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Abstract
Variation in DNA methylation (DNAm) is associated with lifestyle factors such as smoking and body mass index (BMI) but
there has been little research exploring its ability to identify individuals with major depressive disorder (MDD). Using
penalised regression on genome-wide CpG methylation, we tested whether DNAm risk scores (MRS), trained on 1223 MDD
cases and 1824 controls, could discriminate between cases (n= 363) and controls (n= 1417) in an independent sample,
comparing their predictive accuracy to polygenic risk scores (PRS). The MRS explained 1.75% of the variance in MDD
(β= 0.338, p= 1.17 × 10−7) and remained associated after adjustment for lifestyle factors (β= 0.219, p= 0.001, R2=
0.68%). When modelled alongside PRS (β= 0.384, p= 4.69 × 10−9) the MRS remained associated with MDD (β= 0.327,
p= 5.66 × 10−7). The MRS was also associated with incident cases of MDD who were well at recruitment but went on to
develop MDD at a later assessment (β= 0.193, p= 0.016, R2= 0.52%). Heritability analyses found additive genetic effects
explained 22% of variance in the MRS, with a further 19% explained by pedigree-associated genetic effects and 16% by the
shared couple environment. Smoking status was also strongly associated with MRS (β= 0.440, p ≤ 2 × 10−16). After
removing smokers from the training set, the MRS strongly associated with BMI (β= 0.053, p= 0.021). We tested the
association of MRS with 61 behavioural phenotypes and found that whilst PRS were associated with psychosocial and
mental health phenotypes, MRS were more strongly associated with lifestyle and sociodemographic factors. DNAm-based
risk scores of MDD significantly discriminated MDD cases from controls in an independent dataset and may represent an
archive of exposures to lifestyle factors that are relevant to the prediction of MDD.

Introduction

Major depressive disorder (MDD) is a disabling condition
with an estimated point prevalence of 4.4% [1]. Recent
genome-wide association studies (GWASs) have begun to
elucidate the genetic architecture of MDD [2, 3] and poly-
genic risk scores (PRS) derived from the most recent study
of 246,363 depression cases and 561,190 controls explain
1.5–3.2% of MDD risk in independent cohorts [4]. As sole
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predictors of MDD status, PRS currently have limited
clinical utility and may not capture the larger environmental
contributions to risk.

Variation in DNA methylation (DNAm) is affected by
both genetic and environmental factors, which act in com-
bination to confer risk for diseases and complex traits [5].
DNAm has recently been studied in relation to MDD [6, 7].
An epigenome-wide association study (EWAS) of 7948
European individuals identified 3 CpG sites that were dif-
ferentially methylated in association with depressive
symptoms [6]. Annotation of these sites implicated genes
involved in axon guidance. A study of 150 monozygotic
twin pairs discordant for early onset MDD identified 760
differentially methylated CpG sites, which mapped to neu-
ronal circuitry and plasticity genes [7]. These findings
suggest that differences in DNAm may be associated
with MDD.

Many lifestyle factors associated with MDD, including
smoking [8], obesity [9, 10] and alcohol consumption [11],
are associated with differential genome-wide DNAm. These
DNAm signatures have been leveraged, using penalised
regression to identify a subset of informative CpG sites, to
create DNAm risk scores (MRS), which can predict the trait
of interest in an independent cohort. McCartney et al.
showed that DNAm scores explained 61% of the variance in
smoking status and 12.5% of the variance in body mass
index (BMI) and alcohol consumption. When modelled
alongside PRS, DNAm scores contribute additively to the
variance explained for these traits [12]. DNAm therefore
acts as an archive of exposure to several risk factors for poor
mental health, however the significance of its association
with MDD remains unexplored.

A recent study of 581 individuals with depressive
symptoms used machine learning methods to train a pre-
dictor of MDD using DNAm data. They found that MRS
could discriminate future MDD disease status with an area
under the curve (AUC) of 0.72 [13]. Notably, this study did
not use an independent sample to test their MRS and they
discriminated between transient and chronic MDD over a 6-
year period. The aim of the current study was to use
penalised regression to train a predictor of MDD based on
DNAm in a large sample using the Generation Scotland:
Scottish Family Health Study (GS:SFHS) cohort [14, 15]. A
training set of 1223 MDD cases and 1824 controls was used
to create an MDD MRS which was then tested in 1970
independent individuals (363 prevalent and 190 incident
MDD cases; 1417 controls). As smoking has been con-
sistently associated with differential DNAm [8, 12], we
created an MDD MRS that excluded smoking signals
(MRS-ns) by training the predictor on a subset of indivi-
duals who had never smoked (534 MDD cases and 1017
controls). Using longitudinal clinical data, we also tested
whether MRS and MRS-ns derived from blood taken at the

baseline assessment would predict future (incident) MDD
status at follow-up between 4 and 10 years later. To explore
whether the MDD MRS and MRS-ns capture exposure to
lifestyle factors associated with MDD, we also tested the
association between MDD MRS and MRS-ns, and alcohol
use, BMI, smoking status, and pack years, as well as self-
reported antidepressant use.

