90 research outputs found

    GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function : a report from the COGENT consortium

    Get PDF
    CORRIGENDUM Molecular Psychiatry (2017) 22, 1651–1652 http://www.nature.com/articles/mp2017197.pdfThe complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (similar to 8M single-nucleotide polymorphisms (SNP) with minor allele frequency >= 1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (PPeer reviewe

    Survey of CF mutations in the clinical laboratory

    Get PDF
    BACKGROUND: Since it is impossible to sequence the complete CFTR gene routinely, clinical laboratories must rely on test systems that screen for a panel of the most frequent mutations causing disease in a high percentage of patients. Thus, in a cohort of 257 persons that were referred to our laboratory for analysis of CF gene mutations, reverse line probe assays for the most common CF mutations were performed. These techniques were evaluated as routine first-line analyses of the CFTR gene status. METHODS: DNA from whole blood specimens was extracted and subjected to PCR amplification of 9 exons and 6 introns of the CFTR gene. The resulting amplicons were hybridised to probes for CF mutations and polymorphisms, immobilised on membranes supplied by Roche Molecular Systems, Inc. and Innogenetics, Inc.. Denaturing gradient gel electrophoresis and sequencing of suspicious fragments indicating mutations were done with CF exon and intron specific primers. RESULTS: Of the 257 persons tested over the last three years (referrals based on 1) clinical symptoms typical for/indicative of CF, 2) indication for in vitro fertilisation, and 3) gene status determination because of anticipated parenthood and partners or relatives affected by CF), the reverse line blots detected heterozygote or homozygote mutations in the CFTR gene in 68 persons (26%). Eighty-three percent of those affected were heterozygous (47 persons) or homozygous (10 persons) for the ΔF508 allele. The only other CF-alleles that we found with these tests were the G542X allele (3 persons), the G551D allele (3 persons), the 3849+10kb C-T allele (2 persons) the R117H allele (2 persons) and the 621+1G-T allele (1 person). Of the fifteen IVS8-5T-polymorphisms detected in intron 8, seven (47%) were found in males referred to us from IVF clinics. These seven 5T-alleles were all coupled with a heterozygous ΔF508 allele, they make up 35% of the males with fertility problems (20 men) referred to us. CONCLUSIONS: In summary, the frequency of CF chromosomes in the cohort examined with these tests was 26%, with the ΔF508 allele affecting 83% of the CF chromosomes. It is a substantial improvement for routine CF diagnostics to have available a test system for 30 mutations plus the polypyrimidine length variants in intron 8. Our results show that this test system allows a routine first-line analyses of the CFTR gene status

    Leveraging multiomic approaches to elucidate mechanisms of heterogeneity in Alzheimer’s disease: neuropsychiatric symptoms, co-pathologies, and sex differences

    Get PDF
    At end of the list of authors: Neuropsychiatric Syndromes Professional Interest Area MultiomicsWork Group, Alzheimer’s Association, International Society to Advance Alzheimer’s Research and Treatment, Chicago, Illinois, USASupporting Information is available online at: https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.70549#support-information-section .The heterogeneity of Alzheimer's disease (AD) is multi-dimensional, encompassing clinical features such as neuropsychiatric symptoms (NPS), rate of progression, age of onset, comorbidities, and neuropathological features such as co-pathologies, and represents the diverse outcomes of manifold genetic and environmental risk determinants. These diverse features of AD also vary significantly between sexes and across ancestral backgrounds, but the specific variations and causal mechanisms are not well understood. Recent technological advances, particularly single-cell and spatial omics, have provided new tools to dissect the molecular underpinnings of AD heterogeneity and its multifactorial nature. This perspective review highlights molecular differences, general and sex-specific, that contribute to the heterogeneity of AD in aspects such as NPS, co-pathology prevalence, and general disease trajectories. We further examined the potential for multiomic approaches to direct future translational studies aimed at the development of precision medicine strategies for the treatment of AD in all its diverse forms.National Institutes of Health/National Institute on Aging. Grant Numbers: R01 AG057522, RF1 AG077695, R00AG078503, R00AG075238, R01AG067015; National Institute of Neurological Disorders & Stroke. Grant Numbers: RF1-NS113548-01A1, ZIANS003154; National Institute on Alcohol Abuse and Alcoholism. Grant Number: 2U10AA008401; Cure Alzheimer's Fund; The State of São Paulo Research Foundation. Grant Number: 2015/10109-5; Alzheimer's Association. Grant Numbers: AARG-24-1027303, 22-AAIIA-953269, AARF-22-967171

