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Abstract 24 

There is increasing evidence that the complexity of the retinal vasculature measured as 25 

fractal dimension, Df, might offer earlier insights into the progression of coronary artery 26 

disease (CAD) before traditional biomarkers can be detected. This association could be 27 

partly explained by a common genetic basis; however, the genetic component of Df is 28 

poorly understood. We present a genome-wide association study (GWAS) of 38,000 29 

individuals with white British ancestry from the UK Biobank aimed to comprehensively 30 

study the genetic component of Df and analyse its relationship with CAD. We replicated 31 

5 Df loci and found 4 additional loci with suggestive significance (P < 1e-05) to contribute 32 

to Df variation, which previously were reported in retinal tortuosity and complexity, 33 

hypertension, and CAD studies. Significant negative genetic correlation estimates 34 

support the inverse relationship between Df and CAD, and between Df and myocardial 35 

infarction (MI), one of CAD’s fatal outcomes. Fine-mapping of Df loci revealed Notch 36 

signalling regulatory variants supporting a shared mechanism with MI outcomes. We 37 
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developed a predictive model for MI incident cases, recorded over a 10-year period 38 

following clinical and ophthalmic evaluation, combining clinical information, Df, and a 39 

CAD polygenic risk score. Internal cross-validation demonstrated a considerable 40 

improvement in the area under the curve (AUC) of our predictive model (AUC = 41 

0.770±0.001) when comparing with an established risk model, SCORE, 42 

(AUC=0.741±0.002) and extensions thereof leveraging the PRS (AUC = 0.728±0.001). 43 

This evidences that Df provides risk information beyond demographic, lifestyle, and 44 

genetic risk factors. Our findings shed new light on the genetic basis of Df, unveiling a 45 

common control with MI, and highlighting the benefits of its application in individualised 46 

MI risk prediction. 47 

Introduction 48 

Coronary artery disease (CAD) remains the leading cause of death and disability 49 

worldwide1. Early diagnosis and preventive therapies are essential strategies to control 50 

CAD morbidity and the mortality associated with its outcomes, such as myocardial 51 

infarction (MI). There is increasing evidence that morphological changes in the retinal 52 

vasculature, for instance in vessel width and vascular complexity, might offer insights 53 

into CAD before traditional risk factors (such as systolic blood pressure and cholesterol 54 

levels)2,3. Recent studies reported that a reduced degree of vascular complexity, 55 

quantified through estimates of the fractal dimension (Df), is found in individuals who had 56 

a higher CAD risk, independent of their age4. In one of the most extensive studies to 57 

date, Zekavat et al. showed associations between Df and incident CAD, amongst several 58 

other conditions5. This suggests that Df could be a promising non-invasive and highly 59 

accessible biomarker. However, these findings have not translated so far to a substantial 60 

increase in prediction accuracy for major adverse cardiac events (MACE) risk when 61 

leveraging retinal vascular information in epidemiological models, compared to models 62 

based on patient demographics and lifestyle risk factors6,7. Likewise, in a landmark study, 63 

Poplin et al. developed a deep learning approach capable of accurately predicting some 64 

known MACE risk factors from retinal fundus images that only attained marginal 65 

improvements in MACE risk estimation compared to known risk factors alone8. More 66 

recently, Diaz-Pinto et al9 demonstrated another deep-learning-based model capable of 67 

predicting two measures of left ventricular mass volume, recognised as MI biomarkers, 68 

from fundus images and subsequently showed risk prediction improvement over a 69 

demographic-based risk model (including age, sex, SBP, DBP, cholesterol levels, 70 

glucose levels, Hba1c, daily alcohol intake and smoking status). However, it remains 71 

unknown whether these ‘blackbox’ approaches leverage vascular information or 72 

otherwise. Finally, little is known about the degree of overlap between MI risk information 73 



provided by Df and established genetic risk factors. Such knowledge would provide 74 

invaluable data for untangling genetic and environmental contributors. Beyond retinal 75 

vascular structural phenotyping, Theuerle et al. showed the potential of functional testing 76 

of retinal microvasculature for the prediction of MACE risk10. However, it remains unclear 77 

what improvement functional testing offers over the ubiquity of retinal fundus 78 

photography. 79 

Evidence points towards coronary and retinal vessels experiencing similar 80 

pathophysiological changes at even early CAD stages11–14, plausibly influenced by a 81 

shared genetic basis13,15–20. Population-based studies demonstrated that both tortuosity 82 

and width of arteries and veins have a genetic basis16,17. Veluchamy et al. described two 83 

novel loci near the COL4A2 and ACTN4 genes associated with retinal tortuosity, 84 

previously reported in genetic atrial fibrillation and CAD17 studies. During the preparation 85 

of this manuscript, a genome-wide association study (GWAS) was published identifying 86 

7 loci contributing to Df
5. Zekavat et al5 calculated Df from available fundus images of a 87 

subset of 54,813 multi-ancestry participants in the UK Biobank cohort. That study, 88 

however, did not investigate shared Df and MI molecular regulation and the GWAS is 89 

based on a linear model with multiple ancestries that do not account for individuals’ 90 

genomic relatedness.  91 

We report here a GWAS of Df, from ~38,000 white-British participants from the UK 92 

Biobank. The aim is twofold: to comprehensively study the genetic control of Df and to 93 

assess the extent of its relationship with CAD (Figure 1). We replicated 5 Df loci and 94 

found 4 additional loci that are suggestive to contribute to Df variation. Two of these loci 95 

(SLC12A9 and RDH5 genes) were previously associated with cardiovascular risk factors 96 

and diseases21. Genetic correlation estimates indicate a shared genetic signal between 97 

Df and CAD, suggesting that decreasing Df might be influenced by clinical CAD 98 

manifestations and, in part, by common genetic effects. Fine-mapping and enrichment 99 

analysis on Df loci identified Notch signalling regulatory variants supporting a shared 100 

mechanism with MI outcomes. Given this strong connection, we developed a model to 101 

predict incident MI cases in the UK Biobank over the 10 years following ophthalmic 102 

examination at baseline, including Df and a CAD polygenic risk score (PRSCAD). Internal 103 

10-fold cross-validation shows a considerable performance improvement compared with 104 

the SCORE model22, an established CAD risk prediction score based on epidemiological 105 

variables. This enhancement can be partly explained by the additional predictive power 106 

of retinal and genetic determinants, as these respectively capture early vascular 107 

morphological abnormalities and personalised MI risk (Figure 1). Furthermore, our 108 

ablation study demonstrates that our model improves on an extension of SCORE 109 



including PRSCAD, evidencing that Df provides risk information beyond epidemiological 110 

and genetic risk factors in a population subset of UKBB. Our findings shed new light on 111 

the genetic component of Df, suggesting an intricate common genetic basis with CAD 112 

aetiology, and demonstrate its potential for individual MI risk prediction. 113 

Results 114 

Automated Quality Control and fractal dimension calculation in UK Biobank 115 

fundus images reveal interocular asymmetry in vascular complexity at an 116 

individual level.  117 

For this study, we first developed a semi-automated pipeline to segment the vasculature 118 

and select good-quality segmentations in 175,611 fundus images available in the UK 119 