To determine whether the MRS was capturing genetic or
environmental liability to MDD, we performed variance
component analysis to estimate the single nucleotide poly-
morphism (SNP)-based and environmental contributions to
MDD-associated methylation signatures. Finally, to explore
whether the MDD MRS and MRS-ns capture exposure to
lifestyle factors associated with MDD, we tested the asso-
ciation between MDD MRS and MRS-ns, and 61 beha-
vioural phenotypes and lifestyle factors. We compared these
associations with those observed for PRS that have pre-
viously shown association with a wide range of neu-
ropsychiatric traits [16].

Methods

Study population

Generation Scotland—the Scottish Family Health Study
(GS:SFHS)

GS:SFHS is a family-based population cohort investigating
the genetics of health and disease in ~24,000 individuals
across Scotland [14, 15]. Baseline data were collected
between 2006 and 2011. The present study focuses on 5017
individuals for whom DNAm data from a blood draw at
baseline contact, baseline phenotypic data and genotype
data were available. Environmental data, such as lifestyle
factors, were also measured (BMI) or recorded (smoking
status and alcohol consumption) on nearly all study
participants.

Longitudinal phenotypic data are available for a subset of
individuals who responded to a recontact request [17, 18].
For these individuals we have information on MDD case-
control status both at baseline and follow-up, which
occurred 4–10 years later (2015–2016). GS:SFHS received
ethical approval from NHS Tayside Research Ethics Com-
mittee (REC reference number 05/S1401/89) and has
Research Tissue Bank Status (reference: 15/ES/0040).
Written informed consent was obtained from all
participants.

Phenotypes

BMI was calculated using height (cm) and weight (kg)
measured by clinical staff during baseline recruitment.

M. C. Barbu et al.



Alcohol intake was self-reported as part of a pre-clinical
questionnaire. Participants were asked whether they were
“never”, “former” or “current” drinkers. Current drinkers
were asked: “During the past week, please record how
many units of alcohol you have had”.

Smoking status was recorded by asking participants:
“Have you ever smoked tobacco?”. Answers were recorded
as: “Yes, currently smoke; Yes, but stopped within the past
12 months; Yes, but stopped more than 12 months ago; No,
never smoked”. Previous evidence has shown that cigarette
smoking has strong associations with genome-wide DNAm,
and effects persist long after smoking cessation, indicating
that former smokers may retain DNAm profiles that are
similar to current smokers [10, 19]. Therefore, for the cur-
rent study, we assigned smoking status as a binary variable,
by converting all “Yes” answers to smoker [1], and “No” to
non-smoker (0). Using smoking behaviour data, pack years
were calculated by multiplying the number of cigarette
packs (20 cigarettes/pack) smoked per day by the number of
years a person has smoked [20].

Antidepressant use was self-reported by participants at
the baseline assessment and has been described in greater
detail previously ([21]; Supplementary material). See Sup-
plementary Tables 1 and 2 also for demographic differences
in lifestyle factors between individuals with an MDD
diagnosis and those without one.

Baseline MDD status was measured using the axis-I
Structured Clinical Interview of the Diagnostic and Sta-
tistical Manual, version IV (SCID) and was administered
to participants who answered “yes” to either of two
screening questions (see Supplementary materials). MDD
status was measured prospectively by remote paper
questionnaire between 4 and 10 years after baseline
assessment (2015–2016) using the Composite Interna-
tional Diagnostic Interview—Short Form (CIDI-SF) as
described previously [17].

Control participants were defined as those individuals
who answered “no” to the two screening questions
(see Supplementary materials) and did not fulfil criteria for
a diagnosis of current or previous MDD following the SCID
interview and CIDI-SF remote follow-up assessment. Indi-
viduals fulfilling criteria for schizophrenia or bipolar dis-
order, or who self-reported these diagnoses, were also
excluded from both case and control groups.

DNA methylation

In total, 9873 individuals in GS:SFHS had genome-wide
DNAm data profiled from blood samples using the Illumina
Human-MethylationEPIC BeadChip. The raw data were
acquired, preprocessed and quality checked in two different
batches, hereafter named batch 1 (n= 5190) and batch 2
(n= 4588).

In batch 1, ShinyMethyl [22] was used to exclude sam-
ples where predicted sex mismatched recorded sex, as well
as to plot the log median intensity of methylated and
unmethylated signals per array and inspect the output from
the control probes; outlying samples detected by visual
inspection were excluded. WateRmelon [23] was then used
to remove probes in which >1% of probes had a detection
p value > 0.05; probes with a beadcount of <3 in more than
5% samples; and probes in which >5% of samples had a
detection p value > 0.05 [12]. Multi-dimensional scaling
(MDS) plots were inspected to confirm that there were no
additional sample outliers. WateRmelon was then used to
normalise the data using the dasen method, and lumi [24]
was used for conversion to M values, which were then pre-
corrected for relatedness, estimated blood cell types, and
processing batch using DISSECT [25], for CpG sites on
autosomal chromosomes. The final dataset comprised cor-
rected M values at 841,753 loci measured for 5087
individuals.

