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ABSTRACT 30 

Genome-wide association studies have revealed many loci contributing to 31 

the variation of complex traits, yet the majority of loci that contribute to the 32 

heritability of complex traits remain elusive. Large study populations with 33 

sufficient statistical power are required to detect the small effect sizes of 34 

the yet unidentified genetic variants. However, the analysis of huge 35 

cohorts, like UK Biobank, is challenging. Here we present an atlas of 36 

genetic associations for 118 non-binary and 660 binary traits of 452,264 UK 37 

Biobank participants of white descent. Results are compiled in a publicly 38 

accessible database that allows querying genome-wide association results 39 

for 9,113,133 genetic variants, as well as downloading whole GWAS 40 

summary statistics for over 30 million imputed genetic variants (>23 billion 41 

phenotype-genotype pairs). Our atlas of associations (GeneATLAS, 42 

http://geneatlas.roslin.ed.ac.uk) will help researchers to query UK Biobank 43 

results in an easy and uniform way without the need to incur in high 44 

computational costs.  45 

  46 
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INTRODUCTION 48 

Most human traits are complex and influenced by the combined effect of large 49 

numbers of small genetic and environmental effects1. Genome-wide association 50 

studies (GWAS) have identified many genetic variants influencing many complex 51 

traits. The largest genetic effects were discovered with modest sample sizes, with 52 

researchers subsequently joining efforts to increase the size of the study cohorts, 53 

thus allowing them to identify much smaller genetic effects. The UK Biobank2, a 54 

large prospective epidemiological study comprising approximately 500,000 55 

deeply phenotyped individuals from the United Kingdom, has been genotyped 56 

using an array that comprises 847,441 genetic polymorphisms, with a view to 57 

identifying new genetic variants in a uniformly genotyped and phenotyped cohort 58 

of unprecedented size, both in terms of the number of samples and number of 59 

traits.  60 

The unprecedented size of this cohort has raised a number of analytical 61 

challenges3. First, storing, managing and analysing the circa 90 million genetic 62 

variants for around half a million individuals is, in itself, a substantial endeavour. 63 

Second, the collection of samples at this scale has brought up an analytical 64 

challenge, as the cohort is structured by familial relationships and ethnicity. For 65 

instance, many relatives were unintentionally collected in the cohort, and 66 

removing them from the analyses as traditionally done in GWAS would entail a 67 

substantial loss of statistical power. Third, although recent developments have 68 

reduced the computational costs4, fitting a Linear Mixed Model (LMM), the 69 

standard analytical technique to perform GWAS when there is population or 70 

familial structure, at this scale and for this number of traits, entails a 71 

computational burden which may be beyond the means of many research labs.  72 

The objective of the current study was to perform GWAS for 778 traits in UK 73 

Biobank, adjusting for the effect of relatedness to minimise the loss of statistical 74 

power whilst reducing false positives due to familial and population structure, in 75 

individuals of white ancestry and to make a searchable atlas of genetic 76 

associations in UK Biobank for the benefit of the research community. 77 

RESULTS 78 

Data overview  79 



   

 

   

 

In July 2017, the UK Biobank released genotyped data from circa 490,000 80 

individuals of largely white descent genotyped for 805,426 genetic variants. We 81 

performed GWASs for 660 binary traits and 118 non-binary traits, the latter 82 

including continuous traits and traits with multiple ordered categories 83 

(Supplementary Table 1). For each of these traits we fitted LMMs to test for 84 

association with 623,944 genotyped and 30,798,054 imputed genetic 85 

polymorphisms imputed using the Haplotype Reference Consortium5 as 86 

reference panel, as well as 310 imputed HLA alleles. All successfully tested 87 

polymorphisms are shown in the database (GeneATLAS, 88 

http://geneatlas.roslin.ed.ac.uk) or associated downloadable files to allow 89 

individual researchers to apply their own quality control thresholds. The summary 90 

results presented here are based on the quality controlled imputed 91 

polymorphisms (9,113,133 variants after filtering) of 452,264 individuals 92 

(Methods). 93 

 94 

The phenotypes selected comprise a mix of baseline measurements (e.g. height), 95 

self-reported traits at recruitment (e.g. self-reported depression), and Hospital 96 

Episode Statistics (i.e. data collected during hospital admissions) as well as 97 

cancer diagnoses from the appropriate UK Cancer Registry. Since UK Biobank 98 

is a recently stablished prospective cohort, we allowed for potential differences in 99 

statistical power among binary and non-binary traits by splitting the presentation 100 

of the data into non-binary and binary traits.  101 

 102 

To demonstrate the power of using large datasets (so called, Big Data), we first 103 

explored how the analysis of increasingly large sample sizes enable new 104 

discoveries, and reduce bias when estimating the effect sizes of GWAS hits (Fig. 105 