Biobank (Figure 2a) using VAMPIRE software (version 3.1, Universities of Edinburgh, 120 

and Dundee)17,18, and a previously published fundus image classifier25. An image quality 121 

score (IQS) was computed as part of the classification process (see Section Methods). 122 

Df was subsequently calculated from binary vessel maps produced automatically by 123 

VAMPIRE for ~98,600 good-quality images.  124 

We completed the, to our knowledge, largest within individual interocular Df comparison 125 

(n=39,656 participants) reported so far. The population median (1.492±0.043) and Df 126 

distributions appear identical between left and right eyes (Figure 2b and Supplementary 127 

Data 1). However, their moderate correlation (r=0.61, P-value=2·10-16 Figure 2d) and the 128 

significant difference between left and right Df (paired T-test P-value=1.59·10-75) highlight 129 

an individual interocular asymmetry (Figure 2c), where 50% of the individuals have a 130 

right Df 1 SD unit larger than their respective left Df. As shown in Figure 2d, differences 131 

occur in both directions and are more pronounced when any of the Df is lower than the 132 

median. To control for this individual asymmetrical effect (Figure 2e), we performed 133 

further analysis in both eyes separately. 134 

We next fitted univariate linear models using Df as the dependent variable and estimated 135 

the Pearson correlation between Df and 779 UKBB binary and quantitative traits (see 136 

methods) and IQS. Amongst these 780 variables, IQS has the strongest effect 137 

(βright=0.033, P-value<10-300; βleft=0.024, P-value<10-300; r2
right=0.39, P-value<10-300; 138 

r2
left=0.36, P-value<10-300). Supplementary Figure 1 illustrates this association and that a 139 

larger interocular IQS difference moderately affects Df variation (β=0.014, P-value<10-140 

300). Therefore, we account for IQS influence in our following analysis.  141 



Besides IQS, 75 quantitative and 161 binary traits were significantly associated with Df 142 

after Bonferroni correction26 (P-value<0.05/780=6.41·10-5). Age, sex, height, retinal 143 

disorders, smoking, hypertension, and CAD have the greatest significant effect on Df in 144 

both eyes amongst all measurements (Supplementary Data 2). 145 

Fine-mapping reveals nine fractal dimension loci and their association with 146 

cardiovascular risk factors. 147 

Here we present a GWAS on Df. This was completed with 38,811 and 38,017 unrelated 148 

white-British UK Biobank participants that had a right and left Df measure, respectively. 149 

After QC (see Methods), there were 9,275,849 imputed SNPs with HWE>10−6, 150 

MAF>5·10−3, a call rate>0.9, and an imputation score>0.9. The GWAS model included 151 

hair and skin colour to control for spurious associations given the influence of eye and 152 

skin colour on fundus colour27,28. Hair colour replaced eye colour because the latter is 153 

not recorded during UKBB assessments. In addition, we completed a supplementary 154 

GWAS including an eye colour PRS based on the study by Lona-Durazo et al.29, which 155 

indicated no eye colour effect in our GWAS results (see section Methods). The quantile-156 

quantile plot of both GWASs indicated an adequate control of the genomic inflation in 157 

our analysis (λGC = 1.065 and λGC = 1.067 in the right and left eye, respectively, see 158 

Supplementary Figure 2). Figure 3c illustrates the SNPs effects comparison between 159 

eyes GWAS studies, highlighting analogous results. Furthermore, an additional GWAS 160 

of mean Df including participants from both left and right eye populations (see Methods 161 

section) reported equivalent SNP associations to those from eye-specific populations 162 

(Supplementary Figure 3). The genetic correlation estimates close to 1 between mean 163 

Df and eye-specific GWAS (Mean Df and right Df: 0.93 ± 0.03, P-Value=3.89e-201; Mean 164 

Df and left Df: 0.89 ± 0.07, P-Value=2.62e-38) revealed that mean Df GWAS was 165 

equivalent  to those of left and right Df measures. 166 

Fine-mapping analysis of Df GWAS observations indicated that there were nine 167 

independent credible SNP sets with a posterior inclusion probability (PIP)>0.95 168 

(Supplementary Table 1).  The credible SNP sets with strongest associations were 169 

located at OCA2 (rs72714116, P-value=7.41·10-48) and HERC2 (rs12913832, P-170 

value=2.16·10-96) genes in chromosome 15 (Figure 3a, Figure 3b and Supplementary 171 

Table 2). We observed another significant association near IRF4 gene (rs12203592, P-172 

value=6.59·10-24). These results are consistent with Zekavat et al GWAS. Phenome-wide 173 

association studies (PheWAS), using GeneATLAS30 and GWASCatalog31,  have 174 

commonly reported these SNPs in skin, hair, and eye colour analyses. Recent ocular 175 



studies demonstrated their implication in lens disorders, cataract, glaucoma, visual 176 

acuity, and retinal venular and arteriolar width and tortuosity5,17,20,28,32–40.  177 

In addition to these regions, we found 4 credible SNPs that had suggestive significance 178 

(P-value<10-06) which did not reach genomic-wide significance (Table 1). The SNP 179 

located at SLC45A2 gene was previously reported in pigmentation analyses29,41, 180 

whereas those near EIF2B5 and AGPAT3 genes were described in blood content and 181 

inflammation GWASs34,36,42Those SNPs located at RDH5/ORMLD2 and AGPAT3 genes 182 

also have a strong effect on multiple ocular traits and diseases (such as macular 183 

thickness and retinal detachment), hypertension, and arterial disorders. The effect of the 184 

SNP at SLC45A2 gene is in line with Zekavat et al5 results. We could not make a 185 

complete comparison between studies as the available summary statistics are truncated 186 

at a P-value=10-4. The comparison between reported variants is in Supplementary Table 187 

3. 188 

The SNP heritability (h2
SNP) of the left and right Df estimate are respectively 0.09±0.015 189 

and 0.10±0.014. These h2
SNP magnitude is in line with previous results from retinal 190 

vascular tortuosity17,20, retinal width18, and the recently published Df
5 GWAS.  191 

We completed additional Df GWAS using independent UKBB participants with European 192 

(nleft=4340 and nright=4288), Asian (nleft=562 and nright=568), and African (nleft=498 and 193 

nright=509) ancestry to assess if these populations replicated our observations. Only the 194 

GWAS including participants with a white European ancestry replicated  the strongest 195 

associations (P-value<0.05/9=0.0056), which can be explained by the considerably 196 

larger number of participants in this analysis when compared with Asian and African 197 

ancestries. Little heterogeneity and forest plots of Df loci indicate that multiple significant 198 

genetic variants (rs16891982, rs12203592, rs12913832 and rs31381412) have a similar 199 

effect across Asian, African, European, and white-British ancestries (Supplementary Fig 200 

4).  201 

We complemented the replication of our GWAS results with an association study in the 202 