In batch 2, Meffil [26] and ShinyMethyl [22] were used
for quality control of the raw data. Using Meffil, samples
were removed if: there was a mismatch between self-
reported and methylation-predicted sex; they had >1% of
CpG sites with a detection p value > 0.05; they showed
evidence of dye bias; they were outliers for the bisulphite
conversion control probes; and had a median methylated
signal intensity > 3 standard deviations lower than expected.
Afterwards, ShinyMethyl was used to perform further
quality control, as described above for batch 1. MDS plots
were inspected, and outliers were excluded. Meffil was then
used again to identify and exclude poor-performing probes,
which were deemed as such if: they had a beadcount of <3
in >5% samples and/or >5% samples had a detection
p value > 0.05. The data were normalised using the dasen
method in wateRmelon, and the beta2m function in lumi
[24] was used to generate M values. The final dataset
comprised M values for 773,860 loci measured in 4450
individuals.

Genotyping and PRS profiling

Individuals were genotyped using the Illumina OmniEx-
press BeadChip. The raw genotype data underwent a series
of quality control steps: individuals with a call rate < 98%,
SNPs with a genotype rate < 98%, minor allele frequency <
1%, and Hardy–Weinberg p value < 10−6 were removed
from the initial dataset and then imputation was performed
using the Sanger Imputation Service with the Haplotype
Reference Consortium panel v1.1 [27].

Using the largest available depression GWAS [4],
depression PRS were computed using Plink v1.90b4 [28]
using SNPs that met a significance level of p ≤ 0.05, in line
with previous studies, which have shown that this threshold

Epigenetic prediction of major depressive disorder



explains the most variance in MDD status [4]. GWAS
summary statistics excluding GS:SFHS were obtained in
order to create PRS in the GS:SFHS sample. Clumping was
applied using a linkage disequilibrium r2 < 0.1 and a 500-kb
window.

DNAm predictor—training and testing datasets

In order to obtain a training and testing dataset, individuals
were separated based on the two batches described above.
Supplementary Fig. 1 provides a flowchart summary of the
analysis process.

Training dataset

Batch 1 was used to train two DNAm predictors. The
dataset consisted of controls who were screened as unaf-
fected (n= 1824) at both baseline and follow-up (i.e.,
answered “no” to screening questions at baseline and fol-
low-up), or who screened positive but were subsequently
found not to fulfil diagnostic criteria for MDD using the
SCID. MDD cases were those who screened positive for
depression by answering yes to one or more brief screening
questions and who subsequently fulfilled criteria for MDD
at baseline SCID interview (n= 1223). The non-smoker
dataset was created by excluding those individuals who had
a smoking history from the entire batch 1 dataset
(N excluded= 1496; i.e. answered “yes” to the question
“have you ever smoked tobacco?”). As such, this dataset
contained 1017 controls who were screened as unaffected at
both baseline and follow-up and 534 MDD cases who were
screened positive for depression who answered “no, never
smoked” to the question “have you ever smoked tobacco?”.

CpG sites measured in the individuals mentioned above
were included as independent variables in a least absolute
shrinkage and selection operator (LASSO) penalised
regression model described below. Depression status was
regressed on age, sex and ten genetic principal components,
and the extracted residuals from this model were input as
the dependent variable in the LASSO regression model.

LASSO penalised regression models were run using the
“glmnet” function in R in order to train DNAm predictors.
We applied tenfold cross-validation and the mixing para-
meter was set to 1 for our LASSO penalty.

Testing dataset

Batch 2 was used in order to create MDD MRS using the
CpG sites identified in the training set using LASSO
regression models. Using the set of CpG sites selected from
the penalised regression, MRS were calculated in the testing
dataset using the weights estimated in the training set, first
for prevalent depression (Total n= 1780; cases= 363;

controls= 1417) and then for incident depression (Total
n= 1607; cases= 190; controls= 1417). Prevalent depres-
sion refers to those individuals who were depressed at both
baseline and follow-up, while incident depression refers to
those individuals who were well at baseline but went on to
develop MDD.

Statistical methods

All analyses were conducted using R (version 3.2.3) in a
Linux environment. The R code for the current analyses is
available in Supplementary materials.

Association of MRS and MRS-ns with depression

The association between both MDD MRS and MDD status
was assessed using logistic regression. We tested the asso-
ciation between MRS and prevalent depression (Total n=
1780; cases= 363; controls= 1417) and between MRS
and incident depression (Total n= 1607; cases= 190;
controls= 1417). We repeated these analyses using the
MRS-ns score and also performed sensitivity analyses by
selecting individuals who had self-reported antidepressant
use (Total NPrevalent= 1250, cases= 198, controls= 1052;
Total NIncident= 1195, cases= 143, controls= 1052).
McFadden’s R2 were calculated to determine the amount of
variance in MDD explained by MRS.

We tested whether lifestyle factors previously shown to
be associated with both MDD and DNAm [8–12] were
associated with the MRS. Using linear regression, we tested
whether MRS and MRS-ns were associated with BMI, pack
years and alcohol consumption. Logistic regression models
were used to test whether MRS and MRS-ns were asso-
ciated with self-reported antidepressant use and smoking
status. To estimate how much variance MRS and MRS-ns
explain in MDD status when adjusting for lifestyle factors,
MDD status was modelled as a dependent variable with
alcohol consumption, BMI, smoking and pack years fit as
covariates. We also tested the effect of fitting self-reported
antidepressant use in our models to determine whether the
MRS and MRS-ns would still significantly contribute to the
risk for MDD. This was carried out for both incident and
prevalent cases.