1 and Supplementary Note). Our results show that the number of GWAS hits 106 

increased linearly with the sample size with no sign of saturation, thus suggesting 107 

that increasing the size of cohorts like UK Biobank would continue to yield new 108 

discoveries. We also observed that the estimated allelic effects of GWAS hits 109 

obtained from decreasing sample sizes were generally larger, which is in 110 

agreement with a Winner’s Curse effect6 (Fig. 1).  111 

 112 

Distribution of GWAS hits among non-binary trait 113 



   

 

   

 

Just below 5 million of the circa 1 billion tests performed across 118 non-binary 114 

traits were significant at a conventional genome wide threshold (P<10-8) 115 

(Supplementary Table 2), and 3,117,904 were significant after Bonferroni 116 

correction (P<0.05/9,113,133*118). The significant associations where 117 

distributed across 74,471 leading polymorphisms mapping to 38,651 118 

independent loci (Methods, Fig. 2, Supplementary Table 3). A substantial 119 

proportion of these associations (13.0%) were within the HLA region 120 

(Supplementary Table 2).  121 

 122 

About 9.5% of the tested polymorphisms reached genome-wide significant 123 

thresholds (P<10-8) for at least one of the 118 tested traits, whilst 82% of the 124 

tested polymorphisms were associated with at least one of these 118 traits at a 125 

significance level of 10-2 (Supplementary Table 4). There were 20,393 genetic 126 

variants each associated with more than 30 of the tested non-binary traits (Figs. 127 

2 and 3, Supplementary Fig. 1). A cluster of nine variants in a 9kb region including 128 

the genotyped intronic variant rs1421085 within the FTO gene had the largest 129 

number of genome-wide significant associations outside the HLA region, all nine 130 

variants being found to be associated with 58 traits (Fig. 3 and Supplementary 131 

Fig. 1). The genotyped variant rs1421085 at the FTO locus also had the largest 132 

average significance across non-binary traits (P<10-74) (Supplementary Fig. 2), 133 

which was largely contributed by the associations to anthropometric traits such 134 

as BMI and Weight which showed some of the strongest associations (P<10-300). 135 

The HLA region contained 362 genetic variants which were significantly (P<10-8) 136 

associated with 50 or more of the non-binary traits compared to only 128 such 137 

variants in the remaining autosomal variants. About 36% of the analyzed imputed 138 

HLA alleles were significant (P<10-8) for at least one trait (Supplementary Fig. 3). 139 

Six traits ('Standing height', 'Sitting height', 'Platelet count', 'Mean platelet 140 

(thrombocyte) volume', ’Trunk predicted mass’, ‘Trunk fat-free mass’) had over 141 

100,000 significant associations (P<10-8) each distributed across 25,352 different 142 

independent lead genetic variants (Methods). Over 94% of the non-binary traits 143 

had more than 100 genome-wide significant hits distributed in 74,442 different 144 

leading genetic variants.  145 

 146 



   

 

   

 

Considering the criteria for inclusion of genetic polymorphisms on the genotyping 147 

array (Supplementary Table 5), the HLA polymorphisms were the most enriched 148 

for associations with at least one non-binary trait (88% had a P<10-8), followed 149 

by the Cardiometabolic, Autoimmune/Inflammatory and ApoE criteria, whilst the 150 

lowest enrichment was for two low frequency variants categories (“Genome-wide 151 

coverage for low frequency variants” and “Rare, possibly disease causing, 152 

mutations”). Less than 8 in 100 of these polymorphisms were associated with any 153 

non-binary trait (Supplementary Table 5).  154 

 155 

We found a significant correlation (r=0.93, P<10-51) between the number of hits 156 

and the SNP heritability of the traits, suggesting that the number of loci affecting 157 

a trait might be proportional to the heritability of the trait (Fig. 4, Supplementary 158 

Fig. 4). Consistent with this model and variation in the distribution of linkage 159 

disequilibrium across the genome, the correlation of the SNP heritability with the 160 

number of identified independent lead variants was similarly high (r=0.88, P<10-161 