Canadian Longitudinal Study on Aging (CLSA). This consisted on fitting a linear 203 

regression on Df that controlled for the 20 first principal components and a genetic risk 204 

score (GRS) for Df, which was estimated using the summary statistics of the GWAS 205 

reported above (see methods). We found that the Df GRS had a significant effect on left, 206 

right and mean Df phenotypes (Table 2), suggesting thus that the SNPs previously 207 

described in the UKBB GWAS contribute to Df variation in the CLSA population. 208 



Genetic correlation estimates and functional analysis indicate shared genetic 209 

signal between fractal dimension and coronary artery disease. 210 

To assess the link between Df and CAD risk factors and outcomes, we calculated their 211 

genome-wide genetic correlation using LD score regression (LDSC)43. Genetic 212 

correlation estimates (rg) indicated a negative correlation between Df and hypertension 213 

(rg=-0.30, P-value=4.52·10-06), acute MI (rg=-0.16, P-value=0.03), and CAD (rg=-0.18, P-214 

value=0.025) (Table 3). All these estimates agree in direction with phenotypic 215 

correlations (see Supplementary Data 2) and published studies, which reported that 216 

retinal Df decreases as people develop these conditions2,3,11,44. Therefore, our results 217 

suggest that these correlations of phenotypes could be partly explained by its shared 218 

genetic basis.  219 

Moreover, we estimated the rg between pigmentation traits and Df to examine the 220 

similarities in their genetic basis (Supplementary Fig 5). Although the estimates are non-221 

significant (rg=-0.0751, P-value=0.64), local genetic correlation near to GWAS peaks 222 

may be significant. 223 

We investigated possible causal relationships between CAD, hypertension, MI and Df 224 

using Mendelian randomisation. We found evidence of horizontal pleiotropy on the loci 225 

of interest (pleiotropy analysis P-value=0.0056), which indicated that we are unable to 226 

infer the causality between Df and such cardiovascular events (Supplementary Table 4). 227 

A subset of credible genetic variants points towards associated myocardial 228 

infarction post-conditioning signalling pathways. 229 

We examined the potential for transcription factor binding site (TFBS) disruption of the 230 

lead snps from each credible set from the fine-mapping analysis. We observed 20 TFBS 231 

with a strong disruptive effect described in Supplementary Table 5. Eight of these TFBS 232 

remained significant after applying a more restrictive threshold to the predicted 233 

disruptiveness of its activity between reference and alternative alleles (|AlleleDif|>1.5). 234 

We investigated those associated TF whose binding activity influenced the expression 235 

of a gene within 150 kb in the chromosome. This left us with 4 Df SNPs, 5 TFBS and 9 236 

regulated genes. Protein-protein interaction networks  show that these TFs and regulated 237 

genes participate in Notch and VEGF signalling pathways. Numerous studies indicate 238 

that the upregulation of both signalling pathways after an MI event leads to reduced 239 

infarct size, improved angiogenesis, and cardiac function, increasing the survival rate 240 

and limiting cardiac injury 45–47.  241 



Fractal dimension improves prediction of incident myocardial infarction in 242 

UK Biobank cases. 243 

Given our findings, we hypothesized that Df and PRSCAD can provide additional 244 

information for MI risk estimation at an individual patient level. We thus developed a 245 

model to predict incident cases of MI over the 10 years following ophthalmic examination 246 

at baseline (Figure 4a). Briefly, the model includes PRSCAD derived from a meta-analysis 247 

completed by the CARDIoGRAMplusC4D Consortium21, clinical variables from an 248 

established CAD risk assessment strategy named SCORE22 (age, sex, smoking status, 249 

SBP and BMI), and the Df of both eyes. We also considered model versions excluding 250 

either PRSCAD or Df to elucidate their independent effect. As a baseline for comparison, 251 

we retrained the original SCORE model22.The MI model was trained with the 526 252 

individuals who experienced an MI event after their UKBB ophthalmic examination. We 253 

created a control group with an equal number of individuals with an equivalent age range 254 

and had no underlying MI and CAD (Supplementary Table 6). The mean age and SD in 255 

the case and control group are respectively 57.31±6.47 and 54.21±7.84 years. We chose 256 

the random forest classifier (RFC) as this method allows one to model non-linear 257 

associations with the outcome and interactions between the predictor variables, which  258 

boosts the prediction while being interpretable48,49. Internal 10-fold cross-validation 259 

(FCV) indicates that our models dominate the ROC curve of the SCORE model, 260 

achieving a greater precision, recall, and AUC (Figure 4b and Table 4). Amongst our 261 

considered models, the model including PRSCAD (AUC=0.741±0.001) yielded an AUC 262 

significantly different from the one introducing Df (AUC=0.763±0.001), and the one 263 

combining both Df and PRSCAD (AUC=0.770±0.001) (Table 4 and Supplementary Table 264 

7). Additional assessments in our proposed model indicated that the replacement of Df 265 

measures with Df adjusted by IQS, the introduction of one-eye Df measurements in our 266 

MI model, or the use of mean Df in our model yielded a comparable performance to the 267 

aforementioned ones (Supplementary Table 8). 268 

Next, we investigated survival rate differences between low and high MI risk groups. 269 

These groups were defined by the predictions obtained with our top-performing MI model 270 

and by subsequently separating these with a probability threshold of 0.5 (high MI-271 

risk>0.5 and low MI-risk=<0.5). The Kaplan-Meier curve (Figure 4c) illustrates a 272 

significant divergence between these groups (Log-rank test P=3.52·10-30), which can be 273 

explained by the pronounced decrease in survival during the first 4 years in the high MI 274 

risk group. 275 



Finally, we performed an ablation study to understand the origin of the performance 276 

improvement in our new model. Briefly, we evaluated the performance of all possible 277 

variations between SCORE and the top-performing model (see Methods section). This 278 

assessment revealed three key contributors to the reported improvement: the use of 279 

quantitative variables, the introduction of PRSCAD and Df, and the use of a random forest 280 

classifier. An extended discussion can be found in Supplementary Table 9. The added 281 

predictive value of Df is supported by the RFC development analysis which reveals that 282 

age, BMI and Df are the most important features in its architecture (Supplementary 283 

