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Abstract13

Genetic correlation is a central parameter for understanding the shared genetic architecture between complex14

traits and diseases. Making use of summary-level genome-wide association study (GWAS) data resources, LD15

Score regression (LDSC) was developed for unbiased estimation of genetic correlation. Though easy to use,16

LDSC only uses a small part of all the linkage disequilibrium (LD) information in the modeling of summary17

association statistics. In contrast, by fully accounting for LD information across the human genome, we develop18

a High-Definition Likelihood (HDL) method to improve the precision in genetic correlation estimation. Com-19

pared to LDSC, HDL reduces the variance of a genetic correlation estimate by about 60%, which is equivalent to20

a 2.5-fold increase in sample size. We implement HDL and LDSC to estimate 435 genetic correlations amongst21

30 behavioral and disease-related phenotypes measured in UK Biobank. In addition to 154 genetic correlations22

significant for both methods, HDL identifies another 57 significant genetic correlations compared to only an-23

other 2 by LDSC. In summary, HDL brings more power to genome-wide analyses and can better reveal the24

underlying connections across human complex traits.25
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Estimating genetic correlation is a key step towards understanding the shared genetic architecture between com-26

plex traits and diseases. The genetic correlation parameter describes how the genome-wide genetic effects align27

between two complex phenotypes. To estimate genetic correlations using GWAS data, there are two widely used28

approaches. When individual-level data are available, genetic correlation is commonly estimated by restricted29

maximum likelihood (REML) for linear mixed models (LMM)1, 2. When only GWAS summary-level data are30

available, LDSC3, 4 can be used. A major appeal of summary statistics is their wide availability for many traits31

without the need to access individual-level data. As using GWAS summary statistics is more straightforward32

and computationally light, LDSC has been widely applied since its appearance5.33

Though easy to use, the standard errors of genetic correlation estimates by LDSC are substantially larger than34

those from REML4, 6, affecting the power and precision in the detection and estimation of genetic correlations.35

This accuracy gap is often attributed to the mismatch between the GWAS sample and the reference sample from36

which the LD Scores are estimated7. This mismatch introduces measurement errors into LD Scores and conse-37

quently decreases the accuracy of estimation. However, it is worthy to note that even when the GWAS sample38

and the reference sample are matched, the accuracy of LDSC is still evidently lower than that of REML6.39

In this report, we introduce an essential source that reveals the “missing accuracy” of LDSC: LDSC only40

uses a small part of the LD information in the modeling of summary association statistics. To fully exploit the41

information from GWAS summary-level data, we develop High-Definition Likelihood (HDL), a full-likelihood42

based method for estimating genetic correlation using GWAS summary statistics. The full likelihood naturally43

extends the regression formula of LDSC. We compare the accuracy of HDL and LDSC based on simulated and44

real data from UK Biobank (UKBB). We find that HDL is more accurate than LDSC with relative efficiency45

(ratio of estimator variance, which is equivalent to the ratio of sample size) more than 2.5 in simulations. This46

leads to higher statistical power to detect genetic correlations between phenotypes and also more precise esti-47

mates. For the real data, among the 435 tests for the genetic correlations across 30 behavioral and disease-related48

phenotypes, 57 were significant for HDL only versus 2 for LDSC only.49

RESULTS50

Overview of methods51

HDL is a natural extension of LDSC. LDSC is based on the fact that for a polygenic trait, if a SNP is in higher52

LD with other SNPs, it will have a higher χ2 test statistic on average due to more causal variants being tagged.53

Mathematically, under a polygenic model8 where true genetic effects are normally distributed and population54

stratification is absent (SupplementaryNote), for a single SNP j, the variance of its GWAS test statistic zj is related55
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to its LD with other SNPs:56

Var
[
zj
]
= E

[
z2j
]
=

Nh2

M
ljj + 1 (1)

whereN is the sample size; h2 is the narrow sense heritability;M is the number of SNPs; and ljj =
∑M

k=1 rjkrkj =57 ∑M
k=1 r

2
jk is defined as the LD Score of SNP j. LDSC is then developed using this relationship between single58

SNP LD Score and the variance of its test statistic.59

In fact, not only the variance of the single SNP test statistic but also the whole variance-covariance matrix of60

the test statistics is determined by the LDmatrix. For any two SNPs j and j′, the covariance or expected product61

of zj and zj′ is given by62

Cov
[
zj, zj′

]
= E

[
zjzj′
]
=

Nh2

M
ljj′ + rjj′ (2)

where rjj′ is the LD between SNP j and SNP j′; and ljj′ =
∑M

k=1 rjkrkj′ . When j = j′, equation (2) becomes63

equation (1). The derivation is shown in the Supplementary Note. To rewrite (2) into general matrix form,64

denoting the M × M full LD matrix as R with entries {rjj′}, we define LD Score Matrix L := R′R with entries65

{ljj′}. Then for the vector of test statistics z, its covariance matrix is66

Cov [z] =
Nh2

M
L+ R. (3)

Note that theM diagonal elements of L are exactly the LD Scores of theM SNPs; and theM diagonal elements of67

Cov [z] are the expected values of χ2 statistics. Therefore, LDSC is actually a method of moments that only uses68

the diagonal information in equation (3).69

For two traits, assuming the true genetic effects follow joint normal distribution (SupplementaryNote), LDSC70

can estimate their genetic covariance h12 based on71

Cov
[
z1j, z2j

]
= E

[
z1jz2j

]
=

√
N1N2h12
M

ljj +
N0(h12 + ρ12)√

N1N2
, (4)

where z1j and z2j are Z scores for a single SNP j from two studies of trait 1 and trait 2 respectively;Ni is the sample72

size of study i; N0 is the overlapping sample size; and ρ12 is the residual covariance. Similar to the extension in73

the one-trait scenario, equation (4) can be extended to74

Cov [z1, z2] =
√
N1N2h12
M

L+
N0(h12 + ρ12)√

N1N2
R (5)

where z1 and z2 are Z score vectors of the M SNPs from two studies of trait 1 and trait 2 respectively. Under75

the same assumption of normality as in LDSC, from the likelihood based on (3) and (5), HDL is developed to76

exploit the information within the whole Lmatrix and the covariance matrix of Z scores, not only their diagonal77

elements as used by LDSC.78
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Normalizing genetic covariance by heritabilities gives genetic correlation. Literature has suggested that, for79

LDSC, the estimates of genetic correlations are less susceptible to bias than the estimates of heritabilities4, 6, 7, 9.80

Although HDL improves accuracy in estimating both heritability and genetic correlation, we shall also focus on81

the estimation of genetic correlation in this report. Similar to LDSC, HDL can be applied to quantitative traits82

and binary traits, regardless of whether the samples overlap.83

Simulations84

We performed a series of simulations to compare the performance of HDL and LDSC, and to evaluate the ro-85

bustness of HDL with respect to the choice of reference samples and model assumptions. The simulations were86

mainly based on the UK Biobank Axiom Array data from 336,000 ethnically British individuals in UKBB. To be87

consistent with literature4, 10, we took SNPs with minor allele frequency (MAF) above 5%. Further quality con-88

trol steps resulted in 307,519 SNPs (Online Methods). For both HDL and LDSC, the LD matrix was computed89

using these 307,519 SNPs of 336,000 individuals. Among these SNPs, a proportion was randomly selected as90

causal variants. In each simulation replicate, to generate two phenotypes for genetic correlation estimation, we91

first drew true effect sizes of each causal variant from a bivariate normal distribution. Thereafter, the phenotypic92

values were generated by adding errors from another bivariate normal distribution. The summary statistics were93

then computed by genome-wide association analysis of the simulated phenotypes against the genotypes.94

Figure 1 shows the genetic correlation estimates from 100 simulations where 30,752 (10% of 307,519) SNPs95

are causal. The true genetic correlation was set to 0.5. For both high- and low-heritability pairs of traits, HDL96

produced unbiased and more accurate estimates than LDSC. The relative efficiency was 2.58 (Levene’s test P-97

value = 7.1 × 10−5) for high-heritability traits (with heritability 0.6 and 0.8) and 2.93 (Levene’s test P-value =98

1 × 10−5) for low-heritability traits (with heritability 0.2 and 0.4). The standard errors from block jackknifing99

were consistent with the observed standard deviations (Supplementary Table 1). To further compare HDL and100

LDSC, we performed simulations when (1) all of the SNPs were simulated to be causal (Supplementary Fig. 1);101

