confidence interval: 1.06-1.4, p = 0.005). This association was nearly restricted to men < 75 years old: odds ratio = 2.2 (1.4-3.3, 0.0004). We also found an interaction between the presence of DBH -1021T and the -889TT genotype (rs1800587) of IL1A: synergy factor = 1.9 (1.2-3.1, 0.005). All these results were consistent between North Europe and North Spain. CONCLUSIONS: Extensive, previous evidence (reviewed here) indicates an important role for noradrenaline in the control of inflammation in the brain. Thus, the -1021T allele with presumed low activity may be associated with misregulation of inflammation, which could contribute to the onset of AD. We suggest that such misregulation is the predominant mechanism of the association we report here

    Lack of association between PRNP 1368 polymorphism and Alzheimer's disease or vascular dementia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphisms of the prion protein gene (<it>PRNP</it>) at codons 129 and 219 play an important role in the susceptibility to Creutzfeldt-Jakob disease (CJD), and might be associated with other neurodegenerative disorders. Several recent reports indicate that polymorphisms outside the coding region of <it>PRNP </it>modulate the expression of prion protein and are associated with sporadic CJD, although other studies failed to show an association. These reports involved the polymorphism <it>PRNP </it>1368 which is located upstream from <it>PRNP </it>exon 1. In a case-controlled protocol, we assessed the possible association between the <it>PRNP </it>1368 polymorphism and either Alzheimer's disease (AD) or vascular dementia (VaD).</p> <p>Methods</p> <p>To investigate whether the <it>PRNP </it>1368 polymorphism is associated with the occurrence of AD or VaD in the Korean population, we compared the genotype, allele, and haplotype frequencies of the <it>PRNP </it>1368 polymorphism in 152 AD patients and 192 VaD patients with frequencies in 268 healthy Koreans.</p> <p>Results and conclusion</p> <p>Significant differences in genotype, allele and haplotype frequencies of <it>PRNP </it>1368 polymorphism were not observed between AD and normal controls. There were no significant differences in the genotype and allele frequencies of the <it>PRNP </it>1368 polymorphism between Korean VaD patients and normal controls. However, in the haplotype analysis, haplotype Ht5 was significantly over-represented in Korean VaD patients. This was the first genetic association study of a polymorphism outside the coding region of <it>PRNP </it>in relation to AD and VaD.</p

    In silico modeling of the specific inhibitory potential of thiophene-2,3-dihydro-1,5-benzothiazepine against BChE in the formation of β-amyloid plaques associated with Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease, known to be associated with the gradual loss of memory, is characterized by low concentration of acetylcholine in the hippocampus and cortex part of the brain. Inhibition of acetylcholinesterase has successfully been used as a drug target to treat Alzheimer's disease but drug resistance shown by butyrylcholinesterase remains a matter of concern in treating Alzheimer's disease. Apart from the many other reasons for Alzheimer's disease, its association with the genesis of fibrils by β-amyloid plaques is closely related to the increased activity of butyrylcholinesterase. Although few data are available on the inhibition of butyrylcholinesterase, studies have shown that that butyrylcholinesterase is a genetically validated drug target and its selective inhibition reduces the formation of β-amyloid plaques.</p> <p>Rationale</p> <p>We previously reported the inhibition of cholinesterases by 2,3-dihydro-1, 5-benzothiazepines, and considered this class of compounds as promising inhibitors for the cure of Alzheimer's disease. One compound from the same series, when substituted with a hydroxy group at C-3 in ring A and 2-thienyl moiety as ring B, showed greater activity against butyrylcholinesterase than to acetylcholinesterase. To provide insight into the binding mode of this compound (Compound A), molecular docking in combination with molecular dynamics simulation of 5000 ps in an explicit solvent system was carried out for both cholinesterases.</p> <p>Conclusion</p> <p>Molecular docking studies revealed that the potential of Compound A to inhibit cholinesterases was attributable to the cumulative effects of strong hydrogen bonds, cationic-π, π-π interactions and hydrophobic interactions. A comparison of the docking results of Compound A against both cholinesterases showed that amino acid residues in different sub-sites were engaged to stabilize the docked complex. The relatively high affinity of Compound A for butyrylcholinesterase was due to the additional hydrophobic interaction between the 2-thiophene moiety of Compound A and Ile69. The involvement of one catalytic triad residue (His438) of butyrylcholinesterase with the 3'-hydroxy group on ring A increases the selectivity of Compound A. C-C bond rotation around ring A also stabilizes and enhances the interaction of Compound A with butyrylcholinesterase. Furthermore, the classical network of hydrogen bonding interactions as formed by the catalytic triad of butyrylcholinesterase is disturbed by Compound A. This study may open a new avenue for structure-based drug design for Alzheimer's disease by considering the 3D-pharmacophoric features of the complex responsible for discriminating these two closely-related cholinesterases.</p

    Molecular Profiling Reveals Diversity of Stress Signal Transduction Cascades in Highly Penetrant Alzheimer's Disease Human Skin Fibroblasts

    Get PDF
    The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD) as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R) inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival pathway in normal fibroblasts lost in PS-1 M146L fibroblasts. Complex molecular profiles of signaling dysfunction in the most putatively straightforward human cellular models of AD suggest that risk ascertainment and therapeutic interventions in AD as a whole will likely demand complex solutions
    corecore