Figure 6). PRSCAD is also a determinant of the model’s development as its RFC 284 

importance is equivalent to SBP and smoking taken together, which is in line with 285 

recently published results14.  286 

Discussion 287 

This work provides a comprehensive examination of the Df genetic basis, unveiling 288 

regulatory mechanisms at the Notch signalling pathway that contribute to an intricate 289 

shared genetic basis with MI. Given the strong Df and MI connection, we presented a 290 

predictive model for MI based on a random forest algorithm that includes Df and a CAD 291 

polygenic risk score (Figure 1). This novel model improves MI individual risk prediction 292 

compared to state-of-the-art approaches, demonstrating the additional predictive power 293 

of these complimentary traits to early identify high-risk groups.  294 

We identified an individual interocular Df asymmetry in UKBB that led us to perform most 295 

of the analyses in both eyes separately. This finding is in line with published studies that 296 

reported lateral asymmetry in Df, tortuosity, and retinal width50. We observed that this 297 

asymmetry is more pronounced when one of the two eyes has a Df below the population 298 

median. Interestingly, the regression coefficients and the Pearson’s correlation estimates 299 

between Df and UKBB traits, and the genetic findings are equivalent in both eyes 300 

independently, suggesting that the asymmetrical effect has a negligible influence at a 301 

population level. A quantitative assessment of the asymmetry of retinal vascular 302 

measurements between eyes seems crucial for studies on retinal vascular biomarkers, 303 

often conducted on a single eye, and require further work. 304 

We found that age, sex, smoking, and developing ocular and cardiovascular diseases 305 

have a significant effect on Df, agreeing with studies reporting that Df decreases with age 306 

or by developing these conditions2,11,15,19. Interestingly, IQS has the strongest effect on 307 

this trait. To overcome quality imaging differences, numerous studies elaborate on the 308 

importance of assessing quantitatively image quality, especially in large cohorts 309 

analysed automatically51. In our case, IQS is computed from the binary vessel map and 310 



encapsulates the vessels segmentation’s sharpness and connectivity, which are key 311 

features frequently used 51,52  to compute vascular branching complexity. 312 

We replicated the effect of 5 loci associated with Df with similar effects across European, 313 

Asian, and African UKBB participants. We found 4 loci close to genome-wide significance 314 

that are suggestive to contribute to Df. The effect of these 4 novel loci could not be 315 

compared with Zekavat et al5 due to the P-Value<10-04 truncation in their summary 316 

statistics. Nevertheless, differences between both Df GWAS can be attributed to our 317 

different strategies as the previously published GWAS combines multiple ancestries and 318 

does not control for individuals' relatedness, increasing then the type I error. 319 

Furthermore, published tortuosity GWAS17,20 reported the significant effect of COL4A2 320 

and ACTN4 genes. Neither this study nor the Zekavat et al5 paper found an association 321 

at these genomic regions, suggesting that Df and tortuosity also have distinct associated 322 

loci contributing to their regulation, which is consistent with published GWAS in retinal 323 

width and tortuosity17,20,32.  324 

Most of the genetic variants we report here are relevant to multiple traits and diseases; 325 

for instance, the one located near HERC2 has been previously associated with hair33, 326 

skin40, and eye colour35; but recent studies also suggest a strong effect in AMD36, 327 

glaucoma37, intraocular pressure38, visual acuity39, retinal arterial width18,32, retinal 328 

vascular complexity and density5, and arterial and venular retinal tortuosity17,20. Another 329 

interesting associated SNP is the one near the SLC12A9 gene as it has been reported 330 

in pigmentation33,35,40, mean arterial pressure34, and resting heart rate42 GWAS. We 331 

found significant negative r2
g estimates between Df and hypertension, CAD, and MI. The 332 

direction of these estimates agrees with their phenotypical correlations and published 333 

papers4,5,11, suggesting the correlation of phenotypes is influenced by its genetic 334 

correlation. This finding agrees with four aforementioned studies5,17,20,32 which identified 335 

novel retinal width and tortuosity loci associated with CAD but did not estimate a genetic 336 

correlation between retinal phenotypes and CAD.  337 

We complemented our functional analysis with in-silico TFBS disruptiveness prediction 338 

of credible variants. We observed four credible Df gene sets with a strong disruptive 339 

effect in 5 TFBS and 9 regulated genes, which participate at different Notch signalling 340 

pathway stages (Figure 5). One possible mechanism to modulate its activity is through 341 

the alteration of ESRRA binding affinity, which influences VEGFA transcription. In-vitro 342 

and animal model studies indicate that after an MI event, VEGFA upregulation activates 343 

VEGF signalling pathway, which has a crosslink with Notch pathway and increases its 344 

activity45,53–55. Another mechanism derives from HES1 binding site affinity. HES1 345 



influences MAML1 and NOTCH1 expression and directly affect Notch signalling45–47,56. 346 

The last mechanism influencing Notch activity is mediated through TBX20 binding site 347 

affinity, which plays a role in TLE3 transcription. Under a MI event, multiple studies 348 

indicate that TLE3 upregulation activates PI3K/Akt signalling pathway, a downstream 349 

process of Notch signalling pathway57,58. Numerous in-vitro and animal models studies 350 

support that this increased Notch activity, mediated by HES1, ESRRA, and TBX20 351 

upregulation, leads to reduction of cellular oxidative stress consequently improving 352 

myocardial viability, regeneration, and survival rate after a MI event45–47. We hypothesize 353 

that the TF binding disruption caused by these genetic variants influence Notch activity 354 

and, in the case of MI, might have a risk conferring effect46,47,56–62. Furthermore, the 355 

alleles which predict a stronger TFBS disruptiveness have a negative effect size on Df 356 

(see Supplementary Figure 7). Then, we could speculate that individuals with higher Df 357 

might not have a disrupted Notch signalling pathway, which might be protective towards 358 

the response of a myocardial infarction event. An extended discussion is available in the 359 

Supplementary Table 5. Thus, these analyses suggest that there is an intricate shared 360 

genetic basis between vascular complexity and MI and further in-vitro experiments are 361 

needed to characterise gene expression and regulation of retinal tissue to better 362 

understand it.  363 

The potential of the retinal vasculature for stratifying the risk of Major Adverse Cardiac 364 

Events (MACE) has already been assessed in diabetic6,7 and non-diabetic8,10 individuals. 365 

Several predictive models have included retinal traits, either in a semantic6 or a non-366 

semantic construction8, but reported very modest improvements in terms of AUC 367 

compared to the established risk estimation strategies based on epidemiological 368 

variables (e.g., 0.73 vs 0.72 in 8). This discrepancy with our results might be attributed to 369 

the different clinical definitions of MACE, comprising normally a heterogeneous group of 370 

cardiovascular events where some of which might be not well captured in secondary 371 

care data. This situation reduces the model’s statistical power as there might be an 372 

overlap in case-control groups. In the case of diabetic population studies, both cases 373 

and controls also have comorbidities directly affecting the architecture of the retinal 374 

vasculature that might reduce predictive power for MACE risk. Theuerle et al10 reported 375 

that retinal arterial dilation response to induced flickering light (FI-RAD) promisingly 376 

stratified MACE risk over 200 individuals from a local medical centre. Even though they 377 

found CAD family history and reduced FI-RAD to be the strongest MACE risk predictors, 378 

no comparison with traditional models is described. We could not assess the effect of 379 

this functional phenotype in this work as its computation derives from an invasive 380 

procedure that is not possible to apply retrospectively to existing imaging repositories 381 



(e.g. UKBB, SCONe). In this work, we focused on retinal structural variations, and MI 382 

events, and considered available ICD10 guidelines and UKBB validation reports of MI 383 

data to characterize cases, achieving the maximum possible statistical power. 384 

Recent papers have addressed the additional predictive value of a CAD PRS in MACE 385 

and CAD risk stratification6,7,14,63–65. These approaches, although mainly developed in 386 