(2) model assumptions were violated (Supplementary Fig. 2-3). To compare HDL and LDSC when a large set102

of imputed SNPs were used as reference panel, we firstly built an imputed reference panel based on 1,029,876103

quality-controlled HapMap3 SNPs (see OnlineMethods); then simulated true phenotypes using these SNPs; and104

implemented HDL and LDSC, both using imputed reference panel (Supplementary Fig. 4). Under all scenarios,105

the relative efficiency was around or above 2.106

Application to summary statistics from UK Biobank107

With higher efficiency, we can estimate genetic correlations more accurately and obtain higher statistical power108

to detect genetic correlations between phenotypes. To illustrate this using real data, we applied HDL and LDSC109
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to estimate genetic correlations across 30 phenotypes inUKBB.Most of the 30 phenotypes were behavioral traits,110

together with some disease-related and anthropometric traits. Based on our imputed reference panel including111

1,029,876 quality-controlled HapMap3 SNPs, we obtained the genetic correlation estimates from HDL for the112

435 pairwise combinations of the 30 phenotypes and compared the results to the LDSC estimates (Fig. 2). For113

each pair of traits, the point estimates from the two methods were close. The standard errors from HDL were114

in general (422 out of 435) smaller than those from LDSC, with median relative efficiency = 2.35. The relative115

efficiency was positively correlated with the standard error given by LDSC (Supplementary Fig. 5). The efficiency116

gains were larger among binary traits. Among the 435 tests for the genetic correlations (Supplementary Table 2),117

after Bonferroni correction (P < 1.15 × 10−4), 154 were significant for both methods, 57 were significant for118

only HDL (Table 1) and 2 were significant for only LDSC. Similar power gain can be found when both HDL and119

LDSC use UKBB array SNPs as reference panel (Supplementary Fig. 6).120

Comparison with LMM results121

LMMfitted using individual-level data is known to be more accurate than LDSC in the estimation of heritability122

and genetic correlation 4, 6. If HDL has higher efficiency than LDSC, the gap of the genetic correlation estimates123

between HDL and LMMwould be smaller than the gap between LDSC and LMM. To validate this, we extracted124

the results by Canela-Xandri et al.10, where LMM was fitted on UKBB individual-level data to estimate genetic125

correlations between hundreds of traits. Among our analyzed 30 traits, LMM-based results for 11 traits were126

available for comparison (Fig. 3 and SupplementaryTable 3). Formost pairs of traits, HDL estimateswere close to127

the estimates from LMM (R2 = 0.80), while LDSC estimates deviated more from LMM estimates (R2 = 0.67).128

DISCUSSION129

We have presented HDL, a full-likelihood based method for estimating genetic correlation using GWAS sum-130

mary statistics. In contrast, LDSC uses only partial information based on the diagonal of the covariance matrix131

of Z scores. In both simulation and empirical applications, we have shown that HDL produces more accu-132

rate estimates than LDSC. As a result, HDL is able to detect more significant genetic correlations that might133

be missed by LDSC. Theoretically, the efficiency gain by HDL can be attributed to two reasons: (1) HDL uses134

more information on the relationship between test statistics and the LD structure; (2) likelihood-based methods135

such as HDL are more efficient than the method of moments such as LDSC when the underlying distributional136

assumption holds, which is typically the case for polygenic traits.137

As an extension of LDSC, given that the underlying model is correct, HDL can also be used to quantify vari-138

ous properties. In single-trait HDL, the slope can be transformed to be an estimate of heritability (Supplementary139

Fig. 7-8), and the intercept evaluates population stratification; in double-trait HDL, the intercept implies pheno-140
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typic correlation and sample overlap. However, some concerns have been raised about estimating these quan-141

tities using LDSC9, 11–13. Therefore, we are cautious about interpreting the intercept term and the single-trait142

HDL results, although HDL does improve heritability estimation (Supplementary Fig. 7). On the other hand,143

the LDSC estimates of genetic correlations are shown to be unbiased under different circumstances 4, 6, 7, 9. This144

robustness is mainly attributed to the ratio form of genetic correlation, and the biases on the numerator and the145

denominator are in the same direction, so they cancel out4. Given these considerations, we choose to focus the146

application of HDL on estimating genetic correlations.147

In application, the efficiency gain by HDL was more substantial when LDSC generated large standard errors148

(Supplementary Fig. 5). This phenomenon was consistent with the simulation results that when the traits’ heri-149

tabilities are low, LDSC standard errors were larger and the relative efficiency was higher. These results indicate150

that it is more important to use the full LD information when the amount of genetic variance is limited. For151

example, as the observed heritabilities of binary traits are usually low, when they are involved in the genetic cor-152

relation estimation, the gain of HDL is higher (Supplementary Fig. 5). As diseases are mostly recorded as binary153

traits and of interest in many GWAS projects and consortia, HDL would be more beneficial in such applications.154

In some cases14, the estimates of genetic correlations from LDSC are above 1. This is because the genetic co-155

variance estimate is not constrained in the cross-trait LD-score regression. As a consequence, the randomness156

of genetic covariance estimates may result in a genetic correlation estimate above 1. HDL makes this less prob-157

lematic by estimating heritability and genetic covariance parameters more precisely. We also use a constrained158

algorithm to prevent meaningless genetic correlation estimates. More details can be found in the Supplementary159

Note.160

Although both the estimates from HDL and LDSC were compared to LMM estimates, it should be noted161

that for binary phenotypes, LMM estimates were not used as the gold standard. The use of individual-level data162

allows LMM to incorporate the full LD information, but for binary outcomes, fitting a normal linear mixed163

model misspecifies the likelihood function thus is not optimal for statistical inference. While the HDL method164

models the GWAS test statistics whose distribution does not violate the normal assumption even for binary165

outcomes. This is another theoretical advantage of applying HDL on summary association statistics for binary166

phenotypes.167

Handling a large LDmatrix requires numerical regularization. To regularize the LDmatrix, instead of using168

the original LD matrix directly, we perform eigen-decomposition on the LD matrix and pass its top eigenvalues169

and eigenvectors to HDL. The selected eigenvalues and eigenvectors capture most information in the LD ma-170

trix (Supplementary Fig. 16). There are three benefits of this decomposition step: (1) improving the efficiency of171

HDL (Supplementary Fig. 9-10); (2) saving computation time by avoiding matrix multiplication (Supplementary172

Note); (3) saving storage space by only storing leading eigenvalues and eigenvectors for the reference panel that173

can be used across many GWAS summary-level data. Simulations suggest that taking the leading eigenval-174
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ues explaining 90% variance of the LD matrix has the highest estimation efficiency for array SNPs reference175

panel (Supplementary Fig. 9), and 99% has the highest estimation efficiency for imputed SNPs reference panel176

(Supplementary Fig. 10). Hence in this report, when array SNPs reference panel was used, we implementedHDL177

based on the leading eigenvalues explaining 90% variance and their corresponding eigenvectors; when imputed178

SNPs reference panel was used, we implementedHDL based on the leading eigenvalues explaining 99% variance179

and their corresponding eigenvectors. Note that for heritability estimation, as we mentioned above, consistent180

estimates are difficult to achieve for summary-statistics-based methods. For HDL, too little regularization of181

the LDmatrix would lead to downward bias, whereas too much regularization would lose information for gain-182

ing estimation efficiency (Supplementary Fig. 11). Nevertheless, bias is not a concern for genetic correlation183

estimation (Supplementary Fig. 10).184

In LDSC, 378 Europeans from the 1000 Genomes Project is often used as a reference sample to compute LD185

Scores. However, becauseHDLusesmore information from the LDmatrix, a larger reference sample is preferred.186

Therefore in the HDL software package, we took 336,000 genomic British individuals from UKBB as a reference187

sample to compute the LDmatrices and perform eigen-decomposition. These are stored in the software package188

so that the computation on user-input GWAS summary statistics is fast. In this report, the LD reference panel189

andGWAS summary statistics are both fromUKBB. But in other applications, this might not be the case. Hence,190

we performed a series of simulations to test the performance of HDL when GWAS and reference samples are191

independent. In these simulations, we also evaluated the robustness of HDL under different scenarios where192

the LD matrix (1) was computed from different reference sample sizes (Supplementary Figs. 12-13), and (2)193

was approximated by its different numbers of top eigenvalues and corresponding eigenvectors (Supplementary194

Figs. 9-11). The results suggest that (1) HDL provides unbiased estimate of genetic correlation when a large195

independent reference sample is used; (2) the efficiency based on a large independent reference sample is almost196

equal to the efficiency when the GWAS sample and reference sample are identical; (3) HDL based on a large197

independent reference sample is robust against the choice of top eigenvalues and corresponding eigenvectors;198