38). The number of hits (P<10-8) per chromosome was highly correlated (r=0.86) 162 

with the length of the chromosome covered by the genotyped SNPs 163 

(Supplementary Fig. 5, Supplementary Table 6). Although this correlation could 164 

arise under a polygenic model where the length of the chromosome is correlated 165 

with the number of possible variants affecting the traits, the simplest explanation 166 

is that it arises as a consequence of the correlation of chromosomal length and 167 

number of tested variants per chromosome. Comparing the fit of two nested 168 

models to explain the number of hits per chromosome as a function of number of 169 

tested genetic variants and length of the chromosome or just the number of 170 

genetic variants was consistent with the number of GWAS hits per chromosome 171 

correlating with the length of the chromosome rather than the number of tested 172 

variants (Methods). 173 

 174 

Standing height was the trait with the largest number of hits (Fig. 5) with 261,908 175 

significantly associated variants distributed across 10,374 independent lead 176 

variants. We estimated that the leading polymorphisms across the 118 traits 177 

studied are distributed among 38,651 independent loci, therefore 27% of these 178 

independent loci contribute to the variation of height, as expected by a highly 179 

polygenic trait7. We also computed the proportion of tested genetic variants 180 



   

 

   

 

associated with at least one disease (P < 10-8) that are also associated with height 181 

and BMI at different thresholds (Supplementary Table 7). At a threshold of 10-8, 182 

~28% and ~7% of the genetic variants associated for height and BMI, 183 

respectively, were also associated with at least one disease. This is important for 184 

the interpretation of Mendelian Randomisation studies as it is likely that one of 185 

the critical assumptions to demonstrate causality, that is, that there is no 186 

pleiotropy between the exposure and the outcome, may be broken for many 187 

exposure-outcome pairs. 188 

 189 

Distribution of GWAS hits among binary traits 190 

The binary trait with the largest number of cases was self-reported hypertension, 191 

with an average across binary traits of 6,593 cases (Supplementary Table 1). Of 192 

the 660 binary phenotypes 86 were specific to one sex (Supplementary Table 1). 193 

Individuals of the unaffected sex were excluded from the analysis for these 194 

phenotypes (Methods). Consistent with the reduced statistical power to detect 195 

association with binary phenotypes (mainly diseases) compared to non-binary 196 

traits we detected 393,023 associations at a P<10-8 (Supplementary Table 2), 197 

61% of those were within the HLA region. Similarly, almost half (i.e. 48%) of the 198 

analyzed imputed HLA alleles were significant (P<10-8) for at least one binary trait 199 

(Supplementary Fig. 3). Approximately 1 in 15,000 of the genotype-phenotype 200 

pairs was genome-wide significant (P<10-8) for binary traits, whilst approximately 201 

1 in 200 genotype-phenotype pairs were significant (P<10-8) for non-binary traits. 202 

Among the tested genetic variants, one in ~80 was associated with at least one 203 

binary trait, whilst one in ~10 was associated with one non-binary trait. Only 204 

genetic variants within the HLA region were associated with more than 20 binary 205 

traits each (Figs. 3, Supplementary Fig. 1 and 6). 206 

 207 

We found a positive correlation (r=0.64, P<10-76 in the observed scale, r=0.56, 208 

P<10-53 in the liability scale) between the heritability of the binary trait and the 209 

number of genome-wide significant variants, albeit of smaller magnitude to that 210 

found for the non-binary traits (Fig. 4). Some of these traits were obvious outliers 211 

as they had large heritabilities but few significantly associated variants. The three 212 

largest heritabilities for binary traits were for three autoimmune diseases 213 



   

 

   

 

(ankylosing spondylitis, coeliac disease and seropositive rheumatoid arthritis) but 214 

few significant variants were found outside the HLA region for these traits. For 215 

instance, 5,704 out of 5,706 genome-wide significant associations for ankylosing 216 

spondylitis were within the HLA region. 217 

 218 

Among the categories for inclusion of genetic variants in the genotyping array 219 

there was a substantial enrichment for HLA (79%), ApoE (48%), and Cancer 220 

common variants (40%). The categories with the lowest enrichment were 221 

genome-wide coverage for low frequency variants (0.15%) and tags for 222 

Neanderthal ancestry (0.8%) (Supplementary Table 5). 223 

 224 

We show three examples of Manhattan plots for binary traits (Fig. 5). The first 225 

example shows where there are associations with skin cancer (i.e melanoma and 226 

other malignant neoplasms of the skin). There are 4795 variants associated 227 

(P<10-8) with skin cancer distributed among 172 independent lead variants 228 

(Supplementary Table 3). We found associations in genetic variants in or around 229 

known susceptibility genes (e.g. MC1R, IRF4, TERT, TYR) for melanoma8, but 230 

also genes like FOXP1 (rs13316357, P=1.5x10-15) associated with basal cell 231 

carcinoma9. The other two examples show the similarity between the results of 232 

one of the self-reported and clinically defined traits available in UK Biobank. The 233 