In addition, using the “ROCR” R package, we plotted the
predictive ability of MRS and MRS-ns in both incident and
prevalent cases and controls using a Receiver Operating
Characteristic (ROC) curve, representing the sensitivity and
specificity of the score in relation to depression.

Mediation analysis

Mediation analysis was carried out to illustrate the rela-
tionship between PRS, MRS and MDD. In two separate
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mediation models, PRS was set as the independent variable,
MRS or MRS-ns as the mediator, and MDD as the outcome.
All variables were adjusted for age and sex. In addition,
PRS and MRS/MRS-ns were adjusted for the first
ten genetic principal components, and MRS/MRS-ns were
adjusted for BMI, alcohol consumption and smoking status.

In addition, two mediation models were tested in order to
illustrate the relationship between the MRS, smoking and
MDD. In the first model, MDD was set as the independent
variable, smoking as the mediator and the MRS as the
outcome. MDD and smoking were adjusted for age and sex.
MRS was adjusted for age, sex, batch and the first
ten genetic principal components. In the second model,
smoking was set as the independent variable, MRS
as the mediator and MDD as the outcome. Covariates
for the three variables were consistent with the first
mediation model.

The ‘lavvan’ package in R was used for mediation ana-
lyses [29]. Categorical variables such as sex were trans-
formed into numeric. All variables including covariates
were scaled to a mean of 0 and a standard deviation of 1.

Heritability and environmental contributions to MRS and
identification of mQTLs

A recent study using 5101 individuals from the present GS:
SFHS cohort determined the relative genetic and environ-
mental contributions to DNAm at each CpG site on the
EPIC illumina array [5]. This study used a five-component
variance component method [30], which estimates the SNP
(G) and additional genetic (kinship) (K) contributions to
methylation variance alongside contributions from the
nuclear family (F), couple (C) and sibling (S) shared
environments. Using this approach, we tested the genetic
and environmental contributions to the total MRS/MRS-ns
using the GKFCS method [30]. Briefly, this decomposes
variation in the MRS into the two genetic components (G
and K) and three environmental components (C, F and S)
using GCTA software [30]. Using a backward-stepwise
selection model, we initially fit all five components and then
dropped components if they were not significant using Wald
or likelihood ratio tests (LRT). This process was repeated
until all components significantly contributed to variance in
the MRS. This method and the construction of the GKFCS
matrices has been previously described in more detail in Xia
et al. (2016) [30] and Zeng et al. [5]. We also assessed
whether SNPs associated with methylation (mQTLs) at the
CpG sites which comprise the MRS were enriched for
association with MDD. mQTLs for MRS CpG sites were
identified using the ARIES dataset using the midlife time-
point (http://www.mqtldb.org/) [31]. Significant mQTLs
were then tested for their association with MDD by per-
forming a look-up of their p values from summary statistics

of the largest GWAS of MDD to date [4]. False discovery
rate (FDR) correction was then performed on the MDD
p values to identify those mQTLs significantly associated
with both CpG methylation and MDD status after correction
for multiple testing.

MRS and PRS associations with an archive of 61
behavioural variables

The GLM function in R was used to test associations
between the MRS and MDD PRS, which were set as pre-
dictor variables, and 61 behavioural, cognitive and lifestyle
phenotypes, which were included as outcome variables (for
a list of all phenotypes included in the analysis, please see
Supplementary Table 3). Covariates in all models included
age, sex and ten genetic principal components. FDR cor-
rection was applied over all tests (61 outcome variables ×
MRS+ PRS) using the p.adjust function in R (q < 0.05).

Pathway analysis

To annotate CpG sites comprising the MRS, we used the
Infinium MethylationEPIC BeadChip database, which pro-
vides information concerning genes, chromosome location,
start and end site and other characteristics (https://emea.
support.illumina.com/array/array_kits/infinium-methyla
tionepic-beadchip-kit/downloads.html). We then used the
Functional Mapping and Annotation of Genome-wide
association studies (FUMA; 32) in order to identify biolo-
gical pathways that are associated with the annotated genes
(see Supplementary Excel Files 1A and 1B for a list of CpG
sites and annotated genes for MRS and MRS-ns, respec-
tively). The database tests whether genes of interest are
overrepresented in any pre-defined gene sets across a
number of databases. We interrogated a number of gene sets
using data from the Gene Ontology (GO) Consortium using
the FUMA online tool [32].

Results

One hundred and ninety-six CpG sites were selected for the
MRS predictor that corresponded to the minimum mean
cross-validated error within the entire training dataset (n=
3047). Similarly, 144 CpG sites were included in the non-
smoker training dataset (n= 1,551) (see Supplementary
Excel Files 2A and 2B for a list of CpG sites and their
regression weights for the MRS and MRS-ns, respectively).

Association of MRS with depression

The MRS was significantly associated with both prevalent
(Total n= 1780; cases= 363, controls= 1417; β= 0.338,
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p= 1.17 × 10−7) and incident (Total n= 1607; cases= 190,
controls= 1417; β= 0.193, p= 0.016) MDD in the testing
dataset; however the MRS explained 1.75% of the variance
of prevalent MDD and only 0.52% of incident MDD. The
MRS trained on non-smokers (MRS-ns) was significantly
associated with prevalent MDD (Total n= 1780; cases=
363, controls= 1417; β= 0.157, p= 0.015), but only
explained 0.4% of the variance in MDD status. The MRS-ns
was not significantly associated with incident MDD (Total
n= 1607; cases= 190, controls= 1417; β= 0.109, p=
0.173, R2= 0.196%).