(4) HDL based on the leading eigenvalues explaining 90% variance still gives the optimal efficiency for array199

SNPs panel; (5) HDL based on a small independent reference sample can still be unbiased but is less efficient200

and less robust against the choice of top eigenvalues and corresponding eigenvectors.201

URLs. Software package for HDL inference using GWAS summary statistics, https://github.com/zhenin/HDL.202

LDSC, https://github.com/bulik/ldsc/; UKBB summary statistics, http://nealelab.is/uk-biobank; PLINK, http:203

//zzz.bwh.harvard.edu/plink/; LDAK, http://dougspeed.com/ldak/.204

To referees: The estimates across ∼4,000 UKBB phenotypes will be made publicly available on LD-Hub once this205

paper is published (Personal contact: Dr. Jie Zheng at the University of Bristol).206
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METHODS207

Methods and any associated references are available in the online version of the paper.208

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.209
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ONLINE METHODS220

Modeling and estimationof genetic correlation. Suppose we have two cohorts for two traits with sample sizesN1

andN2, whereN0 individuals are included in both cohorts. The number of SNPs isM in both cohorts. Denoting

the Z score vector of theM SNPs from study i of trait i as zi, then under a polygenic model without population

stratification8, we have

Cov [zi] =
Nih2i
M

L+ R (6)

Cov [z1, z2] =
√
N1N2h12
M

L+
N0(h12 + ρ12)√

N1N2
R (7)

where R is the LD matrix of theM SNPs, L := R′R is the LD score matrix, h2i is the narrow sense heritability of

trait i, h12 is the genetic covariance of the two traits and ρ12 is the environmental covariance. Denoting

Σii =
Nih2i
M

L+ R

Σ12 =

√
N1N2h12
M

L+
N0(h12 + ρ12)√

N1N2
R,

based on (6) and (7), we have

zi ∼ N (0, Σii) (8)

z2 | z1 ∼ N
(
Σ12Σ−1

11 z1, Σ22 − Σ12Σ−1
11 Σ12

)
(9)

Following (8) and (9), we can use maximum likelihood to estimate h21, h22 and rg := h12/
√
(h21h22). Complete221

derivations can be found in Supplementary Note.222

Literature has shown that LDSC with constrained intercept may produce substantially biased estimates6, 9.

However, LDSC with unconstrained intercept is much more robust. Therefore in (6) and (7), we introduced

parameters {c11, c22, c12}, which were analogous to the unconstrained intercept in LDSC:

Cov [zi] =
Nih2i
M

L+ ciiR (10)

Cov [z1, z2] =
√
N1N2h12
M

L+ c12
N0√
N1N2

R (11)

The diagonal elements in (10) and (11) are coincident with LDSC with unconstrained intercept. If the two traits223

are measured in the same study, given the underlying model is correct, c12 = h12 + ρ12 will be the pheno-224

typic correlation between the two traits. However, as we mentioned in Discussion, in practice we should be225

cautious of interpreting the estimate of c12. Nevertheless, residual correlation does not have obvious impact on226

9



the performance of HDL (Supplementary Fig. 14).227

Quality control of UKBiobank genotype array data. In UKBiobank,∼500,000 people aged between 40-69 years228

were recruited in 2006-2010 from across the country. By March 2018, most of them had been genotyped on an229

Affymetrix chip including ∼800,000 variants. Among the genotyped individuals, ∼336,000 were identified as230

unrelated genetically White British by the UK Biobank. These subjects and their genotypes were taken forward.231

Because we used GWAS summary statistics by Neale et al. (http://www.nealelab.is/uk-biobank/), and compared232

HDLwith LDSC, we took the overlapped SNPs between (1)UKBB array SNPs, (2) SNP list of LDSC and (3) SNPs233

in Neale’s GWAS to make fair comparison when array SNPs were used as reference panel. Following ref. 10 and234

LDSC, we excluded the MHC region and SNPs with sample MAF below 5%. We further performed LD pruning235

andmissing call rate filtering using plink15 software with flags –geno 0.1 –indep-pairwise 1000 5 0.95. We ended236

up with 307,519 autosomal SNPs for analysis related to array SNPs in this report. For both simulation and237

application where reference panel consists of array SNPs, the LDmatrix used in HDL and LDSC were computed238

with these 307,519 SNPs of∼336,000 unrelated geneticallyWhite British individuals. This dataset was also used239

to simulate phenotypes in the simulation section whenever the comparison was based on array SNPs.240

Quality control of UK Biobank imputed genotype data. When imputed SNPs were used as reference panel, we241

took the overlapped SNPs between (1) SNP list of LDSC and (2) SNPs in the GWAS by Neale’s lab. We excluded242

the SNPs which are (1) in theMHC region, (2) with sampleMAF below 5%, (3)multi-allelic, (4) with imputation243

quality < 0.9, and (5) with call rate < 0.95. We converted the remaining genotype probabilities to hard calls244

for the construction of the LD reference. We ended up with 1,029,876 autosomal SNPs for analysis related245

to imputed markers in this report. This panel was applied in HDL for analyses related to real UKBB GWAS246

summary statistics in Results.247

GWAS summary statistics of UK Biobank. The UKBB GWAS summary statistics used in this report were from248

the second wave of results released in July 2018 by Neale’s group (http://www.nealelab.is/uk-biobank/). They249

performed association tests on the∼336,000 unrelated individuals of British ancestry for over 2,000 of the avail-250

able phenotypes. For continuous traits, we took the GWAS version where phenotypes had been inverse rank251

normalized. Adjusted covariates are age, age2, inferred sex, age × inferred sex, age2 × inferred sex, and PCs252

1-20.253

LDSC settings. when reference panel consists of array SNPs, the LD scores based on the 307,519 SNPs were254

computed using flag –l2 –ld-wind-snps 500. We used 500 SNP windows to compute LD scores because the LD255

matrix was computed by 500 SNPwindows inHDL. Nevertheless, the LD scores computed by 500 SNPwindows256

are highly consistent with those computed by 1 centimorgan (Supplementary Fig. 15). When the reference panel257
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consists of imputed SNPs, the default 1000 Genomes panel was used. The estimation of genetic correlation was258

under the default setting with an unconstrained intercept. The same LD Scores for both –w-ld-chr and –ref-259

ld-chr flags were used as recommended on https://github.com/bulik/ldsc/. For analyses related to real UKBB260

GWAS summary statistics in Results, the default 1000 Genomes panel was applied.261

Computational details of HDL. To speed up computation, we split the whole genome into pieces. When the262

reference panel consists of array SNPs, each chromosome was averagely cut into pieces with less than 10,000263

SNPs, which led to 43 pieces for thewhole genome. For each piece, we firstly banded its LDblockwith bandwidth264

= 500. Then we performed eigen-decomposition on the LDmatrix and took the leading eigenvalues explaining265

90% variance and their correspondent eigenvectors (see also Supplementary Fig. 16). When the reference panel266

consists of imputed SNPs, each chromosome was averagely cut into pieces with less than 20,000 SNPs, which led267

to 61 pieces for the whole genome. In eigen-decomposition, the leading eigenvalues explaining 99% variance268

and their correspondent eigenvectors were taken. After estimating heritabilities and genetic covariance for each269

piece, the piece-wise results were integrated into one estimate for the whole genome. The standard error of the270

genetic correlation estimate was computed via block jackknife with one piece out. More details can be found in271

the Supplementary Note.272

Run times. When the leading eigenvalues and their corresponding eigenvectors of the LDmatrices are available273

for loading, HDL takes around 1.5 minutes to get the point estimate using 307,519 array SNPs as reference on a274

single 2.8 GHz Intel©core i7, and another 4 minutes are needed to get the standard error via jackknifing. When275

using 1,029,876 imputed markers as reference, it takes around 7 minutes to get the point estimate and another 8276

minutes to get the standard error via jackknifing. The overall computation requires about 1 GB memory.277

11
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Figure Legends311

Figure 1: Relative efficiency of HDL against LDSC when 10% SNPs are causal. 30,752 out of 307,519 SNPs were
randomly selected as causal variants. In each group, 100 replicates were simulated, where for each pair of traits,
the true genetic and phenotypic correlations are both set to 0.5. In the high-heritability group, the heritability of
the two traits was set to 0.6 and 0.8, respectively; In the low-heritability group, the heritability of the two traits
was set to 0.2 and 0.4, respectively. Both HDL and LDSC were based on the LD matrix computed from 307,519
array SNPs of 336,000 individuals in UKBB.