Manhattan plots for self-reported and clinically defined coeliac disease are very 234 

similar but not identical, which suggests that generally there will be benefit in 235 

analyzing both clinically and self-reported traits. 236 

 237 

Heritability Estimates  238 

Heritability estimates inform about the contribution of genetics to the observed 239 

phenotypic variation. The heritability of many of the 778 traits analysed here has 240 

never been reported, but even if they have been reported it is useful to know how 241 

much phenotypic variation is captured by genetic variants in a cohort of the size 242 

and interest of UK Biobank. The majority (78%) of the traits analyzed had a 243 

significant SNP-heritability (P<0.05; Fig. 6), with the largest SNP-heritability being 244 

for ankylosing spondylitis, which was 0.86 on the liability scale. The mean and 245 

median heritability among those estimates that were significant were 0.12 and 246 



   

 

   

 

0.08, respectively. Mean heritabilities were significantly different for binary and 247 

non-binary traits (h2
Non-binary=0.17; h2

Binary=0.10; P=4x10-12). A total of thirty-six 248 

traits, all binary, had a heritability estimate close to zero (h2
Liability < 10-4). Only 249 

seven of those thirty-six traits had no genome-wide significant hits (P<10-8), with 250 

nine having more than ten significant hits, self-reported gastritis having the largest 251 

number of hits with 41. This scenario could arise for monogenic and oligogenic 252 

traits for which the model assumptions do not hold or because of false positives. 253 

The Manhattan plots for the traits that had the largest numbers of hits seem more 254 

consistent with these hits being false positives or perhaps lack of power to detect 255 

heritability than with the violation of the model assumptions (Supplementary Fig. 256 

7). 257 

 258 

Estimates of genetic and environmental correlations show that for 15% of the 259 

pairs of non-binary traits the genetic and environmental correlation changes sign 260 

(Supplementary Fig. 8, GeneATLAS web page). Across all pairs of non-binary 261 

traits for which the genetic and environmental correlation had the same sign the 262 

absolute value of the genetic correlation was smaller in 31% of the cases. Overall, 263 

taking into account the size of observed heritabilities, this suggests that the 264 

phenotypic covariance of many of these traits is likely driven by the environment 265 

and not genetics (average (covg/cove)=0.24, among traits where covg and cove 266 

have the same sign). 267 

 268 

Phenotypic prediction from genetic markers 269 

We computed genomic predictions (that is, models of phenotypic prediction 270 

based on genetic markers) for all 692 non-gender dependent traits using 271 

Genomic Best Linear Predictions (GBLUP)10 (Methods). GBLUP estimates 272 

polygenic risk scores assuming that all fitted variants have an effect. It has been 273 

argued that this method has several advantages to traditional polygenetic risk 274 

scores from GWAS hits10,11. Some of the traits for which we developed GBLUP 275 

models did indeed reach large prediction accuracies (Fig. 7), which was further 276 

increased when we used additional covariates such as gender or sex. The largest 277 

prediction accuracy for a non-binary trait was for height which was 0.59, whilst 278 

the largest discriminative ability for a binary trait was 0.82 for self-reported 279 



   

 

   

 

malabsorption/coeliac disease. We observed a large correlation between the 280 

prediction accuracy and the trait heritability (Fig. 7 and Supplementary Table 8). 281 

Furthermore, we previously developed a model that predicted the benefit of 282 

having increasingly large training datasets for prediction of complex traits in UK 283 

Biobank11,12. Our current accuracy of prediction for anthropomorphic traits is very 284 

similar to the ones we previously predicted we would achieve with this training 285 

set11 (Supplementary Fig. 9). 286 

DISCUSION 287 

We used circa 452,000 related and unrelated UK Biobank participants of white 288 

ethnicity to build the largest atlas of genetic associations to date. Summary 289 

statistics for 778 traits will be available to the research community to help them 290 

gain further insight into the genetic architecture of complex traits. Unlike other 291 

currently available databases, like the GWAS catalog (which contains 292 

~39,366 unique SNP-trait associations), our database includes significant and 293 

non-significant associations, thus providing an unbiased view of phenotype-294 

genotype associations across a large number of traits within a single cohort. In 295 

addition, the database contains 182,266 independent genotype-phenotype 296 

associations, genetic and environmental correlations, and estimates of SNP 297 

heritability to allow researchers to perform their own filters on what a meaningful 298 

association or heritability is. We hope this database will be useful to those 299 

working on complex traits genetics, but also to those that have not got the 300 

expertise or capabilities to perform analyses at this scale.  301 

 302 
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Figures 374 

 375 

 376 

Figure 1: The effect of sample size on the number of GWAS hits and their 377 

estimated effects. (a) Comparison between the p-values (two-sided t-test) 378 

obtained using the whole cohort (452,264 individuals) and random subsamples 379 

of increasing sizes. The plot shows only the results for the genetic variants 380 

associated with a p-value < 10-8 in the whole cohort. (b) Total number of 381 

detected associated variants (two-sided t-test) at a threshold of p-value < 10-8 382 

as a function of the sample size. (c) Slope of the effect sizes of the GWAS hits 383 

obtained in random subsamples of increasing size vs the same effect sizes 384 

estimated in the whole cohort. Slopes larger than one indicate an inflation on 385 

the effect estimates in the smaller sample. The black line joints the mean at 386 

each sample size shown. Error bars indicate the standard deviation.  387 

 388 
 389 

 390 

  391 



   

