44 research outputs found

    Improved genetic profiling of anthropometric traits using a big data approach

    Get PDF
    Genome-wide association studies (GWAS) promised to translate their findings into clinically beneficial improvements of patient management by tailoring disease management to the individual through the prediction of disease risk. However, the ability to translate genetic findings from GWAS into predictive tools that are of clinical utility and which may inform clinical practice has, so far, been encouraging but limited. Here we propose to use a more powerful statistical approach, the use of which has traditionally been limited due to computational requirements and lack of sufficiently large individual level genotyped cohorts, but which improve the prediction of multiple medically relevant phenotypes using the same panel of SNPs. As a proof of principle, we used a shared panel of 319,038 common SNPs with MAF > 0.05 to train the prediction models in 114,264 unrelated White-British individuals for height and four obesity related traits (body mass index, basal metabolic rate, body fat percentage, and waist-to-hip ratio). We obtained prediction accuracies that ranged between 46% and 75% of the maximum achievable given the captured heritable component. For height, this represents an improvement in prediction accuracy of up to 68% (184% more phenotypic variance explained) over SNPs reported to be robustly associated with height in a previous GWAS meta-analysis of similar size. Across-population predictions in White non-British individuals were similar to those in White-British whilst those in Asian and Black individuals were informative but less accurate. We estimate that the genotyping of circa 500,000 unrelated individuals will yield predictions between 66% and 82% of the SNP-heritability captured by common variants in our array. Prediction accuracies did not improve when including rarer SNPs or when fitting multiple traits jointly in multivariate models

    Antagonistic genetic correlations for milking traits within the genome of dairy cattle

    Get PDF
    Genome-wide association studies can be applied to identify useful SNPs associated with complex traits. Furthermore, regional genomic mapping can be used to estimate regional variance and clarify the genomic relationships within and outside regions but has not previously been applied to milk traits in cattle. We applied both single SNP analysis and regional genomic mapping to investigate SNPs or regions associated with milk yield traits in dairy cattle. The de-regressed breeding values of three traits, total yield (kg) of milk (MLK), fat (FAT), and protein (PRT) in 305 days, from 2,590 Holstein sires in Japan were analyzed. All sires were genotyped with 40,646 single-nucleotide polymorphism (SNP) markers. A genome-wide significant region (P < 0.01) common to all three traits was identified by regional genomic mapping on chromosome (BTA) 14. In contrast, single SNP analysis identified significant SNPs only for MLK and FAT (P < 0.01), but not PRT in the same region. Regional genomic mapping revealed an additional significant region (P < 0.01) for FAT on BTA5 that was not identified by single SNP analysis. The additive whole-genomic effects estimated in the regional genomic mapping analysis for the three traits were positively correlated with one another (0.830-0.924). However, the regional genomic effects obtained by using a window size of 20 SNPs for FAT on BTA14 were negatively correlated (P < 0.01) with the regional genomic effect for MLK (-0.940) and PRT (-0.878). The BTA14 regional effect for FAT also showed significant negative correlations (P < 0.01) with the whole genomic effects for MLK (-0.153), FAT (-0.172), and PRT (-0.181). These negative genomic correlations between loci are consistent with the negative linkage disequilibrium expected for traits under directional selection. Such antagonistic correlations may hamper the fixation of the FAT increasing alleles on BTA14. In summary, regional genomic mapping found more regions associated with milk production traits than did single SNP analysis. In addition, the existence of non-zero covariances between regional and whole genomic effects may influence the detection of regional effects, and antagonistic correlations could hamper the fixation of major genes under intensive selection

    Genome-wide association study identifies loci associated with liability to alcohol and drug dependence that is associated with variability in reward-related ventral striatum activity in African- and European-Americans.

    Get PDF
    Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome-wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European-Americans (EA; 2927 cases) and 3132 African-Americans (AA: 1315 cases) participating in the family-based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome-wide significant (GWS; P &lt; 5E-08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion-deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans-ancestral meta-analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward-related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non-European samples with distinct patterns of substance use may lead to the identification of novel ancestry-specific genetic markers of risk

    Dynamics and Mechanical Stability of the Developing Dorsoventral Organizer of the Wing Imaginal Disc

    Get PDF
    Shaping the primordia during development relies on forces and mechanisms able to control cell segregation. In the imaginal discs of Drosophila the cellular populations that will give rise to the dorsal and ventral parts on the wing blade are segregated and do not intermingle. A cellular population that becomes specified by the boundary of the dorsal and ventral cellular domains, the so-called organizer, controls this process. In this paper we study the dynamics and stability of the dorsal-ventral organizer of the wing imaginal disc of Drosophila as cell proliferation advances. Our approach is based on a vertex model to perform in silico experiments that are fully dynamical and take into account the available experimental data such as: cell packing properties, orientation of the cellular divisions, response upon membrane ablation, and robustness to mechanical perturbations induced by fast growing clones. Our results shed light on the complex interplay between the cytoskeleton mechanics, the cell cycle, the cell growth, and the cellular interactions in order to shape the dorsal-ventral organizer as a robust source of positional information and a lineage controller. Specifically, we elucidate the necessary and sufficient ingredients that enforce its functionality: distinctive mechanical properties, including increased tension, longer cell cycle duration, and a cleavage criterion that satisfies the Hertwig rule. Our results provide novel insights into the developmental mechanisms that drive the dynamics of the DV organizer and set a definition of the so-called Notch fence model in quantitative terms
    corecore