Figure 2: Genetic correlation estimates from HDL and LDSC among 30 phenotypes in UK Biobank. Lower tri-
angle: HDL estimates; Upper triangle: LDSC estimates. The areas of the squares represent the absolute value
of corresponding genetic correlations. After Bonferroni correction for 435 tests at 5% significance level, genetic
correlations estimates that are significantly different from zero in bothmethods are marked with a dot; estimates
that are significantly different from zero in only one method are marked with an asterisk and a black square.

Figure 3: Comparing genetic correlation estimates fromHDLandLDSCwith those fromLMMacross 11phenotypes
in UK Biobank. HDL estimates are shown in dots; LDSC estimates are in crosses. For each pair of traits, the
genetic correlation estimates are in the same color and connected by a gray dashed line. The black dashed line
on the diagonal represents identity.

Table312
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Table 1: Genetic correlation estimates that are significant in HDL but not in LDSC.

Phenotype 1 Phenotype 2 rHDLg (s.e.) rLDSCg (s.e.) PHDL PLDSC

Pulse rate, automated reading Type 2 diabetes 0.21 (0.04) 0.23 (0.06) 1.8× 10−8 2.9× 10−4

Pulse rate, automated reading Year ended full time education -0.08 (0.02) -0.1 (0.03) 1.8× 10−5 3.5× 10−4

Pulse rate, automated reading Mother’s age at death -0.17 (0.03) -0.15 (0.04) 4.5× 10−8 4.1× 10−4

Major coronary heart disease event Type 2 diabetes 0.28 (0.06) 0.33 (0.1) 9.2× 10−6 7.5× 10−4

Lifetime number of sexual partners Major coronary heart disease event 0.1 (0.02) 0.08 (0.04) 4.1× 10−6 2.2× 10−2

Birth weight Major coronary heart disease event -0.14 (0.03) -0.15 (0.04) 7.4× 10−8 1.8× 10−4

Basal metabolic rate Major coronary heart disease event 0.1 (0.02) 0.09 (0.03) 4.5× 10−5 2.6× 10−3

Fresh fruit intake Major coronary heart disease event -0.12 (0.02) -0.12 (0.04) 8.5× 10−9 2.0× 10−3

Alcohol intake frequency Lifetime number of sexual partners -0.08 (0.02) -0.06 (0.02) 3.9× 10−6 1.3× 10−2

Getting up in morning Alcohol intake frequency 0.08 (0.02) 0.08 (0.02) 4.9× 10−6 4.8× 10−4

Alcohol intake frequency Birth weight -0.06 (0.01) -0.06 (0.02) 3.9× 10−6 7.5× 10−3

Drinking water intake Alcohol intake frequency -0.15 (0.04) -0.19 (0.06) 2.5× 10−5 2.6× 10−3

Frequency of friend/family visits Alcohol intake frequency -0.11 (0.02) -0.11 (0.03) 1.2× 10−8 4.2× 10−4

Body mass index (BMI) Depression 0.13 (0.02) 0.11 (0.03) 8.7× 10−9 3.2× 10−4

Getting up in morning Body mass index (BMI) 0.07 (0.02) 0.07 (0.02) 8.9× 10−6 9.0× 10−4

Smoking status: Current Type 2 diabetes 0.16 (0.04) 0.19 (0.08) 8.4× 10−5 1.4× 10−2

Neoplasms Depression 0.16 (0.04) 0.2 (0.07) 3.9× 10−5 3.1× 10−3

Lifetime number of sexual partners Depression 0.14 (0.03) 0.1 (0.04) 5.3× 10−7 1.5× 10−2

Standing height Depression -0.07 (0.02) -0.08 (0.02) 8.8× 10−5 1.5× 10−3

Year ended full time education Depression -0.19 (0.04) -0.17 (0.05) 4.4× 10−7 9.3× 10−4

Mother’s age at death Depression -0.22 (0.05) -0.24 (0.09) 6.6× 10−6 7.6× 10−3

Risk taking Bipolar disorder 0.19 (0.04) 0.25 (0.08) 3.5× 10−6 3.5× 10−3

Year ended full time education Bipolar disorder 0.19 (0.04) 0.22 (0.09) 7.6× 10−6 1.2× 10−2

Risk taking Neoplasms 0.13 (0.03) 0.16 (0.05) 2.5× 10−5 2.6× 10−3

Lifetime number of sexual partners Neoplasms 0.14 (0.03) 0.16 (0.04) 2.8× 10−7 1.3× 10−4

Basal metabolic rate Neoplasms 0.16 (0.02) 0.16 (0.04) 4.7× 10−16 1.3× 10−4

Standing height Neoplasms 0.07 (0.02) 0.07 (0.04) 8.2× 10−5 6.0× 10−2

Mother’s age at death Neoplasms -0.24 (0.05) -0.25 (0.09) 2.0× 10−6 4.1× 10−3

Usual walking pace Neoplasms -0.12 (0.03) -0.13 (0.04) 2.6× 10−6 9.9× 10−4

Drinking water intake Length of mobile phone use 0.12 (0.03) 0.2 (0.06) 4.6× 10−5 6.6× 10−4

Length of mobile phone use Salad / raw vegetable intake 0.09 (0.02) 0.1 (0.03) 3.4× 10−5 8.9× 10−4

Carbohydrate Length of mobile phone use -0.17 (0.03) -0.24 (0.07) 1.2× 10−6 7.7× 10−4

Length of mobile phone use Mother’s age at death -0.13 (0.03) -0.21 (0.06) 2.3× 10−6 7.9× 10−4

Sleep duration Smoking status: Current -0.14 (0.02) -0.12 (0.03) 7.7× 10−11 6.8× 10−4

Smoking status: Current Wears glasses or contact lenses -0.19 (0.03) -0.18 (0.05) 5.1× 10−10 3.1× 10−4

Salad / raw vegetable intake Risk taking 0.12 (0.02) 0.13 (0.03) 2.7× 10−7 1.3× 10−4

Risk taking Mother’s age at death -0.15 (0.04) -0.19 (0.07) 4.4× 10−5 5.1× 10−3

Getting up in morning Lifetime number of sexual partners -0.12 (0.02) -0.09 (0.03) 8.4× 10−11 7.1× 10−4

Lifetime number of sexual partners Basal metabolic rate 0.07 (0.01) 0.08 (0.02) 2.6× 10−6 1.8× 10−4

Lifetime number of sexual partners Mother’s age at death -0.15 (0.03) -0.2 (0.06) 3.5× 10−6 1.4× 10−3

Sleep duration Lifetime number of sexual partners -0.1 (0.02) -0.09 (0.03) 2.3× 10−8 5.2× 10−3

Getting up in morning Standing height -0.05 (0.01) -0.06 (0.02) 5.8× 10−5 3.8× 10−4

Sleep duration General happiness 0.13 (0.03) 0.1 (0.04) 2.8× 10−6 1.5× 10−2

Fresh fruit intake Birth weight 0.09 (0.02) 0.06 (0.03) 6.7× 10−6 2.0× 10−2

Birth weight Year ended full time education 0.11 (0.02) 0.12 (0.03) 1.4× 10−8 1.5× 10−4

Frequency of friend/family visits Basal metabolic rate -0.08 (0.02) -0.09 (0.02) 3.5× 10−7 1.4× 10−4

Drinking water intake Standing height 0.13 (0.03) 0.14 (0.04) 3.6× 10−7 6.6× 10−4

Sleep duration Standing height 0.07 (0.01) 0.05 (0.02) 2.4× 10−8 3.0× 10−3

Coffee consumed Standing height 0.15 (0.03) 0.18 (0.06) 5.7× 10−7 2.9× 10−3

Frequency of friend/family visits Standing height 0.06 (0.01) 0.07 (0.02) 6.9× 10−6 2.0× 10−3

Frequency of friend/family visits Salad / raw vegetable intake -0.11 (0.03) -0.12 (0.04) 5.6× 10−5 1.6× 10−3

Snoring Fresh fruit intake 0.1 (0.02) 0.08 (0.03) 3.8× 10−7 2.8× 10−3

Carbohydrate Mother’s age at death 0.26 (0.07) 0.43 (0.14) 1.0× 10−4 1.9× 10−3

Sleep duration Year ended full time education 0.11 (0.02) 0.12 (0.03) 1.9× 10−6 1.2× 10−4

Sleep duration Mother’s age at death 0.13 (0.03) 0.05 (0.06) 7.7× 10−5 4.3× 10−1

Sleep duration Usual walking pace 0.08 (0.01) 0.05 (0.02) 2.4× 10−7 2.8× 10−2

Frequency of friend/family visits Wears glasses or contact lenses 0.16 (0.03) 0.18 (0.05) 3.4× 10−6 2.6× 10−4

Results that passed Bonferroni correction 0.05/435 were reported as significant. rHDLg (s.e.), genetic correlation estimate and
standard error given by HDL; rLDSCg (s.e.), genetic correlation estimate and standard error given by LDSC; PHDL, P-value given by
HDL; PLDSC, P-value given by LDSC. 15
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1 Supplementary Note
1.1 Estimating heritability of one trait using likelihood
Suppose a quantitative trait y is affected by a group of genetic variants X1, ..., XM through
a multi-variant linear model without population stratification

y = Xβ + ϵ. (1)

If we have N individuals, then y = {yi} is a N × 1 phenotype vector, X = {xij} is a N ×M
genotype matrix. Without loss of generality, we assume X is scaled to mean zero and variance
one. β is an M × 1 vector of standardized genetic effects with β ∼ N (0, (h2/M)I), where h2

represents narrow sense heritability. ϵ is an N ×1 vector of residual with ϵ ∼ N (0, (1−h2)I).
The genotypes are assumed to be independent across individuals with a M ×M LD matrix
R = {rjk}, where rjk = E[XjXk]. X,β and ϵ are assumed to be independent with each
other.