    α-Synuclein Genetic Variants Predict Faster Motor Symptom Progression in Idiopathic Parkinson Disease

    Get PDF
    Currently, there are no reported genetic predictors of motor symptom progression in Parkinson’s disease (PD). In familial PD, disease severity is associated with higher α-synuclein (SNCA) expression levels, and in postmortem studies expression varies with SNCA genetic variants. Furthermore, SNCA is a well-known risk factor for PD occurrence. We recruited Parkinson’s patients from the communities of three central California counties to investigate the influence of SNCA genetic variants on motor symptom progression in idiopathic PD. We repeatedly assessed this cohort of patients over an average of 5.1 years for motor symptom changes employing the Unified Parkinson’s Disease Rating Scale (UPDRS). Of 363 population-based incident PD cases diagnosed less than 3 years from baseline assessment, 242 cases were successfully re-contacted and 233 were re-examined at least once. Of subjects lost to follow-up, 69% were due to death. Adjusting for covariates, risk of faster decline of motor function as measured by annual increase in motor UPDRS exam score was increased 4-fold in carriers of the REP1 263bp promoter variant (OR 4.03, 95%CI:1.57–10.4). Our data also suggest a contribution to increased risk by the G-allele for rs356165 (OR 1.66; 95%CI:0.96–2.88), and we observed a strong trend across categories when both genetic variants were considered (p for trend  = 0.002). Our population-based study has demonstrated that SNCA variants are strong predictors of faster motor decline in idiopathic PD. SNCA may be a promising target for therapies and may help identify patients who will benefit most from early interventions. This is the first study to link SNCA to motor symptom decline in a longitudinal progression study

    A case-control analysis of common variants in GIP with type 2 diabetes and related biochemical parameters in a South Indian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glucose-dependent insulinotropic polypeptide (GIP) is one of the incretins, which plays a crucial role in the secretion of insulin upon food stimulus and in the regulation of postprandial glucose level. It also exerts an effect on the synthesis and secretion of lipoprotein lipase, from adipocytes, important for lipid metabolism. The aim of our study was to do a case-control association analysis of common variants in <it>GIP </it>in association with type 2 diabetes and related biochemical parameters.</p> <p>Method</p> <p>A total of 2000 subjects which includes 1000 (584M/416F) cases with type 2 diabetes and 1000 (470M/530F) normoglycemic control subjects belonging to Dravidian ethnicity from South India were recruited to assess the effect of single nucleotide polymorphisms (SNPs) in <it>GIP </it>(rs2291725, rs2291726, rs937301) on type 2 diabetes in a case-control manner. The SNPs were genotyped by using tetra primer amplification refractory mutation system-PCR (ARMS PCR). For statistical analysis, our study population was divided into sub-groups based on gender (male and female). Association analysis was carried out using chi-squared test and the comparison of biochemical parameters among the three genotypes were performed using analysis of covariance (ANCOVA).</p> <p>Result</p> <p>Initial analysis revealed that, out of the total three SNPs selected for the present study, two SNPs namely rs2291726 and rs937301 were in complete linkage disequilibrium (LD) with each other. Therefore, only two SNPs, rs2291725 and rs2291726, were genotyped for the association studies. No significant difference in the allele frequency and genotype distribution of any of the SNPs in <it>GIP </it>were observed between cases and controls (<it>P </it>> 0.05). Analysis of biochemical parameters among the three genotypes showed a significant association of total cholesterol (<it>P </it>= 0.042) and low density lipoprotein (LDL) with the G allele of the SNP rs2291726 in <it>GIP </it>(<it>P </it>= 0.004), but this was observed only in the case of female subjects. However this association does not remain significant after correction for multiple testing by Bonferroni's inequality method.</p> <p>Conclusion</p> <p>No statistically significant association was observed between any of the SNPs analysed and type 2 diabetes in our population. But the analysis of biochemical parameters indicates that the G allele in rs2291726 may be a putative risk allele for increased LDL cholesterol and further studies in other population needs to be carried out for ascertaining its role in cholesterol metabolism and subsequent cardiovascular risk.</p