European populations, achieve a better identification of high-risk MI individuals than 387 

those strategies based only on epidemiological variables14,63–65. Given this promising 388 

finding and the observed shared genetic basis between Df and MI, we examined the 389 

effect of both retinal and genetic determinants on MI event risk stratification. We found 390 

that adequate clinical phenotyping is key to our models’ performance, but, as shown by 391 

our ablation study, the choice of the random forest algorithm, the use of continuous 392 

variables and the introduction of Df and PRSCAD in the model all independently improve 393 

traditional individual MI risk predictions in this moderate population of study. Additionally, 394 

the model including these three modifications achieves the greatest performance. Df thus 395 

provides an early indication of coronary abnormalities not fully captured in clinical 396 

variables of these participants and that PRS accounts for the individual protective/risk-397 

conferring effect on the genetic architecture of the disease. Hence, the proposed model 398 

has the potential, as illustrated in the Kaplan-Meier analysis, to stratify UKBB individuals 399 

by MI risk. This could be applicable to equivalent populations and after further external 400 

validations, allow for early targeted preventive efforts, like the administration of 401 

cholesterol-lowering treatments.  402 

Our work has multiple limitations. Firstly, there are only 526 MI cases with a good-quality 403 

fundus image taken in UKBB. Higher numbers of such participants would allow us to 404 

train and evaluate our models more robustly. Secondly, the study population for the 405 

predictive models only consisted of UKBB participants with European ancestry with 406 

similar sociodemographic status, restricting the application of translational strategies to 407 

non-white European and British individuals among different sociodemographic profiles. 408 

Furthermore, the PRS included in the proposed predictive model is based on a meta-409 

analysis completed with participants with mainly white European non-British and white 410 

British ancestries. Then, it is of utmost importance to complete GWAS in non-European 411 

populations to provide input for PRS estimations so that they are included in such 412 

medical applications. Thirdly, the stability of numerical estimates of the fractal dimension 413 

is the object of a continuing debate in the retinal image analysis community66–68. Fourth, 414 

we did not have an external validation cohort to complete an external validation of our 415 

MI model. This matter is attributed to the lack of available datasets containing extensive 416 

phenotyping from its participants. Finally, there is little information about the genetic 417 



expression profiles and the regulation mechanisms of retinal and ocular tissues in public 418 

databases. This might be influenced by the minority of studies across these tissues and 419 

the complicated protocols to extract and characterise them. 420 

In conclusion, our study contributes to a growing body of evidence showing associations 421 

between abnormal morphologic characteristics in coronary vessels and retinal vascular 422 

remodelling. In particular, we found that credible fractal dimension loci modulate Notch 423 

signalling regulation, and partly explains the intricate shared genetic basis with MI. 424 

Remarkably, our MI model improved the stratification of the high-risk population. This is 425 

of great interest as it discloses a promising holistic strategy that can prevent MI incidence 426 

and triage those with an elevated MI hazard. This study ultimately sheds new light on 427 

the value of easily accessible vascular imaging phenotypes and their promising 428 

application in personalised medicine.  429 

Methods 430 

UK Biobank 431 

UK Biobank (https://www.ukbiobank.ac.uk) is a large multi-site cohort study that consists 432 

of 502,655 individuals aged between 40 and 69 years at baseline, recruited from 22 433 

centres across the UK during 2006-2010. The study was approved by the National 434 

Research Ethics Committee, reference 11/NW/0382, and informed consent was 435 

obtained from all participants as part of the recruitment and assessment process. From 436 

these, a baseline questionnaire, physical measurements, and biological samples were 437 

undertaken for each participant. Ophthalmic examination was not included in the original 438 

baseline assessment and was introduced as an enhancement in 6 UKBB centres across 439 

the UK. This examination consisted on capturing paired retinal fundus with a 45º primary 440 

field of view obtained with Topcon 3D OCT-1000 MKII (Topcon Corporation). This project 441 

was completed using fundus images collected in the first and the repeated ophthalmic 442 

examination which took place in 2012 and 2013. It includes 175,709 fundus images 443 

(87,552 left and 88,157 from the right) from 67,725 participants. 444 

Image classification 445 

Image quality was not reported in the UKBB cohort and was found wanting for the 446 

purpose of automatic analysis in the first study of this kind69. A previous study defined 447 

an automated classifier for this dataset using three imaging features following vessels 448 

segmentation: white pixel ratio (WPR), largest connected component ratio (LCCR) and 449 

the number of connected components (NCC) on a support vector machine (SVM) 450 

classifier25. We reproduced this classifier using a data subset of 448 random fundus 451 



images and VAMPIRE 3.1 software running in MATLAB 2018a23,24. The software 452 

performs automatic detection of the retinal vasculature, creating a binary vessel map for 453 

each image. A.V.V. manually classified the quality of these images based on the 454 

connectivity and the sharpness of the binary vessel map, and the lack of imaging 455 

artefacts. Manual classification was repeated 2 times using the same random subset of 456 

100 images and the intra-classifier agreement coefficient was 0.897. This dataset was 457 

subsequently split in a training (n=278) and validation (n=170) sets. Both data subsets 458 

included an even number of manually classified good and bad quality images. We 459 

obtained a precision of 0.95, and a recall of 0.87, agreeing with the original study.  460 

The classifier found 98,603 images with good quality from a total of 175,709 fundus 461 

images, of which 49,903 were from the right eye and 48,700 from the left eye. These 462 

images were derived from ~45,000 participants with different ancestries and included 463 

individuals with both or one eye examined at least one time. In the case of those 464 

participants that had two good quality images from one eye, following analyses are 465 

completed using the images obtained at the first examination. 466 

Besides classification, the classifier returns an imaging quality score (IQS) based on the 467 

distance of an image from the classification boundary computed at the training phase of 468 

the SVM. We retrieved IQS using the score parameter in the prediction function running 469 

in MATLAB 2018a. We thus quantify individually the reliability of each image being 470 

classified as bad and good image. 471 

Calculating fractal dimension  472 

Retinal fractal dimension, Df, was computed from the binarized good-quality images 473 

using VAMPIRE software based on the multifractal analysis method70. This process was 474 

parallelised using 12 cores and 10GB per core.  475 

Statistics and Reproducibility  476 

To compare left and right Df values we used participants who had both eyes scanned at 477 

the same UKBB examination and whose images were classified as good quality. 39,659 478 

participants met these criteria. Both Df distributions were compared using a paired T-Test 479 

and by estimating the Pearson correlation with the SciPy package in python 3. We also 480 

fitted a linear regression using respectively left and right Df as dependent and 481 

independent variables.  482 

We estimated the Pearson correlation and the effect of 779 UKBB traits on Df by fitting 483 

univariate linear regressions with each variable and using Df as the dependent variable. 484 