 

   

 

Figure 2. Histograms of numbers of significant associations (two-sided t-392 

test, P < 10-8). The panels show results for each phenotype (left) and 393 

independent lead variant (right) for non-binary (top) and binary (bottom) 394 

phenotypes. 395 

 396 

 397 
 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 
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Figure 3. Number of significant associations (two-sided t-test, P < 10-8). 409 

The panels show the number of significant associations at each tested genetic 410 

variant for all traits, non-binary and binary phenotypes. The HLA region 411 

(±10Mb) is indicated.        412 

 413 

 414 

 415 
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Figure 4. Relationship between estimated SNP heritability and numbers 417 

of genome wide significant associations (two-sided t-test, P < 10-8). HLA 418 

and surrounding 10Mb region were excluded for non-binary and binary 419 

phenotypes respectively. 420 

  421 

 422 

 423 

 424 
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Figure 5. Manhattan plots for selected phenotypes. Manhattan plots for the 426 

phenotypes with the largest number of genome wide significant associations 427 

(two-sided t-test, P < 10-8) within each of these categories: non-binary 428 

phenotypes, cancer registry, self-reported non-cancer illness, clinically defined 429 

disease from hospital episode statistics and matching self-reported disease to 430 

the clinically defined disease from hospital episode statistics. From top to 431 

bottom: non-binary phenotypes (Standing height), cancer registry (Melanoma 432 

and other malignant neoplasms of skin), self-reported non-cancer illness 433 

(hypertension), clinically defined malabsorption, and self-reported 434 

malabsorption. Genetic variants with P < 10-30 are indicated by marks along the 435 

top of each plot.  436 



   

 

   

 

 437 
Figure 6. Numbers of phenotypes of different SNP heritability. Colours 438 

indicate the fraction of phenotypes with heritability significantly (P < 0.05, Chi-439 

squared test, see Online Methods for details) different from zero in each bin.  440 
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 462 

 463 

 464 

Figure 7. Phenotypic prediction accuracy from genetic markers. Accuracy 465 

of phenotypic prediction as a function of the estimated SNP-heritability for (a) 466 

non-binary traits and (b) binary traits when no covariates were used for 467 

prediction. Comparison between prediction accuracy when covariates are 468 

included or not included for (c) non-binary traits and (d) binary traits. 469 
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ONLINE METHODS  473 

Phenotypes  474 

In total we analysed 778 phenotypes in UK Biobank participants of white 475 

ethnicity. These included 657 binary phenotypes generated from self-reported 476 

disease status (UK Biobank field 20002), ICD10 codes from hospitalization 477 

events (UK Biobank fields 41202 and 41204), and ICD10 codes from cancer 478 

registries (UK Biobank fields 40006), as well as a further 3 binary and 118 non-479 

binary (comprising continuous and ordered integral measures) phenotypes 480 

from across the UK Biobank. Amongst the 660 binary phenotypes 86 exhibited 481 

either a complete lack of cases in one sex or a strong imbalance in prevalence 482 

in the two sexes, i.e, the ratio between the smaller and larger prevalence was 483 

<0.02. Of these 86 phenotypes 72 where specific to women. We only included 484 

individuals of the appropriate sex, i.e., the sex with higher prevalence, in the 485 

analysis of these sex specific phenotypes. A description of each phenotype, its 486 

category and the relevant UK Biobank fields can be found in Supplementary 487 

Table 1 and Gene ATLAS website. The non-binary phenotypes were not scale 488 

transformed, so the units of the effect sizes are in the units reported in the UK 489 

Biobank database. The phenotypes for individuals with negative coding were 490 

replaced with the corresponding value (Supplementary Table 9). We also 491 

ordered the keys for the ordinal phenotypes with unordered keys in the UK 492 

Biobank database (Supplementary Table 10). The individuals with a phenotype 493 

departing 10 standard deviations from their gender mean were set as missing 494 

for traits with a value type defined as “Integer” or “Continuous” by UK Biobank. 495 