    Defective CFTR Expression and Function Are Detectable in Blood Monocytes: Development of a New Blood Test for Cystic Fibrosis

    Get PDF
    BACKGROUND: Evaluation of cystic fibrosis transmembrane conductance regulator (CFTR) functional activity to assess new therapies and define diagnosis of cystic fibrosis (CF) is cumbersome. It is known that leukocytes express detectable levels of CFTR but the molecule has not been characterized in these cells. In this study we aim at setting up and validating a blood test to evaluate CFTR expression and function in leukocytes. DESCRIPTION: Western blot, PCR, immunofluorescence and cell membrane depolarization analysis by single-cell fluorescence imaging, using the potential-sensitive DiSBAC(2)(3) probe were utilized. Expression of PKA phosphorylated, cell membrane-localized CFTR was detected in non-CF monocytes, being undetectable or present in truncated form in monocytes derived from CF patients presenting with nonsense mutations. CFTR agonist administration induced membrane depolarization in monocytes isolated from non-CF donors (31 subjects) and, to a lesser extent, obligate CFTR heterozygous carriers (HTZ: 15 subjects), but it failed in monocytes from CF patients (44 subjects). We propose an index, which values in CF patients are significantly (p<0.001) lower than in the other two groups. Nasal Potential Difference, measured in selected subjects had concordant results with monocytes assay (Kappa statistic 0.93, 95%CI: 0.80-1.00). RESULTS AND SIGNIFICANCE: CFTR is detectable and is functional in human monocytes. We also showed that CFTR-associated activity can be evaluated in 5 ml of peripheral blood and devise an index potentially applicable for diagnostic purposes and both basic and translational research: from drug development to evaluation of functional outcomes in clinical trials

    Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics

    Get PDF
    Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify “druggable” targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing

    High LRRK2 Levels Fail to Induce or Exacerbate Neuronal Alpha-Synucleinopathy in Mouse Brain

    Get PDF
    The G2019S mutation in the multidomain protein leucine-rich repeat kinase 2 (LRRK2) is one of the most frequently identified genetic causes of Parkinson’s disease (PD). Clinically, LRRK2(G2019S) carriers with PD and idiopathic PD patients have a very similar disease with brainstem and cortical Lewy pathology (α-synucleinopathy) as histopathological hallmarks. Some patients have Tau pathology. Enhanced kinase function of the LRRK2(G2019S) mutant protein is a prime suspect mechanism for carriers to develop PD but observations in LRRK2 knock-out, G2019S knock-in and kinase-dead mutant mice suggest that LRRK2 steady-state abundance of the protein also plays a determining role. One critical question concerning the molecular pathogenesis in LRRK2(G2019S) PD patients is whether α-synuclein (aSN) has a contributory role. To this end we generated mice with high expression of either wildtype or G2019S mutant LRRK2 in brainstem and cortical neurons. High levels of these LRRK2 variants left endogenous aSN and Tau levels unaltered and did not exacerbate or otherwise modify α-synucleinopathy in mice that co-expressed high levels of LRRK2 and aSN in brain neurons. On the contrary, in some lines high LRRK2 levels improved motor skills in the presence and absence of aSN-transgene-induced disease. Therefore, in many neurons high LRRK2 levels are well tolerated and not sufficient to drive or exacerbate neuronal α-synucleinopathy
    corecore