In GWAS, the estimated marginal effect of variant j is

b̂j = (XT
j Xj)

−1XT
j y ≈

XT
j y

N

and its variance

σ2
b̂j

= σ2
r (X

T
j Xj)

−1 ≈ 1

N
,

where σ2
r represents the residual variance in univariate regression. As the variance explained

by single variant is usually small, σ2
r can be approximated by phenotypic variance, which is

assumed to be one in our derivation.
Therefore, the z-score of variant j is

zj =
b̂j√
σ2
b̂j

≈
√
Nb̂j (2)

Lemma 1. Let ljj′ :=
∑M

k=1 rjkrkj′, the expected product of zj and zj′

E
[
zjzj′

]
=

Nh2

M
ljj′ + rjj′ .

Specifically,

E
[
z2j
]
=

Nh2

M
ljj + 1.

Proof. According to (2),

E[zjzj′ | X] = NE[b̂j b̂j′ | X].

1



The expected product of b̂j and b̂j′ given X

E
[
b̂j b̂j′ | X

]
=

1

N2
E
[
XT

j yy
TXj′ | X

]
=

1

N2
E
[
XT

j (Xβ + ϵ) (Xβ + ϵ)T Xj′ | X
]

=
1

N2
E
[
XT

j

(
XββTXT + ϵβTXT +XβϵT + ϵϵT

)
Xj′ | X

]
=

1

N2
E
[
XT

j

(
XββTXT + ϵϵT

)
Xj′ | X

]
=

1

N2

(
XT

j XE
[
ββT | X

]
XTXj′ +XT

j E
[
ϵϵT | X

]
Xj′

)
=

1

N2

(h2
M

XT
j XXTXj′ + (1− h2)XT

j Xj′

)
.

Let r̂jk = (XT
j Xk)/N , then

E
[
b̂j b̂j′ | X

]
=

h2

M

M∑
k=1

r̂jkr̂j′k +
1− h2

N
r̂jj′ .

Take expectation over X, we have

E
[
b̂j b̂j′

]
= E

[
E
[
b̂j b̂j′ | X

]]
= E

[
h2

M

M∑
k=1

r̂jkr̂j′k +
1− h2

N
r̂jj′

]

=
h2

M

M∑
k=1

E
[
r̂jkr̂j′k

]
+

1− h2

N
E
[
r̂jj′
]

(3)

By the law of large numbers, E
[
r̂jj′
]
= rjj′ . For the expected value of r̂jkr̂j′k

E
[
r̂jkr̂j′k

]
= E [r̂jk] E

[
r̂j′k
]
+Cov

[
r̂jk, r̂j′k

]
= rjkrj′k +Cov

[
r̂jk, r̂j′k

]
(4)

According to Pearson and Filon [1, 2],

Cov
[
r̂jk, r̂j′k

]
=

1

N

[
rjj′(1− r2jk − r2j′k)−

1

2
rjkrj′k(1− r2jk − r2j′k + rjj′)

]
Because long range LD is usually close to zero, when M is large, most rjk and rj′k will

be close to zero, which makes both ljj =
∑M

k=1 r
2
jk and lj′j′ =

∑M
k=1 r

2
j′k much less than M.

Therefore when M is large, we have

h2

M

M∑
k=1

Cov
[
r̂jk, r̂j′k

]
=

h2

MN

[
M∑
k=1

rjj′(1− r2jk − r2j′k)−
M∑
k=1

1

2
rjkrj′k(1− r2jk − r2j′k + rjj′)

]

=
h2

MN

[
rjj′(M − ljj − lj′j′)−

M∑
k=1

1

2
rjkrj′k(1− r2jk − r2j′k + rjj′)

]

≈ h2

N
rjj′ (5)
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Based on (4) and (5), in (3),

E
[
b̂j b̂j′

]
=

h2

M

M∑
k=1

E
[
r̂jkr̂j′k

]
+

1− h2

N
E
[
r̂jj′
]

=
h2

M

[
M∑
k=1

rjkrj′k +
M∑
k=1

Cov
[
r̂jk, r̂j′k

]]
+

1− h2

N
rjj′

≈ h2

M
ljj′ +

h2

N
rjj′ +

1− h2

N
rjj′

=
h2

M
ljj′ +

1

N
rjj′

Therefore,

E[zjzj′ ] = NE[b̂j b̂j′ ] =
Nh2

M
ljj′ + rjj′ . □

According to Lemma 1, we have

Theorem 1. Let LD Score Matrix L := RTR = R2 with entries

ljj′ =
M∑
k=1

rjkrkj′ .

Denoting the z-score vector of the M variants as z, then

z ∼ N (0,Σ), whereΣ =
Nh2

M
L+R

Theorem 1 enables us to estimate h2 by maximizing its simplified log-likelihood function:

ℓ(h2) = −1

2

[
log(|Σ|) + zTΣ−1z

]
. (6)

1.2 Estimating genetic correlation between two traits using likelihood
Now we extend (1) to two traits scenario. Suppose we have two cohorts with sample sizes
N1 and N2, where N0 individuals are included in both cohorts. y1 = {y1i} is a N1 × 1 vector
for phenotype 1 measured in cohort 1; and y2 = {y2i} is a N2 × 1 vector for phenotype 2
measured in cohort 2. X1 is a N1 × M genotype matrix in cohort 1; and X2 is a N2 × M
genotype matrix in cohort 2. The genotype matrix for those individuals who are included in
both cohorts is X0. Without loss of generality, we assume X1 and X2 are scaled to mean zero
and variance one. Given the absence of population stratification, model (1) can be extended
to

y1 = X1β1 + ϵ1

y2 = X2β2 + ϵ2,

3



where standardized genetic effects(
β1

β2

)
∼ N

((
0
0

)
,
1

M

(
h21I h12I
h12I h22I

))
, (7)

and residuals (
ϵ1
ϵ2

)
∼ N

((
0
0

)
,

(
(1− h21)I ρ12I

ρ12I (1− h22)I

))
. (8)

In (7), h12 represents genetic covariance between the two traits; and ρ12 in (8) represents
covariance of residuals between the two traits.

If we denote the estimated marginal effects of variant j as b̂1j for trait 1 and b̂2j for trait
2, then similar to (2), we have

z1j ≈
√
N1b̂1j , z2j ≈

√
N2b̂2j . (9)

Lemma 2. If we define ljj′ :=
∑M

k=1 rjkrkj′ as in Lemma 1, then the expected product of z1j
and z2j′

E
[
z1jz2j′

]
=

√
N1N2h12
M

ljj′ +
N0(h12 + ρ12)√

N1N2
rjj′ .

Specifically,

E [z1jz2j ] =

√
N1N2h12
M

ljj +
N0(h12 + ρ12)√

N1N2
.

Proof. According to (9),

E[z1jz2j′ | X1,X2] =
√
N1N2E[b̂1j b̂2j′ | X1,X2].