The exceptions to this were Number of self-reported cancers (134-0.0), Number 496 

of self-reported non-cancer illnesses (135-0.0), Nucleated red blood cell 497 

percentage (30230-0.0), Nucleated red blood cell count (30170-0.0), and 498 

Frequency of solarium/sunlamp use (2277-0.0) which were left as reported by 499 

UK Biobank. Some of the traits analysed have some redundancy that has been 500 

left for completeness. That is, some of these traits were measured in different 501 

ways during the study (e.g. weight) or are analysed as self-reported traits and 502 

clinical traits (e.g. malabsorption). For disease traits all individuals reporting a 503 

disease code were coded as cases with all other individuals considered 504 

controls. Only non-disease phenotypes with missing data rate < 5% were 505 



   

 

   

 

selected for analysis. For these phenotypes missing values were imputed to 506 

the age and sex specific mean in the study cohort.  507 

 508 

Analysis Checks 509 

Extensive validation steps were performed to ensure the reliability of the data 510 

(Supplementary Material). These steps included, for instance, a comparison of 511 

effect sizes with previous results from GWAS published in GWAS Catalog 512 

(Supplementary Figs. 10-18), the investigation of how the polygenicity of the 513 

traits drive inflation factors in GWAS (Supplementary Fig. 19), and comparisons 514 

with repeated analyses where the non-binary phenotypes containing at least 515 

500 different values were transformed using a rank-based normal 516 

transformation (Supplementary Note, Supplementary Table 11, and 517 

Supplementary Fig. 20). The results are in good agreement. Since the 518 

statistical power may be different in some cases, the results are available at the 519 

GeneATLAS web. Furthermore, the comparison between our heritability 520 

estimations with previously published heritabilities showed a good agreement 521 

(Supplementary Fig. 21 and Supplementary Table 12) when comparing ten 522 

traits. In addition, we computed the Q-Q plots (Supplementary Fig. 22, and 523 

summary plots in GeneATLAS website). We also checked whether there were 524 

any areas depleted of associations, that is, that showed few significant 525 

associations (Supplementary Fig. 23 and 24).  Finally, we compared the 526 

coherence of the effect size directions estimated with the whole cohort and 527 

subsets of it of different sizes (Supplementary Table 13). 528 

 529 

Genotypes 530 

The genotypes of the UK Biobank participants were assayed using either of two 531 

genotyping arrays, the Affymetrix UK BiLEVE Axiom or Affymetrix UK Biobank 532 

Axiom array. These arrays were augmented by imputation of ~90 million 533 

genetic variants from the Haplotype Reference Consortium5, the thousand 534 

genomes13 and the UK 10K13 projects. Full details regarding these data have 535 

been published elsewhere14.  536 

 537 

We excluded individuals who were identified by the UK Biobank as outliers 538 

based on either genotyping missingness rate or heterogeneity, whose sex 539 



   

 

   

 

inferred from the genotypes did not match their self-reported sex and who were 540 

not of white ancestry (based on both, self-reported ethnicity and those from 541 

whom one of the two first genomic principal components did not fall within 5 542 

standard deviations from the mean). Finally, we removed individuals with a 543 

missingness >5% across variants which passed our quality control procedure 544 

and those that have a missing phenotype for 40 or more traits. The resulting 545 

study cohort comprised 452,264 individuals.  546 

 547 

From the genotyped data we only retained bi-allelic autosomal variants which 548 

were assayed by both genotyping arrays employed by UK Biobank. We 549 

furthermore excluded variants which had failed UK Biobank quality control 550 

procedures in any of the genotyping batches. Additionally, for imputed and 551 

genotyped variants, we excluded variants with P < 10-50 for departure from 552 

Hardy-Weinberg, computed on a subset of 344,057 unrelated (Kinship 553 

coefficient < 0.0442) individuals in the White-British subset of the study cohort, 554 

and with a missingness rate > 2% in the study cohort. Although we analysed all 555 

imputed variants and all genotyped variants with MAF > 10-4 (all results 556 

available on the GeneATLAS website), only imputed variants with MAF>10-3 in 557 

the study cohort and imputation score larger than 0.9 were used for the 558 

summary results presented here. This cut-off corresponds to less than 905 559 

occurrences of the minor allele in the study cohort. We also filtered the HLA 560 

imputed alleles that were present in fewer than 10 individuals. 561 

 562 

GWAS Analysis 563 

To test each genetic variant whilst taking into account population structure in 564 

UK Biobank (e.g. presence of related individuals or local structure), we used a 565 

Linear Mixed Model. Specifically, the model takes the form 566 

𝐲 = 𝐗𝛃 + 𝐠 + 𝛜, 567 

where y is the vector of phenotypes, X, is the matrix of fixed effects, and  the 568 

effect size of these effects. We included as fixed effects sex, array batch, UK 569 

Biobank Assessment Center, age, age2, and the leading 20 genomic principal 570 

components as computed by UK Biobank. g is the polygenic effect that 571 

captures the population structure, fitted as a random effect. It follows the 572 



   