This included 121 quantitative variables (such as age, height, and BMI) and 658 binary 485 



variables (such as sex, diagnosed myopia, and diagnosed hypertension) which were 486 

extracted as reported elsewhere in 30. The effect of IQS was also analysed following this 487 

approach. In addition, we evaluated the IQS difference effect on Df variability by fitting 488 

univariate linear regression using participants who had a good-quality image of both eyes 489 

scanned at the same UKBB examination. These analyses were completed using SciPy 490 

in python 3. Allied graphs were created using matplotlib and seaborn graphical packages 491 

in python 3.  492 

Genome-wide association studies 493 

We included 38,811 and 38,017 individuals in the right and left GWAS, respectively, with 494 

a self-reported and genotyped confirmed unrelated white-British ancestry71. Unrelated 495 

individuals were selected using a 0.0442 threshold from UKBB data and a previous work 496 

that established unrelated UKB participants with a white British ancestry30. Variants 497 

included were autosomal SNPs present in the genotyping arrays employed by UKBB 498 

and from the UKBB imputation panel with HWE>10−6, MAF>5·10−3, call rate>0.9 in 499 

unrelated white British individuals (kinship < 0.0442) and imputation score>0.9 in the 500 

imputed SNPs. The number of total SNPs analysed after quality control was 9,275,849.  501 

Following genotype-level QC, a linear regression model was used to analyse the 502 

association of each SNP genotype with Df using PLINK v2.0. We assumed an additive 503 

genetic model, adjusting for age at examination, sex, IQS, assessment centre, the first 504 

10 genomic principal components and genotyping batch. Additionally, we included hair 505 

and skin colour as covariates to control for the influence of skin and eye colour on the 506 

fundus image colour, which can affect image segmentation and Df calculation. Hair 507 

colour replaced eye colour as the latter was not recorded during UKBB assessments, 508 

and it has a similar genetic control to eye pigmentation. Besides, we performed an 509 

additional GWAS including a polygenic risk score (PRS) for eye colour to assess its 510 

influence on our GWAS results. This PRS derives from an eye colour GWA study that 511 

defines it quantitatively (i.e., 1 = blue or grey, 2 = green, 3 = hazel, and 4 = brown) 512 

completed by Lona-Durazo et al. using the CanPath cohort, which includes ~5000 513 

participants with European ancestry29. We estimated this PRS for each participant by 514 

extracting those independent genetic variants with a P-value<5·10-8 from the summary 515 

statistics and applying linear regression to the effects of these SNPs and the genotypes 516 

of our UKBB participants (Supplementary Table 10). We then included this PRS as a 517 

covariate in an additional GWAS. Supplementary Figure 8 demonstrates that the results 518 

of these GWAS are analogous to those of GWAS including both skin and hair colour. 519 



Furthermore, we completed a supplementary mean Df GWAS using those participants 520 

with white British ancestry from both left and right eye populations. We decided that 521 

mean Df was calculated only on those participants whose image quality score for both 522 

eyes was within 3SD from the population mean. If this condition was not met, we used 523 

the Df measure from the eye with the highest IQS or the available measure. This left us 524 

with a sample size of 39,799 participants.  525 

QQ plots were generated using the R package qqman and ggplot2, and Manhattan plots 526 

and GWAS comparisons plots were generated using Matplotlib and seaborn libraries in 527 

python 3. 528 

We completed a PheWAS to assess whether Df loci have a significant effect on other 529 

traits. To this end, we searched Df associated SNPs in GWASCatalog31 and 530 

GeneATLAS30. GWAScatalog contains hundreds of GWAS performed in different traits 531 

and populations and it constantly updates new GWAS to its database. GeneATLAS 532 

contains GWAS summary statistics for 778 UKBB traits and diseases using individuals 533 

from European ancestry from UKBB. These genetic variants have a P-value smaller than 534 

5·10-8 on the trait in order to assume a strong association common to Df. 535 

GWAS and meta-analysis of Df loci across UKBB ancestries 536 

We performed additional GWAS including UKBB participants with European non-British 537 

(nleft=4340 and nright=4288), Asian (nleft=562 and nright=568) and African ancestries 538 

(nleft=498 and nright=509) following the aforementioned model and procedure.  539 

The multi-ancestry GWAS comparison was completed with those significant and 540 

independent SNPs from the Df GWAS including white British participants. We extracted 541 

the summary statistics of these SNPs from the Asian, African, and white-European 542 

GWAS and compared their effects across UKBB ancestries. Forest plots were carried 543 

out with Meta package in R 4.0 software.  544 

Association between Df genetic risk score and Df measures in the CLSA 545 

We complemented our replication study with an association analysis using Df measures 546 

and the genotypes from CLSA participants with a white European ancestry. The 547 

Canadian Longitudinal Study on Aging (CLSA) is a large, national, stratified, random 548 

sample of ~50,000 Canadians aged 45 to 85 years at the time of recruitment (2010-549 

2015), followed until 2033 (or until death), which aims at investigating the associations 550 

between various risk factors and incidence of chronic diseases72. A subset of 30,000 551 

participants (ie, comprehensive subset) had physical examinations and biological 552 

specimen collection, including fundus photographs (1 for each eye) obtained using the 553 



Topcon TRC-NW8 non-mydriatic retinal camera. A total of 50,957 retinal photographs, 554 

from 25,717 CLSA participants, were analyzed using VAMPIRE (Vascular Assessment 555 

and Measurement Platform for Images of the Retina) software version 3.1, to compute 556 

the image quality (good/moderate/poor) and the fractal dimension (Df) of the retinal 557 

vascular pattern. Participants with poor quality images for both eyes were excluded for 558 

subsequent analyses.  559 

Among the comprehensive subset, 26,622 CLSA participants (with 93% of Europeans) 560 

were successfully genotyped using the UK Biobank Array71. Quality control steps have 561 

been detailed elsewhere73. Briefly, phasing and imputation were conducted using the 562 

TOPMed reference panel74 at the University of Michigan Imputation Service75. We used 563 

the TOPMed reference panel version r2, and then pre-phased and imputed the genotype 564 

data using EAGLE276 and Minimac77 respectively, for both autosomal and X 565 

chromosomes. Samples with low call rates (<95%), sex mismatches, or cryptic 566 

relatedness were removed. Imputed SNPs were excluded on the basis of HWE>10−6, 567 

MAF>1·10−4, call rate>0.9, and imputation quality (imputation score < 0.6). 568 

A total of 19 independent genetic variants significantly associated with Df in the UKB 569 

were selected to calculate a genetic risk score (GRS) (Supplementary Table 11). CLSA 570 

Individual’s risk score consisted in the sum of each SNP dosage weighted by each SNP-571 

Df association coefficient given in Df unit per effect allele. A linear regression was 572 

performed to estimate the association between FD measures and Df GRS in 16,205 573 