After adjustment for self-reported antidepressant use,
MRS was still significantly associated with prevalent
MDD (β= 0.236, p= 0.004, R2= 0.77%), as was MRS-
ns (β= 0.191, p= 0.015, R2= 0.54%). The association
with incident MDD after adjusting for antidepressant use
was positive but not significant (β= 0.091, p= 0.296,
R2= 0.121%). See Fig. 1a for a ROC curve showing the
ability of MRS and MRS-ns to discriminate between
MDD cases and controls; for MRS, the AUC was 0.58 in
prevalent and 0.55 in incident depression, while for MRS-
ns, the AUC was 0.53 for both prevalent and incident
depression.

Both MRS (β= 0.338, p= 1.17 × 10−7, R2= 1.75%) and
PRS (β= 0.397, p= 1.02 × 10−9, R2= 2.40%) accounted
for a small proportion of the variance in risk of prevalent
MDD. The model including both MRS (β= 0.327, p=
5.66 × 10−7) and PRS (β= 0.384, p= 4.69 × 10−9)
demonstrated that these two risk scores act additively (R2=
3.99%) and we found no evidence of an interaction
(β=−0.009, p= 0.892) (Supplementary Table 4). The
model including both MRS-ns (β= 0.142, p= 0.032) and
PRS (β= 0.394, p= 1.39 × 10−9) also found an additive
effect of both scores (R2= 2.72%) with no evidence of an
interaction (β= 0.049, p= 0.483). Figure 1b shows the
variance in MDD explained (%) by MRS, MRS-ns
and PRS.

We performed sensitivity analyses using MDD cases and
controls with no self-reported antidepressant use
(Total NPrevalent= 1250, cases= 198, controls= 1052; Total
NIncident= 1195, cases= 143, controls= 1052), MRS was
significantly associated with prevalent (β= 0.331, p=
6.19 × 10−5, R2= 1.66%) and incident (β= 0.232, p=
0.011, R2= 0.76%) MDD. The variance explained in
the antidepressant-free subset was slightly lower compared
with the full prevalent case-control sample (antidepressant-

Fig. 1 Prediction of MDD case-
control status. a Receiver
Operating Characteristic (ROC)
curve indicating the sensitivity
(y-axis) and specificity (x-axis)
of methylation risk score (MRS)
and methylation risk score
trained on non-smokers (MRS-
ns) for both prevalent and
incident MDD. The AUC
estimates are indicated for each
predictor in the legend.
b Variance in prevalent MDD
(indicated by R2 (%) on the
y-axis) explained by MRS and
PRS alone when fitting MDD as
the outcome variable and fitting
age, sex and ten genetics
principal components as
covariates. MRS and PRS are
then fit in the same model
(PRS+MRS) to show their
additive contribution to variance
explained in MDD.
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free sample: R2= 1.66%; full sample: R2= 1.75%). MRS-
ns was significantly associated with prevalent MDD with no
antidepressant use (β= 0.189, p= 0.026, R2= 0.507%).

Association of MRS and MRS-ns with lifestyle factors
and self-reported antidepressant use

The MRS was associated with smoking status (β= 0.440, p ≤
2 × 10−16, R2= 3.2%), pack years (β= 0.246, p ≤ 2 × 10−16,
R2= 6.5%), alcohol consumption (β= 0.092, p= 9.85 ×
10−5, R2= 0.7%) and self-reported antidepressant use (β=
0.289, p= 0.002, R2= 1.1%). When partitioning smokers
into current and former smokers, the MRS was associated
with both (current smokers vs controls: β= 1.096, p ≤ 2 ×
10−16, R2= 15.53%; former smokers vs controls: β= 0.262,
p= 4.41 × 10−6, R2= 1.06%). BMI was not significantly
associated with MRS (β= 0.039, p= 0.099, R2= 0.097%)
(Supplementary Table 5; Supplementary Fig. 2).

The MRS-ns (trained on non-smokers) was also asso-
ciated with smoking status (β= 0.102, p= 0.035, R2=
0.22%) and pack years (β= 0.055, p= 0.014, R2=
0.27%) in an independent dataset, but the strength of
association was attenuated compared with the original
MRS. The MRS-ns was still associated with smoking
status using current smokers only as cases (β= 0.256,
p= 0.002, R2= 0.97%). MRS-ns was not associated with
former smoking when these individuals were compared
with controls (β= 0.059, p= 0.264, R2 = 0.092%). MRS-
ns showed a stronger association with BMI (β= 0.053,
p= 0.021, R2= 0.246%) than the MRS (β= 0.039, p=
0.099, R2= 0.097%). Alcohol consumption (β= 0.024,
p= 0.289, R2= 0.01%) and self-reported antidepressant
use (β= 0.084, p= 0.365, R2= 0.096%) were not asso-
ciated with MRS-ns (Supplementary Table 5; Supple-
mentary Fig. 3).