 

   

 

distribution 𝐠~𝐍(0, 𝐀𝜎𝑔
2), with A the Genomic Relationship Matrix (GRM), and 573 

𝜎𝑔
2 the variance explained by the additive genetic effects. The GRM was 574 

computed using common (MAF > 5%) genotyped variants that passed quality 575 

control. Finally, 𝛜~𝐍(0, 𝐈𝜎𝜖
2) is a residual effect not accounted for by the fixed 576 

and random effects. Under this model, the phenotype vector 𝐲, follows the 577 

distribution 𝐍(𝐗𝛃, 𝐀𝜎𝑔
2 + 𝐈𝜎𝜖

2). 578 

 579 

Fitting one instance of such a LMM model is computationally very demanding. 580 

Following a naïve approach, the required computational time increasing with 581 

the cube of the sample size, ~O(N3), and the memory requirements with the 582 

square of the sample size, ~O(N2). Consequently, fitting a single model on a 583 

cohort of the size of UK Biobank is challenging, and fitting millions of these 584 

models, one for each analysed genetic variant and phenotype is not feasible 585 

with standard computational and statistical approaches. To address this 586 

problem, we took advantage of three different tools. First, we used a large 587 

supercomputer, and DISSECT3 to speed up the calculations (e.g. computing 588 

the GRM eigen-decomposition required 5,040 processor cores working 589 

together for ~10h, and using ~5TB of memory). Second, we computed the full 590 

eigen decomposition of the GRM, 𝐀 = 𝚲𝚺𝚲𝑇, where 𝚲 is the matrix of 591 

eigenvectors, and 𝚺 is a diagonal matrix containing the eigenvalues. This 592 

allowed us to transform all the other model matrices, y, X, and 𝛜 to the new 593 

space where the GRM is diagonal. Although the eigen-decomposition is a 594 

computationally intensive process, once diagonalized, the computational time 595 

of fitting a model is reduced considerably to ~O(N), thus enabling us to perform 596 

several tests using Mixed Linear Models on a cohort of hundreds of thousands 597 

of individuals. Finally we performed over 23 billion tests using a two-step 598 

approximation that optimizes the computational resources15. The first step of 599 

the approximation fits a LMM that adjusts by the relevant fix (e.g. age, sex, etc.) 600 

and random effects (genetic effects) to each trait, the second step uses the 601 

residuals of LMM to test (two-tailed t-test on effect sizes) all available genetic 602 

markers for significance in a linear model. We corrected for the polygenic effect 603 

using a Leave-One-Chromosome-Out (LOCO) approach16.  604 

 605 



   

 

   

 

HLA Region  606 

We defined the HLA region as the region of chromosome 6 spanning base pairs 607 

28,866,528 to 33,775,446. Throughout all analyses we included 10Mb either 608 

side of the above HLA region to account for LD with variants outside this region. 609 

The imputed HLA alleles were tested using the same GWAS model described 610 

above, where the independent variable is the best guess allele reported dosage 611 

from the HLA imputed values (UK Biobank field 22182). We tested the alleles 612 

using two models. A model where the number of copies of each HLA allele for 613 

each locus was tested independently as a fixed effect, and a second model 614 

where the number of copies of all alleles in a given locus were tested together 615 

as fixed effects in the same model (i.e. an omnibus test)17.  616 

 617 

Estimation of Genetic Parameters 618 

In order to estimate heritabilities and genetic correlations we fitted LMMs for 619 

each trait with a GRM containing all common (MAF > 5%) autosomal genetic 620 

variants which passed QC. The heritability was estimated as ℎ𝑔
2 =621 

𝜎𝑔
2/(𝜎𝑔

2 + 𝜎𝜖
2), where 𝜎𝑔

2 and 𝜎𝑒
2 are the estimates of the genetic and residual 622 

variance and the p-values were obtained using a Chi-squared test following the 623 

method described previously18,19. For all binary outcomes, we transformed 624 

heritabilities on the observed scaled to the liability scale using the population 625 

prevalence of the disease. We provide sex-specific prevalences to allow sex-626 

specific transformations (Supplementary Table 1). Using the model fits we 627 

computed best linear unbiased predictor estimates of genetic additive values 628 

for each individual. The genetic correlations were estimated by computing 629 

correlations between these additive genetic values. Environmental correlations 630 

were estimated as 𝑟𝑒 = (𝑟𝑦 − √ℎ𝑖
2ℎ𝑗

2 𝑟𝑔)/√(1 − ℎ𝑖
2)(1 − ℎ𝑗

2), where 𝑟𝑦, 𝑟𝑔 are the 631 

phenotypic and genetic correlations for traits 𝑖 and 𝑗. 632 

  633 

Lead variants and Independent Loci 634 

We clustered GWAS results into independent lead variants using the --clump 635 

option of the PLINK 1.9 software20,21. Specifically, for each trait individually, we 636 

clustered GWAS results by selecting genome wide significant variants as lead 637 

variants and assigning to them unassigned variants within 10Mb, that have 638 



   