The expected product of b̂1j and b̂2j′ given X1 and X2

E[b̂1j b̂2j′ | X1,X2] =
1

N1N2
E
[
XT

1jy1y
T
2 X2j′ | X1,X2

]
=

1

N1N2
E
[
XT

1j (X1β1 + ϵ1) (X2β2 + ϵ2)
T X2j′ | X1,X2

]
=

1

N1N2
E
[
XT

1j

(
X1β1β

T
2 X

T
2 + ϵ1β

T
2 X

T
2 +X1β1ϵ

T
2 + ϵ1ϵ

T
2

)
X2j′ | X1,X2

]
=

1

N1N2
E
[
XT

1j

(
X1β1β

T
2 X

T
2 + ϵ1ϵ

T
2

)
X2j′ | X1,X2

]
=

1

N1N2

(
XT

1jX1E
[
β1β

T
2 | X1,X2

]
XT

2 X2j′ +XT
1jE

[
ϵ1ϵ

T
2 | X1,X2

]
X2j′

)
=

1

N1N2

(h12
M

XT
1jX1X

T
2 X2j′ + ρ12X

T
0jX0j′

)
.

Let r̂1,jk = (XT
1jX1k)/N1, r̂2,jk = (XT

2jX2k)/N2 and r̃jk = (XT
0jX0k)/N0, then

E[b̂1j b̂2j′ | X1,X2] =
h12
M

M∑
k=1

r̂1,jkr̂2,j′k +
N0

N1N2
ρ12r̃jj′ .

4



Take expectation over X1 and , we have

E
[
b̂1j b̂2j′

]
= E

[
E
[
b̂1j b̂2j′ | X1,X2

]]
= E

[
h12
M

M∑
k=1

r̂1,jkr̂2,j′k +
N0

N1N2
ρ12r̃jj′

]

=
h12
M

M∑
k=1

E
[
r̂1,jkr̂2,j′k

]
+

N0

N1N2
ρ12E

[
r̃jj′
]

(10)

By the law of large numbers, E
[
r̃jj′
]
= rjj′ . For the expected value of r̂1,jkr̂2,j′k

E
[
r̂1,jkr̂2,j′k

]
= E [r̂1,jk] E

[
r̂2,j′k

]
+Cov

[
r̂1,jk, r̂2,j′k

]
= rjkrj′k +Cov

[
r̂1,jk, r̂2,j′k

]
(11)

Similar to (5), when M is large, we have

h12
M

M∑
k=1

Cov
[
r̂jk, r̂j′k

]
=

h12
MN1N2

M∑
k=1

Cov
[
XT

1jX1k,X
T
2j′X2k

]
=

1

N1N2

h12
M

M∑
k=1

Cov
[
XT

0jX0k,X
T
0j′X0k

]
=

N2
0

N1N2

h12
M

M∑
k=1

Cov
[
r̃jk, r̃j′k

]
≈ N2

0

N1N2

h12
N0

rjj′

=
N0

N1N2
h12rjj′ (12)

Based on (11) and (12), in (10),

E
[
b̂1j b̂2j′

]
=

h12
M

M∑
k=1

E
[
r̂1,jkr̂2,j′k

]
+

N0

N1N2
ρ12E

[
r̃jj′
]

=
h12
M

[
M∑
k=1

rjkrj′k +

M∑
k=1

Cov
[
r̂1,jkr̂2,j′k

]]
+

N0

N1N2
ρ12rjj′

≈ h12
M

ljj′ +
N0

N1N2
h12rjj′ +

N0

N1N2
ρ12rjj′

=
h12
M

ljj′ +
N0(h12 + ρ12)

N1N2
rjj′

Therefore,

E[z1jz2j′ ] =
√

N1N2E[b̂1j b̂2j′ ]

=

√
N1N2h12
M

ljj′ +
N0(h12 + ρ12)√

N1N2
rjj′ . □
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Following Lemma 2 and Theorem 1 we have

Theorem 2. Denoting the z-score vectors of the M variants for phenotype 1 and phenotype
2 as z1 and z2 respectively, then(

z1
z2

)
∼ N

((
0
0

)
,

(
Σ11 Σ12

Σ12 Σ22

))
,

where

Σ11 =
N1h

2
1

M
L+R,

Σ22 =
N2h

2
2

M
L+R,

Σ12 =

√
N1N2h12
M

L+
N0(h12 + ρ12)√

N1N2
R.

Let rg := h12/
√
h21h

2
2. Theorem 2 enables us to estimate h21, h22 and rg by maximizing

the full joint likelihood. Because the likelihood is a smooth function, it can be maximized
sequentially as follows:

max
h2
1,h

2
2,rg

ℓ(h21, h
2
2, rg) = max

rg

{
max
h2
1,h

2
2

ℓ(h21, h
2
2, rg)

}
= max

rg

{
ℓ(h̃21(rg), h̃

2
2(rg), rg)

}
= max

rg

{
ℓ(h̃21, h̃

2
2, rg)

}
. (13)

In (13) we have used the fact that h̃21(rg) = h̃21 and h̃22(rg) = h̃22, which are the MLEs of the
individual heritabilities. That is, knowing the correlation does not give us information about
individual variances. Then, to reduce the dimension of the matrices, the final maximization
be simplified using

max
rg

{
ℓ(h̃21, h̃

2
2, rg)

}
= max

rg

{
ℓm(h̃21) + ℓc(h̃

2
1, h̃

2
2, rg)

}
= ℓm(h̃21) + max

rg

{
ℓc(h̃

2
1, h̃

2
2, rg)

}
where ℓm(h21) is the marginal log-likelihood based on z1; and ℓc(h

2
1, h

2
2, rg) is the conditional

log-likelihood based on z2 | z1. So in summary, in the HDL algorithm, we firstly get h̃21 and
h̃22 from the marginal likelihood of h21 and h22 separately. Then estimate rg by maximizing
the conditional likelihood ℓc at the estimated heritability values. The conditional likelihood
can be found from the following:

Corollary 1. The conditional distribution for z2 given z1 is

z2 | z1 ∼ N
(
Σ12Σ

−1
11 z1,Σ22 −Σ12Σ

−1
11 Σ12

)
.

6



This gives the conditional log-likelihood

ℓc(h
2
1, h

2
2, rg) =− 1

2
log(|Σ22 −Σ12Σ

−1
11 Σ12|)

− 1

2

(
z2 −Σ12Σ

−1
11 z1

)T (
Σ22 −Σ12Σ

−1
11 Σ12

)−1 (
z2 −Σ12Σ

−1
11 z1

)
.

The standard error of r̂g is computed using a block-jackknife procedure described in Section
1.5.

1.3 Σ11, Σ22 and Σ12 in working algorithm
Literature has shown that LDSC with unconstrained intercept is much more robust against in-
correct model [3,4]. Similarly, in the application of HDL, we introduce parameters {c11, c22, c12}
into Σ11, Σ22 and Σ12:

Σ11 =
N1h

2
1

M
L+ c11R,

Σ22 =
N2h

2
2

M
L+ c22R,

Σ12 =

√
N1N2h12
M

L+ c12
N0√
N1N2

R,

which were analogous to the unconstrained intercept in LDSC. Therefore the working log-
likelihoods in HDL are

ℓ(h2i , cii) = −1

2

[
log(|Σii|) + zTi Σ

−1
ii zi

]
(14)

and

ℓc(h̃
2
1, c̃11, h̃

2
2, c̃22, rg, c12)

=− 1

2
log(|Σ22 −Σ12Σ

−1
11 Σ12|)

− 1

2

(
z2 −Σ12Σ

−1
11 z1

)T (
Σ22 −Σ12Σ

−1
11 Σ12

)−1 (
z2 −Σ12Σ

−1
11 z1

)
. (15)

1.4 Using eigen-decomposition to simplify computation
As a real symmetrix matrix, the M ×M LD matrix R can be decomposed as

R = QΛQT ,

where Q is an orthogonal matrix whose columns are the eigenvectors of R, and Λ is a diagonal
matrix whose entries are the eigenvalues of R. As a way of regularization and facilitating
computation, instead of taking all M eigenvalues, we can take the leading p eigenvalues and
their corresponding eigenvectors. Denoting the p× p diagonal matrix consists of the leading
p eigenvalues (λ1, ..., λp) as Λp, and the M × p eigenvectors matrix as Qp, the LD matrix R
can be approximated as

R ≈ QpΛpQ
T
p .

7



Then Σii and Σ12 can be reformed to

Σii =
Nih

2
i

M
L+ ciiR

≈ Nih
2
i

M
QpΛ

2
pQ

T
p + ciiQpΛpQ

T
p

= Qp

(
Nih

2
i

M
Λ2

p + ciiΛp

)
QT

p

Σ12 =

√
N1N2h12
M

L+ c12
N0√
N1N2

R

≈ Qp

[√
N1N2h12
M

Λ2
p + c12

N0√
N1N2

Λp

]
QT

p

Then (14) can be transformed to

ℓ(h2i , cii) = −1

2

[
log(|Σii|) + zTi Σ

−1
ii zi

]
≈ −1

2

 p∑
j=1

log

(
Nih

2
i

M
λ2
j + ciiλj

)
+ zTi Qp

(
Nih

2
i

M
Λ2

p + ciiΛp

)−1

QT
p zi


.

