262 research outputs found

    Managing weight and glycaemic targets in people with type 2 diabetes—How far have we come?

    Get PDF
    Introduction: As the vast majority of people with type 2 diabetes (T2D) are also overweight or obese, healthcare professionals (HCP) are faced with the task of addressing both weight management and glucose control. In this narrative review, we aim to identify the challenges of reaching and maintaining body weight targets in people with T2D and highlight current and future treatment interventions. Methods: A search of the PubMed database was conducted using the search terms “diabetes” and “weight loss.”. Results: According to emerging evidence, treating obesity may be antecedent to the development and progression of T2D. While clinical benefits typically set in upon achieving a weight loss of 3–5%, these benefits are progressive leading to further health improvements, and weight loss of >15% can have a disease-modifying effect in people with T2D, an outcome that up to recently could not be achieved with any blood glucose-lowering pharmacotherapy. However, advanced treatment options with weight-loss effects currently in development including the dual GIP/GLP-1 receptor agonists may enable simultaneous achievement of individual glycemic and weight goals. Conclusion: Despite considerable therapeutic progress, there is still a large unmet medical need in patients with T2D who miss their individualized glycemic and weight-loss targets. Nonetheless, it is to be expected that development of future therapies and their use will favourably change the scenario of weight and glucose control in T2D

    Management of Diabetes Mellitus: Could Simultaneous Targeting of Hyperglycemia and Oxidative Stress Be a Better Panacea?

    Get PDF
    The primary aim of the current management of diabetes mellitus is to achieve and/or maintain a glycated hemoglobin level of ≤6.5%. However, recent evidence indicates that intensive treatment of hyperglycemia is characterized by increased weight gain, severe hypoglycemia and higher mortality. Besides, evidence suggests that it is difficult to achieve and/or maintain optimal glycemic control in many diabetic patients; and that the benefits of intensively-treated hyperglycemia are restricted to microvascular complications only. In view of these adverse effects and limitations of intensive treatment of hyperglycemia in preventing diabetic complications, which is linked to oxidative stress, this commentary proposes a hypothesis that “simultaneous targeting of hyperglycemia and oxidative stress” could be more effective than “intensive treatment of hyperglycemia” in the management of diabetes mellitus

    Effect of hesperidin treatment on α-Klotho/FGF-23 pathway in rats with experimentally-induced diabetes

    Get PDF
    Objective Non-alcoholic fatty liver disease, steatohepatitis and nephropathy are considered among the mostimportant complications of diabetes mellitus (DM), which recently increased due to increased frequency of DMand the prolonged life span of diabetic patients The aim of the present study was to reveal the possible effect ofhesperidin (HP) on alpha-klotho (α-KL)/fibroblast growth factor-23 (FGF-23) pathway in rats with diabetesinduced by streptozotocin (STZ).Materials and methods Thirty six male Sprague-Dawley rats were randomly divided into three groups. Therats of the control, diabetes, and treatment groups were fed with standard feed and water throughout the 2-weekstudy. In order to induce diabetes mellitus in rats, those in the diabetes group were administered a single dose of50 mg/kg STZ. For the DM + HP group, a single dose of 50 mg/kg STZ, when diabetes was induced, hesperidinwas administered orally at a dose of 100 mg/kg by gavage.Results Theα-KL levels of our study groups, both the liver and kidneyα-KL levels and serumα-KL of the STZ-induced diabetic group were statistically significantly lower than the control group (respectively, p < 0.05,p < 0.001, p < 0.05). It was observed that hesperidin administration statistically significantly increasedα-KLlevels in serum, liver and renal tissue (p < 0.001). Liver, kidney and serum FGF-23 levels of the diabetic groupincreased significantly in comparison to the control group (respectively, p < 0.05, p < 0.01, p < 0.001). FGF-23 levels that increased in kidney tissue and serum samples of the diabetic group decreased statistically sig-nificantly with hesperidin administration (respectively, p < 0.01, p < 0.001).Conclusion Theα-KL/FGF-23 pathway is a promising bio-indicator in various cases of systemic toxicity andpathology. In addition, the strong positive effects of hesperidin administration on diabetic toxicity in the liverand kidneys suggest that it may be included in the alternative treatment methods in the future.This work was supported by Coordinator of Scientific Research Projects ( 2017.M83.02.01 ) at University of Artvin Coruh

    Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing.