CLSA participants, with at least one retinal image of moderate or good quality of either 574 

side, and suitable genetic material. Models were adjusted for the 20 first principal 575 

components. 576 

Genetic correlation and heritability estimation 577 

To investigate the shared genetic signal between Df and associated traits, we estimated 578 

their genome-wide genetic correlation. For this purpose, we obtained the GWAS 579 

summary statistics of traits of interest to our study from GeneATLAS and the eye colour 580 

study29. These calculations were computed with LD Score, a toolbox that estimates 581 

genetic correlation using GWAS summary statistics considering possible inflation caused 582 

by SNPs in linkage disequilibrium (LD). To ascertain the LD blocks within each variant, 583 

the software uses the 1000 Genomes panel as reference. Heatmaps were created with 584 

the genetic correlation estimate using the seaborn library in python 3.  585 

LD Score was also used to calculate the SNP heritability of both eyes’ Df. In this case, 586 

the software uses the reference map and the GWAS summary statistics to estimate the 587 

fraction of Df variance explained by the SNPs’ additive effect.  588 



Mendelian Randomization  589 

To infer the causality between the shared genetic basis of CAD, MI, hypertension and 590 

Df, we performed a Mendelian Randomization analysis. For this procedure, we extracted 591 

the summary statistics of MI, hypertension, and CAD from GeneATLAS. We next 592 

selected for each cardiovascular condition separately those SNPs with a P-value<5·10-593 

08, and MAF>0.01. We then selected those independent SNPs a which were not 594 

palindromic by clumping these regions in windows of 10,000 Kb and applying a r2<0.001 595 

and a significance of 0.99 thresholds. The effect and the significance of these variants 596 

were also extracted from Df GWAS summary statistics. We then estimated the causal 597 

effect of these genetic variants through different methods (inverse-variance weighted 598 

regression, Egger’s regression, and Maximum likelihood) to analyse whether using 599 

different scenarios could better characterise the causality. This process was completed 600 

with TwoSamplesMR package in R 4.078. This package applies a quality control and a 601 

sensitivity analysis to evaluate the presence of palindromic SNPs, pleiotropy and 602 

heterogeneity which might influence the results of the study.  603 

Fine-mapping  604 

Fine-mapping of significant Df SNPs was completed with SusieR v.0.11.42 R package79. 605 

For each significant variant locus, we selected those variants that were located within 606 

1Mbp window at each side and estimated the correlation matrix among them with plink 607 

v1.9. Next, we ran the Susie_rss function with the Z-score from Df GWAS and the 608 

correlation matrix of the previously selected variants. We ascertained that each credible 609 

set must have a coverage > 0.95 and a minimum and median correlation coefficient 610 

(purity) of r=0.1 and 0.5, respectively. 611 

Transcription factor binding sites prediction 612 

The identification of variants with strong evidence to disrupt TF binding activity based on 613 

position probability matrices (PPM) was carried out with the R library motifbreakR 614 

v2.2.080. For the TFBS we used default settings except the P-value threshold to declare 615 

TF binding site matching either of the allelic configurations, which was set to 5·10-04, and 616 

the relative entropy scoring method set to information content algorithm (method = ic) as 617 

performed in 81. MotifDb and motifbreakR_motif were the selected databases of TF 618 

motifs which contain 14 public collections (including JASPAR, HOCOMOCO, ENCODE, 619 

HOMER and FactorBook) to perform this analysis. We calculated accurate P-values for 620 

both reference and alternative alleles by implementing calculatePvalue() function. We 621 

investigated those TFBS motifs with a P-Value<0.001 in both alleles and an absolute 622 

allelic score difference>1.5.  623 



Protein-protein interaction networks analyses were completed with those TF that bind at 624 

significant TFBS and the regulated genes located within a 150 kb window using DAVID82 625 

and STRING83 software. We considered associated pathways those with an FDR and 626 

Bonferroni correction<0.001. 627 

Development of MI predictive model 628 

We used a subset of the UKBB data for MI model training and evaluation. We extracted 629 

white British UKBB participants who had good-quality images and a MI event after UKBB 630 

recruitment. MI events were defined in UKBB as a participant self-reporting MI at first 631 

repeated assessment visit [code 1075 from UKBB data field 20002] and MI 632 

hospitalizations identified using ICD10 codes [codes I21.1, I21.2, I21.3, I21.4, I21.9, I22, 633 

I22.0, I22.1, I22.8, I22.9,I23, I23.0, I23.1, I23.2, I23.3, I23.4, I23.5, I23.6, I23.8, I24.1 and 634 

I25.2 from UKBB data field 41204 and 41202]. The UKBB team previously validated this 635 

MI extraction algorithm and reported a minimum precision of 75%84. To define incident 636 

cases occurring after UKBB recruitment we used the date of the MI event [UKBB 637 

algorithmically defined MI event date from data field 42000] and the approximate period 638 

when participants underwent the ophthalmic examination, resulting in 526 incident 639 

cases. We randomly selected an equal number of age-matched participants with good-640 

quality images of both eyes no cardiovascular event within the CAD spectrum and no 641 

known risk factor (e.g., hypertension, and family history of heart disease). This match 642 

was completed using the age range of the cases (i.e. 45-61 years) and constricting the 643 

random selection of controls to these ages. 644 

Our MI predictive model uses age at baseline, sex, systolic blood pressure, smoking 645 

status, BMI, and a polygenic risk score for CAD and Df of both eyes separately as 646 

features in a classification algorithm. We chose a random forest classifier algorithm 647 

allowing both non-linear associations between outcome and variables as well as inter-648 

variable interaction in the model. Permutation-based feature importance scores85 were 649 

extracted in the modelling phase to assess the effect of each variable in the random 650 

forest construction using the feature_importances_ function from the scikit-learn 651 

package. Given the influence of IQS on Df, we trained an additional model replacing Df 652 

to Df adjusted by IQS to assess the existence of major differences in the model’s 653 

performance. We also tested whether introducing just one eye Df in the model implied 654 

major differences in its performance.  655 

We then extracted the information of the established risk variables, that is, age, sex, 656 

SBP, BMI and smoking status, for the population of study using the curated phenotypes 657 

from UK Biobank July 2017 release30.  We extracted controls only considering those 658 



UKBB participants with no missing data and both Df measures, as the majority of 659 

individuals with a Df measure were healthy. 56 MI cases had a missing Df measure from 660 

one eye. In these cases, we did not predict the missing value and only used the available 661 

Df measure. 662 

To evaluate the performance of the predictive model, we reproduced SCORE with this 663 

MI dataset. SCORE uses age, sex, systolic blood pressure, smoking status, and BMI as 664 

input variables for logistic regression, with quantitative variables being discretized using 665 

healthcare guidelines8. We then assessed each model’s performance by using internal 666 

10-fold cross-validation and computing its AUC, precision, and recall. We used the same 667 

data partitions across SCORE and our MI models. A Wilcoxon signed-rank test was 668 

completed across all the trained models to evaluate the significance of the AUC 669 

differences.  670 

We used Kaplan-Meier curves to assess the difference in survival rate difference 671 

between patients with high and low predicted MI probability, dichotomised at a probability 672 

of 0.5. This probability was obtained with our top-performing MI model. A Log-rank test 673 

was completed to evaluate the difference between these groups’ curves.  674 

We investigated the sources of improvement of our MI model compared to the SCORE 675 

model through an ablation study. The model differs from SCORE in four key aspects:1) 676 

introducing Df, 2) the use of not-discretized quantitative variables, 3) using Random 677 