Association of MRS and MRS-ns with depression
when adjusting for lifestyle factors

MRS was tested for its association with prevalent and
incident depression while adjusting for BMI, alcohol use,
smoking status and pack years (lifestyle factors) to
determine if any independent contribution remained from
the MRS (Table 1 and Fig. 2a). MRS was still associated
with prevalent MDD status after adjusting for lifestyle
factors (β= 0.219, p= 0.001) but only explained 0.68%
of the variance (compared with R2 = 1.75% in the unad-
justed model). For incident depression cases, the
MRS was no longer associated with MDD status after
adjusting for lifestyle factors (variance explained
decreased from 0.52% prior to adjustment to 0.25% after
adjustment).

Table 1 and Fig. 2b detail the results for the MRS-ns
associations. MRS-ns was not associated with prevalent
MDD status after adjusting for lifestyle factors (β= 0.116,
p= 0.08, R2= 0.227%).

Mediation analysis

There was no evidence of mediation or interaction effects of
MRS on the relationship between PRS and MDD (Sup-
plementary Figs. 4 and 5).

Smoking significantly mediated the association between
MDD and MRS (β= 0.071, p < 0.001, CFI= 0.976, TLI=
0.954, RMSEA= 0.017), with 52.2% of the mediation
taking place through this lifestyle factor (direct association
between MDD and MRS before and after adding smoking
as the mediator: C= 0.136, C′= 0.065).

The MRS mediated the association between smoking and
MDD (β= 0.019, p= 0.008, CFI= 0.977, TLI= 0.995,
RMSEA= 0.017). A smaller proportion of variance of
8.51% was mediated by the MRS (direct association
between smoking and MDD before and after adding MRS
as the mediator: C= 0.233, C′= 0.214).

Heritability and environmental contributions to
MRS

Zeng et al. reported that SNP genetic effects (G) explained
9.5% of the variance in CpG methylation across the genome
and the additional pedigree effects accounted for 7.2% of the
variance [5]. They found little contribution for the shared
environment influencing methylation status. We found sig-
nificant genetic contributions to the MRS total scores (G=
0.22 [S.E.= 0.07]), K= 0.19 [S.E.= 0.09]), and also sig-
nificant contributions from the shared couple environment
1(C= 0.16 [S.E.= 0.06]), but not from the shared sibling
environment (S= 1 × 10−7 [S.E= 0.03]). A similar pattern
was observed for the MRS-ns where genetic effects con-
tributed to a proportion of the observed variance (G= 0.22, S.
E= 0.07; K= 0.19, S.E= 0.08). The recent shared couple
environment explained 15% of the variance in the MRS-ns (S.
E= 0.06), while the shared sibling environment explained
only 6% of the variance in the MRS-ns (S.E.= 0.03).

Methylation quantitative trait loci (mQTLs) were iden-
tified for each CpG comprising the MRS using the ARIES
dataset mQTLdb [31] using the middle-age timepoint.
Seventy-one of the 196 CpG sites had mQTLs (9740
mQTLs in total). We then tested their association with
MDD using summary statistics from the largest GWAS of
MDD [4]. MDD GWAS data were available for 8327/9740
mQTL. After FDR correction 536 mQTL were significantly
associated with MDD and these spanned 11 CpG sites
(Supplementary Table 6).
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Table 1 Association between four lifestyle factors (BMI, smoking status, pack years, alcohol units), MRS, MRS-ns, and prevalent and
incident MDD.

MRS MRS-ns

Prevalent MDD Effect size SE p value R2 (%) Prevalent MDD Effect size SE p value R2 (%)

Body mass index 0.256 0.061 2.16 × 10−5 1.36 Body mass index 0.256 0.061 2.82 × 10−5 1.36

Smoking status 0.369 0.154 0.017 2.13 Smoking status 0.406 0.153 0.008 2.13

Pack years 0.239 0.074 0.001 1.003 Pack years 0.279 0.073 0.0001 1.003

Alcohol units 0.08 0.066 0.232 0.13 Alcohol units 0.092 0.066 0.162 0.13

MRS 0.219 0.067 0.001 0.68 MRS-ns 0.116 0.066 0.08 0.227

Incident MDD Effect size SE p value R2(%) Incident MDD Effect size SE p value R2(%)

Body mass index 0.138 0.076 0.07 0.45 Body Mass Index 0.136 0.076 0.076 0.45

Smoking status 0.629 0.19 0.0009 1.5 Smoking status 0.642 0.189 0.0007 1.49

Pack years −0.0003 0.099 0.997 0.005 Pack years 0.026 0.098 0.794 0.005

Alcohol units −0.109 0.095 0.248 0.11 Alcohol units −0.105 0.094 0.268 0.11

MRS 0.136 0.083 0.1 0.25 MRS-ns 0.085 0.081 0.294 0.124

Results presented are those taken from models fitting all lifestyle factors alongside the two MRS in separate models. Effect sizes represent
standardised betas. R2 represents the variance explained in prevalent and incident MDD by each of the predictor variables.

SE standard error, MRS methylation risk score, MRS-ns methylation risk score trained on non-smokers.