Denoting ui = QT
p zi with entries {uij}, we have

ℓ(h2i , cii) ≈ −1

2

 p∑
j=1

log

(
Nih

2
i

M
λ2
j + ciiλj

)
+ uT

i

(
Nih

2
i

M
Λ2

p + ciiΛp

)−1

ui


= −1

2

 p∑
j=1

log

(
Nih

2
i

M
λ2
j + ciiλj

)
+

p∑
j=1

u2ij
Nih2

i
M λ2

j + ciiλj

 .

Equation (15) can be transformed similarly. To simplify notation, we denote

Λ∗
ii =

Nih
2
i

M
Λ2

p + ciiΛp, with diagonal entries λ∗
ii,j =

Nih
2
i

M
λ2
j + ciiλj

Λ∗
12 =

√
N1N2h12
M

Λ2
p + c12

N0√
N1N2

Λp,

with diagonal entries λ∗
12,j =

√
N1N2h12
M

λ2
j + c12

N0√
N1N2

λj ,

u∗ = QT
p

[
z2 −Σ12Σ

−1
11 z1

]
= QT

p z2 −Λ∗
12 (Λ

∗
11)

−1QT
p z1, with entries {u∗j}.

Then

ℓc(h̃
2
1, c̃11, h̃

2
2, c̃22, rg, c12) =− 1

2
log(|Σ22 −Σ12Σ

−1
11 Σ12|)

− 1

2

(
z2 −Σ12Σ

−1
11 z1

)T (
Σ22 −Σ12Σ

−1
11 Σ12

)−1 (
z2 −Σ12Σ

−1
11 z1

)
=− 1

2

 p∑
j=1

log

(
λ∗
22,j −

λ∗
12,j

λ∗
11,j

)
+

p∑
j=1

(
u∗j

)2
λ∗
22,j −

λ∗
12,j

λ∗
11,j

 .
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1.5 Integration of piece-wise likelihood
To improve the computational performance of HDL, each chromosome was cut into pieces,
which led to m pieces for the whole genome. Because long-distance LD is rare and the LD
blocks around the cutting positions are a small proportion among the overall LD, we assume
these m pieces are independent of each other. Denoting the LD matrix of piece k as Rk, then

R =


R1

R2

. . .
Rm


Therefore,

L = RTR =


L1

L2

. . .
Lm

 , and Σii =


Σii,1

Σii,2

. . .
Σii,m

 ,

where Σii,k =
Nih

2
i

M Lk + ciiRk. Noticing that

|Σii| =
m∏
k=1

|Σii,k|, and Σ−1
ii =


Σ−1

ii,1

Σ−1
ii,2

. . .
Σ−1

ii,m

 ,

the likelihood in (14) is therefore additive across pieces as

ℓ(h2i , cii) = −1

2

[
log(|Σii|) + zTi Σ

−1
ii zi

]
= −1

2

[
m∑
k=1

log(|Σii,k|) +
m∑
k=1

zTi,kΣ
−1
ii,kzi,k

]
.

Similarly, (15) is also additive.
Another benefit of cutting genome into pieces is to allow block-jackknife by leaving one

piece out. The block-jackknife procedure provides robust estimates of standard errors for
parameters.
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2 Supplementary Tables
Supplementary Table 1: Simulations with different heritability groups when 10%
SNPs are causal. In each heritability group, we generated 100 pairs of traits, where true
genetic correlation and phenotypic correlation are 0.5. In the high heritability group, the
heritability of the pair of traits is 0.6 and 0.8 separately; in the low heritability group, the
heritability of the pair of traits is 0.2 and 0.4 separately. The 307,519 array SNPs of ∼336,000
UKBB genomic British individuals were used to simulate true phenotypes and to compute the
LD matrix for both HDL and LDSC. 30,752 SNPs are causal (10% of 307,519). True value:
true genetic correlation; Estimate: estimate of genetic correlation; s.d.: standard deviation
of the estimates across 100 simulations; s.e: median standard error across 100 simulations.

Heritability group Method True value Estimate s.d. s.e.
High HDL 0.50 0.50 0.010 0.010

LDSC 0.50 0.50 0.016 0.014
Low HDL 0.50 0.50 0.011 0.012

LDSC 0.50 0.50 0.019 0.017

Supplementary Table 2: 435 genetic correlations among 30 phenotypes in UK
Biobank. rg.HDL (s.e.), genetic correlation estimate and standard error given by HDL
using UKBB imputed SNPs as reference panel; rg.LDSC (s.e.), genetic correlation estimate
and standard error given by LDSC using default 1000 Genomes reference panel; p.HDL,
P-value given by HDL; p.LDSC, P-value given by LDSC.

[See the Excel File]

Supplementary Table 3: HDL, LDSC and LMM estimates of 55 genetic corre-
lations among 11 phenotypes in UK Biobank. rg.LMM, genetic correlation estimate
given by LMM; rg.HDL (s.e.), genetic correlation estimate and standard error given by HDL
using UKBB imputed SNPs as reference panel; rg.LDSC (s.e.), genetic correlation estimate
and standard error given by LDSC using default 1000 Genomes reference panel.

[See the Excel file]
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3 Supplementary Figures
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Supplementary Figure 1: Relative efficiency of HDL against LDSC when 100%
SNPs are causal. In each heritability group, we generated 100 pairs of traits, where true
genetic correlation and phenotypic correlation are 0.5. In the high heritability group, the
heritability of the pair of traits is 0.6 and 0.8 separately; in the low heritability group, the
heritability of the pair of traits is 0.2 and 0.4 separately. The 307,519 array SNPs of ∼336,000
UKBB genomic British individuals were used to simulate true phenotypes and to compute
the LD matrix for both HDL and LDSC. The P-values are from Levene’s test for variance
heterogeneity.

11



●

●

●

●

●

●●

●

●

●

α = −1 α = −1 α = −0.25 α = −0.25
βk ~ N(0,h2/M) βk ~ N(0,wkh

2/M) βk ~ N(0,h2/M) βk ~ N(0,wkh
2/M)

p = 1.45e−04 p = 3.29e−12 p = 4.82e−03 p = 8.68e−09

0.40

0.45

0.50

0.55

E
st

im
at

ed
 g

en
et

ic
 c

or
re

la
tio

n

Method HDL LDSC

Supplementary Figure 2: Relative efficiency of HDL against LDSC under dif-
ferent model setups when 10% SNPs with MAF > 1% are causal. 52,914 out
of 529,139 array SNPs with MAF > 1% were randomly selected as causal variants. 100
pairs of traits were generated, where true genetic correlation and phenotypic correlation are
0.5. The true phenotypes of trait i is generated from model yi =

∑M
k=1Xikβik + ϵi, where

Xik = (Zik − 2pk1)[2pk(1− pk)]
α/2; Zik are the original genotypes of SNP k for trait i; pk is

the MAF of SNP k; M is the number of causal variants. Four scenarios were simulated: (1)
α = −1, and the marginal distribution of βik is N(0, h2i /M); (2) α = −1, and the marginal
distribution of βik is N(0, wkh

2
i /M), where wk is the LDAK weight of SNP k which is in-

versely proportional to its LD score; (3) α = −0.25, and the marginal distribution of βik is
N(0, h2i /M) and (4) α = −0.25, and the marginal distribution of βik is N(0, wkh

2
i /M). After

βi were generated, they were rescaled by multiplying the same constant so that the true
heritabilities were 0.5 for both traits. The 307,519 array SNPs of ∼336,000 UKBB genomic
British individuals were used to simulate true phenotypes and to compute LD matrix for
both HDL and LDSC. The P-values are from Levene’s test for variance heterogeneity.
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Supplementary Figure 3: Relative efficiency of HDL against LDSC under differ-
ent model setups when 10% SNPs with 5% > MAF > 1% are causal. 52,914 out
of 221,620 array SNPs with 5% > MAF > 1% were randomly selected as causal variants. 100
pairs of traits were generated, where true genetic correlation and phenotypic correlation are
0.5. The true phenotypes of trait i is generated from model yi =

∑M
k=1Xikβik + ϵi, where

Xik = (Zik − 2pk1)[2pk(1− pk)]
α/2; Zik are the original genotypes of SNP k for trait i; pk is

the MAF of SNP k; M is the number of causal variants. Four scenarios were simulated: (1)
α = −1, and the marginal distribution of βik is N(0, h2i /M); (2) α = −1, and the marginal
distribution of βik is N(0, wkh