Forest instead of logistic regression, and 4) introducing PRSCAD. This ablation study 678 

consisted of assessing the performance of a modified version of SCORE through its 679 

AUC, recall and precision. These modifications included all the possible independent 680 

combinations across these alterations.  681 

This part of the study was written in Python 3.5.7 using the sci-kit-learn, NumPy and 682 

Pandas packages. ROC curves were plotted using the predicted MI probability from each 683 

model using the ROCurve plot package in R 4.0.  Both Kaplan-Meier curves and the Log-684 

rank test were completed with the lifelines Python package. 685 

Estimating CAD polygenic risk score. 686 

PRSCAD derives from the CARDIoGRAMplusC4D Consortium21 which is one of the 687 

largest completed CAD meta-analyses. This study does not include UKBB data, but it is 688 

developed with multiple CAD databases with different ancestries to better characterise 689 

the genetic control of this outcome. We estimated PRSCAD for each participant in the MI 690 

dataset by using PRSice-2 software86, the summary statistics of the meta-analysis, and 691 



the genotypes of this MI dataset. We then included this PRS as a variable in our MI 692 

predictive model. 693 
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 950 

Figure 1. Study results and application to stratify MI risk in UKBB. The authors created this figure with 951 
BioRender.com. 952 

Figure 2. Pipeline and Df characteristics. a Study design diagram describing the stepwise development of 953 
this project. b Left and right Df histogram. c Individual variation distribution between left and right Df. d 954 
Overlapping left and right Df histograms including the regression line. e Example of individual interocular 955 
asymmetry in UKBB fundus images. 956 

Figure 3. GWAS of both eyes’ Df. Manhattan plot of a left (top) and b right (bottom)  Df. Points are truncated 957 
at –log10(P)=50 for clarity.  Comparison of the genetic variant effects between left and right Df results. Colour 958 
depth indicates the significance of each variant (navy, violet, and purple for non-significant, close to genome-959 
wide significance and significant, respectively). Genetic variants included are truncated at a minimum –960 
log10(p) = 3 for clarity. 961 

Figure 4. Development and performance of MI predictive models. a Diagram illustrating the development 962 

of our MI model. b ROC curve of MI predictive models. c Kaplan-Meier curve of incident MI cases separated 963 



by predicted MI probability. * Df: fractal dimension; PRSCAD: CAD polygenic risk score; BMI: Body-mass index; SBP: 964 

Systolic blood pressure. 965 

Figure 5: Enrichment analysis of Df loci. a Protein-Protein interaction network of enriched TF and 966 

regulated genes. Upregulation of b ESRRA (top) c HES1 (middle) and d TBX20 (bottom) in VEGF and Notch 967 

signalling pathway after an MI event. 968 

 969 

Table 1. Summary statistics of summary statistics of Df -associated SNPs and its nearest located gene. 970 

 
Right Df Left Df Nearest 

gene 
SNP BETA SD -Log 

(P-

value) 

BETA SD -Log 

(P-

value) 

rs73175105 -1.83E-

03 

3.33E-

04 

5.33 -1.01E-

04 

3.60E-

04 

5.22 EIF2B5 

rs16891982 3.53E-

03 

6.94E-

04 

6.46 3.75E-

03 

6.59E-

04 

7.93 SLC45A2 

rs12203592 -2.85E-

03 

2.80E-

04 

23.62 -2.31E-

03 

2.68E-

04 

28.67 IRF4 

rs6018400 -1.06E-

03 

2.48E-

04 

5.72 -1.07E-

03 

2.37E-

04 

5.17 RDH5/ 

ORMLD2 

rs12913832 5.65E-

03 

2.71E-

04 

96.97 6.34E-

03 

2.58E-

04 

131.28 HERC2 

rs72714116 4.20E-

03 

6.35E-

04 

51.76 3.33E-

03 

5.99E-

04 

27.07 OCA2 

rs73226964 -4.00E-

03 

7.75E-

04 

6.63 -4.21E-

03 

7.48E-

04 

4.63 AGPAT3 

 971 

Table 2. Association estimates between Df  measures and its respective GRS in the CLSA population. 972 

CLSA Models Estimate SE P-value 

Df (both eyes)* 

(n=16,205)  

0.0212 0.0024 < 2E16 

Df (right eye) 

(n=14,820) 

0.0225 0.0026 < 2E-16 

Df (left eye) 

(n=11,826) 

0.0220 0.0030 5.33E-13 

 973 

Table 3. Genetic correlation estimates and significance (P-value) between Df and associated cardiovascular 974 

events. 975 

Correlated trait LEFT EYE RIGHT EYE 

rg SE P value rg SE P value 

Hypertension -0.2229 0.0534 3.026E-

05 

-0.3020 0. 0659 4.52E-06 

Acute myocardial 

infarction 

-0.1717 0.0809 0.0801 -0.1585 0.1075 0.0308 



Self-reported acute 

myocardial infarction 

-0.2071 0. 0754 0.006 -0.2663 0. 0982 0.0067 

Coronary artery 

disease 

-0.2214 0.0591 1.785E-

04 

-0.1776 0. 0795 0.025 

Atherosclerosis -0.3585 0.1819 0.084 -0.2668 0.2100 0.051 

Right Fractal 

dimension 

0.9468 0.0962 1.75E-26 - - - 

Table 4. Internal 10-fold cross-validation of MI models evaluated with precision, recall and AUC. * AUC 976 

estimates significantly different (Wilcoxson signed-rank test P-value<0.005) from the ones obtained with the 977 

SCORE model. The obtained Wilcoxon signed-rank P-value for each model comparison is included in 978 

Supplementary Table 7 979 

 
MI 

Model Precision 

(95%CI) 
Sensitivity 

(95%CI) 
Specificity 

(95%CI) 
AUC (95%CI) 

SCORE model
16 0.716 

(0.664-0.741) 
0.725 

(0.691-0.767) 
0.691 

(0.652-0.731) 
0.719 

(0.681-0.737) 
Random Forest 

including PRS
CAD

 
0.735 

(0.708-0.782) 
0.756 

(0.726-0.801) 
0.739 

(0.702-0.777) 
0.741 

(0.725-0.775)* 
Random Forest 

including both 

eye-specific Df  

0.756 
(0.732- 0.802) 

0.778 
(0.762-0.831) 

0.758 
(0.721-0.795) 

0.763 
(0.750-0.802)* 

Random Forest 

including mean 

Df and PRS
CAD

 

0.733 
(0.716-0.770) 

0.779 
(0.743-0.814) 

0.756 
(0.717-0.797) 

0.748 
(0.722- 0.773)* 

Random Forest 

including Df and 

PRS
CAD

 

0.770 
(0.734-0.805) 

0.790 
(0.757-0.826) 

0.764 
(0.728-0.800) 

0.770 
(0.751-0.802)* 

 980 