Fig. 2 a Variance in MDD
(indicated by R2 (%) on the y-
axis) explained by four lifestyle
factors and MRS. b Variance in
MDD (indicated by R2 (%) on
the y-axis) explained by four
lifestyle factors and MRS-ns.
Lifestyle factors= BMI, alcohol
consumption, smoking status
and pack years. Light and dark
pink bars indicate the additive
variance explained by all
lifestyle factors combined in
incident (I) and prevalent (P)
MDD; the light and dark green
bars indicate the additive
variance explained by all
lifestyle factors with the addition
of the MRS to the model.
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MRS and PRS associations with an archive of 61
behavioural variables

Of 61 variables investigated, we found 8 phenotypes
(categories included cognition, lifestyle, physical and
sociodemographic measures) associated with the MRS and
10 phenotypes (categories included cognition, lifestyle,
sociodemographic, mental health, physical and disease
measures) associated with the PRS. Supplementary Table 7
details the results, including standardised effect size, p value
and p-corrected value for each outcome variable. Figure 3
depicts the absolute effect size for significant outcome
variables for MRS compared with PRS. Supplementary
Fig. 6 depicts the relationship between MRS and MRS-ns
and several outcome variables.

Pathway analysis

We annotated 159 genes to the 196 CpG sites within the
MRS, and 111 genes to the 144 CpG sites within the MRS-
ns and used FUMA to identify GO Consortium gene sets
enriched for these genes. See Supplementary materials
Figs. 7–11 for the GO gene sets, participating genes
annotated to the two risk scores, and their respective p value
for each gene set, for both MRS and MRS-ns.

Sixty-two significant putative gene sets (Pcorrected < 0.05)
were identified from the MRS. Of these, 55 were biological
processes, of which most included regulation of cellular and
molecular processes. Only one of these processes was
located in the nervous system: go neurogenesis, involving
the generation of cells within the nervous system.

Seventy-two significant putative gene sets (Pcorrected < 0.05)
were enriched for the MRS-ns genes. Ten of these gene sets
involved biological processes occurring in the brain and
nervous system and include neurogenesis, neuron

differentiation, neuron projection guidance, dopaminergic
neuron differentiation, central nervous system development
and forebrain development. Fourteen cellular components
were identified, eight of which were located in the nervous
system and included the following GO gene sets: neuron part,
synapse, neuron projection, axon initial segment, paranode
region of axon and node of Ranvier. The full lists of biolo-
gical and cellular components for the MRS and MRS-ns can
be found in Supplementary materials (Figs. 7–11).

Both the biological processes and cellular components
identified indicate that the MRS-ns is enriched for annotated
genes involved in neurodevelopment across multiple areas
within the brain, whereas the genes annotated to the MRS
have more broad biological functions not specific to the
nervous system.

Discussion

In the current study, we created a methylation risk score for
MDD and investigated its association with prevalent
depression (individuals who were depressed at both base-
line and follow-up) and whether altered DNAm at baseline
predicted incident depression between 4 and 10 years later.
Our MRS explained 1.75% of the variance in prevalent
MDD compared with 2.40% of the variance explained by a
PRS; additively, the PRS and MRS accounted for 3.99% of
variance explained in total. Although the PRS still outper-
forms the MRS on predictive ability, it is worth noting that
PRS were trained on a sample of 807,579 individuals and
the MRS on only 3047 individuals; although the proportion
of variance explained by the MRS is currently small, the
accuracy and clinical potential of MRS will likely increase
as methylation data become more widely available. There-
fore, MRS may yet provide clinically valuable information

Fig. 3 Phenotypic associations
with MRS and PRS.
Associations between mental
health, sociodemographic,
lifestyle, physical and cognitive
measures and methylation risk
score (MRS) in red and
polygenic risk score (PRS) in
blue; the x-axis represents the
standardised effect size for each
outcome variable listed on the
y-axis. Error bars represent
standard errors of the effect size.
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about the risk of future MDD. We found that MRS were
associated with incident MDD, although they explained less
of the variance in future MDD status (0.52%).

The MRS was associated with smoking status, pack
years and alcohol consumption, suggesting that the MRS
may reflect exposure to risky lifestyles known to be asso-
ciated with MDD. After adjustment for lifestyle factors, the
MRS association with MDD was substantially attenuated.
These lifestyle factors have previously been associated with
MDD [33–37] and are known to robustly associate with
patterns of DNAm [12]. The attenuation of the association
between MRS and MDD suggests that the DNAm-based
predictor of MDD may be acting as a quantifiable archive of
the longitudinal effects of these exposures, and other, life-
style variables. Mediation analyses showed smoking sig-
nificantly mediated the association between MDD and
MRS, with 52.2% of the relationship being mediated by this
lifestyle factor. This result is in line with other findings
[8, 38], which indicate a strong influence of smoking on
DNAm. In addition, the MRS was also significantly asso-
ciated with self-reported antidepressant use, although this
association does not account for the MRS-MDD associa-
tions reported. This finding suggests that MRS may also be
sensitive to the effects of antidepressant use and that future
studies should examine whether MRS trained on anti-
depressant use may be valuable as a measure of anti-
depressant absorption or pharmacological action.

Given the strong association between methylation status
and smoking, we re-trained our MRS on a subset of cases
and controls who had never smoked. The MRS-ns was still
associated with MDD in the testing dataset but did explain
less of the variance compared with the MRS (1.75% vs
0.4%). Surprisingly, the MRS-ns was still associated with
smoking status and pack years but to a much lesser extent
than the MRS. The MRS explained 3.2% of the variance in
smoking status whereas the MRS-ns only explained 0.22%
of the variance. Interestingly, the MRS-ns was now asso-
ciated with BMI, a pattern not observed for the MRS. This
suggests that when excluding the smoking signals from our
dataset, the methylation differences between cases and
controls were linked to BMI rather than smoking.