 

   

 

P<10-2 and a 𝑟2 > 0.3 with the lead variant. To compute the total number of 639 

independent loci across all traits, we performed the same clustering on the lead 640 

variants across all traits, choosing the lowest p-value for variants which were 641 

lead variants in different traits.     642 

 643 

Relation of number of associations and chromosome length  644 

We regressed the number of significant associations (P<10-8) across traits for 645 

each chromosome on the covered length of the chromosome, i.e., distance in 646 

base pairs of the first and last tested genetic variants, and the number of genetic 647 

variants tested on the chromosome. For chromosome 6 we excluded the HLA 648 

region and variants contained therein from the statistics. We compared the full 649 

model to one with either the chromosomal length or number of tested genetic 650 

variants removed using the likelihood ratio test. The full model was not 651 

significantly better than the model containing only chromosomal length 652 

(P=0.08) but was significantly better than the model containing only the number 653 

of genetic variants (P=0.004). Both reduced models were significant when 654 

compared to a null model containing only an intercept. 655 

 656 

 657 

Phenotypic prediction 658 

The effect of all common genetic variants (MAF>0.05) were estimated together 659 

as a random effect using the model, 660 

𝑦𝑖 = 𝜇 + ∑ 𝑥𝑖𝑙𝛽𝑙

𝐿

𝑙=1

+ ∑ 𝑧𝑖𝑗𝑎𝑗

𝑀

𝑗=1

+ 𝑒𝑖, 661 

where 𝜇 is the mean term and 𝑒𝑖 the residual for individual 𝑖. 𝐿 is the number of 662 

fixed effects, 𝑥𝑖𝑙 being the value for the fixed effect 𝑙 at individual 𝑖 and 𝛽𝑙 the 663 

estimated effect of the fixed effect 𝑙 . We fitted the same covariates as in the 664 

GWAS analyses. 𝑀 is the number of markers and 𝑧𝑖𝑗 is the standardised 665 

genotype of individual 𝑖 at marker 𝑗. The vector of effects of random common 666 

genetic variants 𝐚 is distributed as N(0, 𝐈𝜎𝑢
2). The vector of environmental 667 



   

 

   

 

effects 𝐞 is distributed as N(0, 𝐈𝜎𝑒
2). Defining 𝜎𝑔

2 = 𝑀𝜎𝑢
2, the heritabilities were 668 

estimated as 𝜎𝑔
2/(𝜎𝑒

2 + 𝜎𝑔
2). 669 

The prediction of the phenotype 𝑦𝑖̂ for the individual 𝑖 was computed as a sum 670 

of the product of the SNP effects and the number of reference alleles of the 671 

corresponding SNPs: 672 

𝑦𝑖̂ = ∑
(𝑠𝑖𝑗 − 𝜇𝑗

∗)

𝜎𝑗
∗ 𝑎𝑗

𝑀

𝑗=1

, 673 

where 𝑠𝑖𝑗 is the number of copies of the reference allele at marker 𝑗 of individual 674 

𝑖, 𝑀 is the number of markers used for the prediction, and 𝑎𝑗 the effect of marker 675 

𝑗. 𝜇𝑗
∗ and 𝜎𝑗

∗ are the mean and the standard deviation of the effect allele in the 676 

training population. 677 

We used 407,669 genetically confirmed white British to train the models and 678 

44,595 whites of non-British descent to validate the models. We restricted this 679 

analysis to the 692 non-gender specific phenotypes. Prediction accuracies for 680 

non-binary traits were computed as the Spearman correlation between the 681 

predicted and the real phenotype of white participants of non-British descent 682 

after correcting by the estimated effect of the used covariates. Prediction 683 

accuracies for binary traits were computed as the Area Under the Curve (AUC) 684 

of a Receiver Operating Characteristic (ROC) curve using the predicted and 685 

the real phenotypes of white individuals of non-British descent.  686 

 687 

Reporting Summary 688 

Further information on experimental design is available in the Life Sciences 689 

Reporting Summary linked to this article. 690 

 691 



   

 

   

 

Code availability 692 

The source code of DISSECT, the tool used for GWAS and heritability 693 

estimations, is freely available at https://www.dissect.ed.ac.uk under GNU Lesser 694 

General Public License v3. 695 

 696 

Data availability 697 

All summary results from the analyses performed are available at GeneATLAS 698 

website, http://geneatlas.roslin.ed.ac.uk/. 699 
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