    Get PDF
    This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres

    Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications

    Get PDF
    There is evidence for increased levels of circulating reactive oxygen species (ROS) in diabetics, as indirectly inferred by the findings of increased lipid peroxidation and decreased antioxidant status. Direct measurements of intracellular generation of ROS using fluorescent dyes also demonstrate an association of oxidative stress with diabetes. Although phenolic compounds attenuate oxidative stress-related tissue damage, there are concerns over toxicity of synthetic phenolic antioxidants and this has considerably stimulated interest in investigating the role of natural phenolics in medicinal applications. Curcumin (the primary active principle in turmeric, Curcuma longa Linn.) has been claimed to represent a potential antioxidant and antiinflammatory agent with phytonutrient and bioprotective properties. However there are lack of molecular studies to demonstrate its cellular action and potential molecular targets. In this study the antioxidant effect of curcumin as a function of changes in cellular ROS generation was tested. Our results clearly demonstrate that curcumin abolished both phorbol-12 myristate-13 acetate (PMA) and thapsigargin-induced ROS generation in cells from control and diabetic subjects. The pattern of these ROS inhibitory effects as a function of dose-dependency suggests that curcumin mechanistically interferes with protein kinase C (PKC) and calcium regulation. Simultaneous measurements of ROS and Ca2+ influx suggest that a rise in cytosolic Ca2+ may be a trigger for increased ROS generation. We suggest that the antioxidant and antiangeogenic actions of curcumin, as a mechanism of inhibition of Ca2+ entry and PKC activity, should be further exploited to develop suitable and novel drugs for the treatment of diabetic retinopathy and other diabetic complications

    N-Acetylcysteine inhibits platelet-monocyte conjugation in patients with type 2 diabetes with depleted intraplatelet glutathione: a randomised controlled trial

    Get PDF
    AIMS/HYPOTHESIS: The aim of this study was to determine whether oral dosing with N-acetylcysteine (NAC) increases intraplatelet levels of the antioxidant, glutathione (GSH), and reduces platelet–monocyte conjugation in blood from patients with type 2 diabetes. METHODS: In this placebo-controlled randomised crossover study, the effect of oral NAC dosing on platelet–monocyte conjugation and intraplatelet GSH was investigated in patients with type 2 diabetes (eligibility criteria: men or post-menopausal women with well-controlled diabetes (HbA(1c) < 10%), not on aspirin or statins). Patients (n = 14; age range 43–79 years, HbA(1c) = 6.9 ± 0.9% [52.3 ± 10.3 mmol/mol]) visited the Highland Clinical Research Facility, Inverness, UK on day 0 and day 7 for each arm of the study. Blood was sampled before and 2 h after oral administration of placebo or NAC (1,200 mg) on day 0 and day 7. Patients received placebo or NAC capsules for once-daily dosing on the intervening days. The order of administration of NAC and placebo was allocated by a central office and all patients and research staff involved in the study were blinded to the allocation until after the study was complete and the data fully analysed. The primary outcome for the study was platelet–monocyte conjugation. RESULTS: Oral NAC reduced platelet–monocyte conjugation (from 53.1 ± 4.5% to 42.5 ± 3.9%) at 2 h after administration and the effect was maintained after 7 days of dosing. Intraplatelet GSH was raised in individuals with depleted GSH and there was a negative correlation between baseline intraplatelet GSH and platelet–monocyte conjugation. There were no adverse events. CONCLUSIONS/INTERPRETATION: The NAC-induced normalisation of intraplatelet GSH, coupled with a reduction in platelet–monocyte conjugation, suggests that NAC might help to reduce atherothrombotic risk in type 2 diabetes. FUNDING: Chief Scientist Office (CZB/4/622), Scottish Funding Council, Highlands & Islands Enterprise and European Regional Development Fund. TRIAL REGISTRATION: isrctn.org ISRCTN89304265 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-012-2685-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users
    corecore