Correction for smoking status in case-control DNAm
studies of other traits is an evolving area of methodological
development. Correcting for current status alone tends to
group together previous smokers and lifelong non-smokers,
who may differ significantly in their smoking associated
DNAm marks. Future studies may wish to correct for epi-
genetic smoking measures, as these are more stable and
capture a larger proportion of smoking associated DNAm
differences [39].

Although MRS were associated with exposure to envir-
onmental lifestyle factors, genetic effects are known to
influence variation in CpG methylation status. Zeng et al. [5]

recently found that SNP genetic effects explain, on average,
9.5% of the variance in methylation status at CpG sites across
the genome and 7.2% of variance could be attributed to
pedigree-associated effects. This was highly variable across
the genome and only 24,101 CpG sites had statistically sig-
nificant contributions from SNP genetic effects (G). The CpG
sites comprising the MRS and the MRS-ns had higher con-
tributions from SNP and pedigree-associated genetic effects
than expected by chance. The proportion of variance
explained by SNP effects for the CpG sites in the MRS was
15.1 and 16.5% for the MRS-ns. The additional pedigree-
associated effects explained 9.7 and 14.5% of the variance in
methylation for CpG sites making up the MRS and MRS-ns,
respectively. Interestingly, 11 CpG sites in the MRS had
mQTLs which were also strongly associated with MDD status
in GWAS. Although the PRS derived from GWAS appear to
be acting additively to the MRS risk for MDD, there are SNPs
which associate with both CpG methylation and MDD risk.
Future work should aim to determine whether these MDD-
associated genetic variants influence risk for MDD via CpG
methylation at these loci. There was little contribution from
the shared family environment; however, when variance
component analyses were applied to the total MRS, the shared
couple environment significantly contributed to the variance
explained. The couples in the GS:SFHS cohort are identified
by shared probands and are likely to be co-habiting at the time
of recruitment. The couple component therefore represents the
recent shared environment and common exposure to lifestyle
factors which influence DNAm. We recently showed there are
strong couple environmental contributions to smoking and
alcohol use which may explain why couples have similar
MRS in the present sample [40].

Recent phenome-wide association studies have shown
that MDD PRS are associated with a range of psychosocial
and mental health phenotypes [16]. Using the same
approach, we tested the association between 61 behavioural
phenotypes and compared the pattern of association
between MRS and PRS. MRS were significantly associated
with cognition, lifestyle, physical and sociodemographic
variables. In addition to these, PRS were associated with
disease and mental health variables, such as MDD, number
of depressive episodes and Mood Disorder Questionnaire
score. The results indicate that PRS were associated with
variables relating to MDD manifestation, as shown in pre-
vious studies [16]. Moreover, although both risk scores
were associated with sociodemographic measures, such as
years of education and deprivation ranks, MRS had a
stronger association than PRS, indicating a stronger role
played by the MRS in environmental factors [8–12].

Finally, pathway analysis conducted on the genes
annotated to the two sets of CpG sites indicated that MRS
annotated genes played a role in regulatory processes, while
the MRS-ns annotated genes were enriched in
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neurodevelopmental processes within a large number of
areas within the brain. These processes include axon gui-
dance, neurogenesis and neuronal differentiation. This may
show that excluding smoking signals from an MDD MRS
may lead to uncovering locations along the genome which
may play a role in neuronal processes.

The use of a single score instead of thousands of inde-
pendent loci allows for a more comprehensive analysis
investigating the additive effect of a large number of CpG
sites and permits the use of smaller sample sizes. In the
current study, we showed that an MRS could discriminate
MDD cases and controls with an AUC of 0.58. Using
machine learning methods and additional clinical variables,
Clark et al. showed that this figure may be increased to 0.74
when investigating recurrent MDD cases only [13]. In this
study, we were able to gain insight into a novel association
between an MRS and depression, over and above genetic
and environmental risk arising from lifestyle factors, as well
as examine differences between MRS and PRS in various
behavioural phenotypes. However, the MRS has less pre-
dictive ability for incident depression, indicating that the
score performs better when assessing currently affected
individuals. Moreover, although a proportion of the score
seems to capture exposure to lifestyle factors, it is unclear
what the remainder represents. As such, future studies would
benefit from larger sample sizes and longitudinal samples to
better understand the contribution of DNAm to MDD risk.

In addition, the diagnostic measures used in the current
study differed at baseline (SCID) and follow-up (CIDI-SF).
Previous evidence indicates that these two measures do not
show perfect agreement [41]. Nevertheless, use of the CIDI-
SF has been well-validated and has good diagnostic accu-
racy for MDD [42]. Future studies could usefully compare
the DNAm profiles of MDD according to different diag-
nostic instruments.

In conclusion, our results show that an MRS is associated
with current and future MDD status, enhancing prediction
from PRS and environmental traits. Subsequent to further
testing and validation in clinically-ascertained samples,
these findings may have future clinical applications for
MDD risk stratification and justify further efforts to collect
DNAm in larger samples.
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