2
i /M), where wk is the LDAK weight of SNP k which is in-

versely proportional to its LD score; (3) α = −0.25, and the marginal distribution of βik is
N(0, h2i /M) and (4) α = −0.25, and the marginal distribution of βik is N(0, wkh

2
i /M). After

βi were generated, they were rescaled by multiplying the same constant so that the true
heritabilities were 0.5 for both traits. The 307,519 array SNPs of ∼336,000 UKBB genomic
British individuals were used to simulate true phenotypes and to compute LD matrix for
both HDL and LDSC. The P-values are from Levene’s test for variance heterogeneity.
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Supplementary Figure 4: Relative efficiency of HDL using imputed reference
panel against LDSC. 100 pairs of traits were generated, where true heritabilities are
0.5, genetic correlation and phenotypic correlation are 0.5. The 1,029,876 imputed SNPs of
∼336,000 UKBB genomic British individuals were used to simulate true phenotypes. LDSC
and LDSC.1kG stand for the LDSC software using UKBB imputed reference panel and
default 1000 Genomes reference panel, respectively. 102,988 (10% of 1,029,876) randomly
sampled SNPs are set to be causal variants. The P-values are from Levene’s test for variance
heterogeneity.
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Supplementary Figure 5: Relative efficiency and standard error of LDSC estimate
among 30 phenotypes in UK Biobank. Each dot represents genetic correlation results
for one pair of traits among 435 pairs. The x-axis represents the standard error of the LDSC
estimate. The y-axis represents the relative efficiency of HDL against LDSC. HDL reference
panel: UKBB imputed SNPs; LDSC reference panel: 1000 Genomes (default). Colors indicate
the number of binary traits in the pair.
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Supplementary Figure 6: Genetic correlation estimates from HDL and LDSC
among 30 phenotypes in UK Biobank based on directly genotyped variants on
the array. Lower triangle: HDL estimates; Upper triangle: LDSC estimates. The areas
of the squares represent the absolute value of corresponding genetic correlations. After Bon-
ferroni correction for 435 tests at 5% significance level, genetic correlations estimates that
are significantly different from zero in both methods are marked with a dot; estimates that
are significantly different from zero in only one method are marked with an asterisk and a
black square. HDL reference panel: UKBB array SNPs; LDSC reference panel: UKBB array
SNPs.
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Supplementary Figure 7: Relative efficiency of HDL using imputed reference
panel against LDSC for the estimation of heritability. a) 100 traits were generated
using 14,867 imputed SNPs on chromosome 22 of ∼336,000 UKBB genomic British individ-
uals, where true heritability was set to 0.05. LDSC and LDSC.1kG stand for the LDSC
software using UKBB imputed reference panel and default 1kG reference panel, respectively.
1,487 (10% of 14,867) randomly sampled SNPs are set to be causal variants. b) The relative
efficiency, calculated as the ratio of the estimated variances of the LDSC estimates to those of
the HDL estimates, was evaluated for 30 GWAS of real phenotypes in UKBB. HDL reference
panel: UKBB imputed SNPs; LDSC reference panel: 1000 Genomes (default).
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Supplementary Figure 9: HDL results where the LD matrix is approximated
by different numbers of leading eigenvalues and eigenvectors. After performing
eigen-decomposition to the LD matrix, leading eigenvalues explaining different amount of
variances of the LD matrix and their corresponding eigenvectors were taken to approximate
the LD matrix. In each heritability group, we generated 100 pairs of traits, where true genetic
correlation and phenotypic correlation are 0.5. In the high heritability group, the heritability
of the pair of traits is 0.6 and 0.8 separately; in low heritability group, the heritability of the
pair of traits is 0.2 and 0.4 separately. The 307,519 array SNPs of ∼336,000 UKBB genomic
British individuals were used to simulate true phenotypes and to compute the LD matrix for
HDL. 30,752 SNPs are causal (10% of 307,519).
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Supplementary Figure 10: Genetic correlation estimated by HDL using imputed
reference panel, where the LD matrix is approximated by different numbers of
leading eigenvalues and eigenvectors under two different bandwidths of the LD
blocks. After performing eigen-decomposition to the LD matrix, leading eigenvalues ex-
plaining different amount of variances of the LD matrix and their corresponding eigenvectors
were taken to approximate the LD matrix. 100 pairs of traits were generated, where true
heritabilities are 0.5, genetic correlation and phenotypic correlation are 0.5. The 1,029,876
imputed SNPs of ∼336,000 UKBB genomic British individuals were used to simulate true
phenotypes. 102,988 (10% of 1,029,876) randomly sampled SNPs are set to be causal vari-
ants. The x-axis shows the proportion of variances explained by the leading eigenvalues, the
corresponding number of leading eigenvalues and the corresponding standard deviation of
genetic correlation estimates under 500 bandwidth.
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Supplementary Figure 11: Heritability estimated by HDL using imputed refer-
ence panel, where LD matrix is approximated by different numbers of leading
eigenvalues and eigenvectors under two different bandwidths of the LD blocks.
After performing eigen-decomposition to the LD matrix, leading eigenvalues explaining differ-
ent amount of variances of the LD matrix and their corresponding eigenvectors were taken to
approximate the LD matrix. 100 traits were generated using the 1,029,876 imputed SNPs of
∼336,000 UKBB genomic British individuals, where true heritability was set to 0.5. 102,988
(10% of 1,029,876) randomly sampled SNPs are set to be causal variants. The x-axis shows
the proportion of variances explained by the leading eigenvalues and the corresponding num-
ber of leading eigenvalues. The blue dashed line and circles are the corresponding mean
squared errors of heritability estimates under 500 bandwidth (y-axis on the right).
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Supplementary Figure 12: HDL results based on different reference samples for
high heritability group. 50,000 individuals were randomly sampled from 336,000 UKBB
as the GWAS sample to generate GWAS summary statistics. The LD matrix is computed
from the 307,519 array SNPs of (1) the GWAS sample; (2) the rest 286,000 individuals; (3)
a 10,000 individuals random sample of the rest 286,000 individuals. After performing eigen-
decomposition to the LD matrix, different numbers of leading eigenvalues and eigenvectors
were taken to approximate the LD matrix. In this simulation, we generated 100 pairs of traits
for the 50,000 individuals in the GWAS sample. True genetic correlation and phenotypic
correlation are 0.5. The heritability of the pair of traits is 0.6 and 0.8 separately. 30,752
SNPs are causal (10% of 307,519).
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Supplementary Figure 13: HDL results based on different reference samples for
low heritability group. 50,000 individuals were randomly sampled from 336,000 UKBB
as the GWAS sample to generate GWAS summary statistics. The LD matrix is computed
from the 307,519 array SNPs of (1) the GWAS sample; (2) the rest 286,000 individuals; (3)
a 10,000 individuals random sample of the rest 286,000 individuals. After performing eigen-
decomposition to the LD matrix, different numbers of leading eigenvalues and eigenvectors
were taken to approximate the LD matrix. In this simulation, we generated 100 pairs of traits
for the 50,000 individuals in the GWAS sample. True genetic correlation and phenotypic
correlation are 0.5. The heritability of the pair of traits is 0.2 and 0.4 separately. 30,752
SNPs are causal (10% of 307,519).
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Supplementary Figure 14: Genetic correlation estimated by HDL under different
levels of residual correlation (ρ12). In each heritability group and residual correlation
level, we generated 100 pairs of traits. The true genetic correlation is set to 0.5. The level of
residual correlation is either 0.1 or 0.9. In the high heritability group, the heritability of the
pair of traits is 0.6 and 0.8 separately; in the low heritability group, the heritability of the
pair of traits is 0.2 and 0.4 separately. The 307,519 array SNPs of ∼336,000 UKBB genomic
British individuals were used to simulate true phenotypes and to compute the LD matrix for
both HDL and LDSC. 30,752 SNPs are causal (10% of 307,519).
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Supplementary Figure 15: Comparison of LD scores estimated based on 1cM
windows and 500-SNP windows. LD scores were computed using the example 1000
Genomes genotype data included in the LDSC software.
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Supplementary Figure 16: Example of the eigenvalues of an LD matrix. 5,420
genotyped variants on chromosome 22 for UKBB genomic British individuals were used to
generate the LD matrix. The red dashed line represents the cutoff where the leading eigen-
values and corresponding eigenvectors capture 90% of the information of the LD matrix.
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