292 research outputs found

    Case Studies in Critical Reflection Praxis in University Studies: The Stance and Dance

    Get PDF
    This article articulates the experience of three professors from different disciplines, teaching at three levels of University Studies, Portland State University\u27s general education program, for whom the toggling between personal/professional critical practices and use of reflective practices in the classroom has led to transformative learning experiences for them and their students. It describes the specific reflective tools and methods they used for teaching and professional development, and considers the challenges to sustaining critical reflection and how those challenges might be addressed. The authors argue that critical reflection (CR) is an important practice for teachers and students of general education. In particular, CR engages the habits of mind and capacities, such as critical thinking, central to the goals of general education, as well as engaging the practical skills needed to procure jobs and succeed as professionals. As a professional practice for teachers, it contributes to improved and purposeful teaching methods and rationales, and can build rapport, trust, and credibility with students. Because CR takes time and practice, it is important for students to be exposed to many different methods and have opportunities to practice CR methods from a variety of disciplines/backgrounds throughout their general education

    Comparative population genomics of latitudinal variation in \u3ci\u3eDrosophila simulans\u3c/i\u3e and \u3ci\u3eDrosophila melanogaster\u3c/i\u3e

    Get PDF
    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. Includes supplementary materials

    Comparative population genomics of latitudinal variation in \u3ci\u3eDrosophila simulans\u3c/i\u3e and \u3ci\u3eDrosophila melanogaster\u3c/i\u3e

    Get PDF
    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. Includes supplementary materials

    Rapid seasonal evolution in innate immunity of wild Drosophila melanogaster

    Get PDF
    Understanding the rate of evolutionary change and the genetic architecture that facilitates rapid adaptation is a current challenge in evolutionary biology. Comparative studies show that genes with immune function are among the most rapidly evolving genes across a range of taxa. Here, we use immune defence in natural populations of Drosophila melanogaster to understand the rate of evolution in natural populations and the genetics underlying rapid change. We probed the immune system using the natural pathogens Enterococcus faecalis and Providencia rettgeri to measure post-infection survival and bacterial load of wild D. melanogaster populations collected across seasonal time along a latitudinal transect along eastern North America (Massachusetts, Pennsylvania and Virginia). There are pronounced and repeatable changes in the immune response over the approximately 10 generations between spring and autumn collections, with a significant but less distinct difference observed among geographical locations. Genes with known immune function are not enriched among alleles that cycle with seasonal time, but the immune function of a subset of seasonally cycling alleles in immune genes was tested using reconstructed outbred populations. We find that flies containing seasonal alleles in Thioester-containing protein 3 (Tep3) have different functional responses to infection and that epistatic interactions among seasonal Tep3 and Drosomycin-like 6 (Dro6) alleles underlie the immune phenotypes observed in natural populations. This rapid, cyclic response to seasonal environmental pressure broadens our understanding of the complex ecological and genetic interactions determining the evolution of immune defence in natural populations

    Orthodontic tooth movement enhancing bony apposition in alveolar bony defect: a case report

    Get PDF
    Introduction: Prevalence of complications from orthognathic surgery is relatively low but if it happens it is vital to manage the post complication bony defect appropriately. Case Presentation: This case report describes a 20-year-old gentleman who suffered from a complication from a bimaxillary orthognathic surgery. A bone grafting was carried out to repair the bony defect from the surgery but it was unsuccessful. A non-invasive technique employing the use of very light orthodontic force with a laceback stainless steel ligature is described and a successful space closure with an improvement in the periodontal condition and bone apposition has been shown. Conclusion: This technique can be considered if orthodontic tooth movement is needed across a deficient alveolar ridge. © 2009 Hibino and Wong; licensee BioMed Central Ltd.published_or_final_versio

    Drosophila suzukii: the genetic footprint of a recent, world-wide invasion

    Get PDF
    Native to Asia, the soft-skinned fruit pest Drosophila suzukii has recently invaded the United States and Europe. The eastern United States represents the most recent expansion of their range, and presents an opportunity to test alternative models of colonization history. Here we investigate the genetic population structure of this invasive fruit fly, with a focus on the eastern United States. We sequenced six X-linked gene fragments from 246 individuals collected from a total of 12 populations. We examine patterns of genetic diversity within and between populations and explore alternative colonization scenarios using Approximate Bayesian Computation. Our results indicate high levels of nucleotide diversity in this species and suggest that the recent invasions of Europe and the continental United States are independent demographic events. More broadly speaking, our results highlight the importance of integrating population structure into demographic models, particularly when attempting to reconstruct invasion histories. Finally, our simulation results illustrate the general challenge of reconstructing invasion histories using genetic data and suggest that genome-level data are often required to distinguish among alternative demographic scenarios

    Difference in the Surgical Outcome of Unilateral Cleft Lip and Palate Patients with and without Pre-Alveolar Bone Graft Orthodontic Treatment.

    Get PDF
    Presurgical orthodontic treatment before secondary alveolar bone grafting (SABG) is widely performed for cleft lip/palate patients. However, no randomized controlled trial has been published comparing SABG outcomes in patients with, and without, presurgical orthodontic treatment. This randomized, prospective, single-blinded trial was conducted between January 2012 and April 2015 to compare ABG volumes 6 months postoperatively between patients with and without presurgical orthodontic treatment. Twenty-four patients were enrolled and randomized and 22 patients completed follow-up. Patients who had presurgical orthodontics before SABG had significantly improved inclination (p < 0.001) and rotation (p < 0.001) of the central incisor adjacent to the defect, significantly improved ABG fill volume (0.81 ± 0.26 cm(3) at 6 months compared to 0.59 ± 0.22 cm(3); p < 0.05) and less residual alveolar bone defect (0.31 ± 0.08 cm(3) at 6 months compared to s 0.55 ± 0.14 cm(3); p < 0.001) compared to patients who did not have presurgical orthodontic treatment. In conclusion, orthodontic treatment combined with SABG results in superior bone volume when compared with conventional SABG alone.This article is freely available via Open Access. Click on the 'Additional Link' above to access the full-text via the publisher's site.Published (Open Access

    RFID Mutual Authentication Protocols based on Gene Mutation and Transfer

    Get PDF
    Radio Frequency Identification (RFID) is a technology that is very popular due to the simplicity in its technology and high adaptability in a variety of areas. The simplicity in the technology, however, comes with a caveat – RFID tags have severe resource restrictions, which make them vulnerable to a range of security attacks. Such vulnerability often results in the loss of privacy of the tag owner and other attacks on tags. Previous research in RFID security has mainly focused on authenticating entities such as readers / servers, which communicate with the tag. Any security mechanism is only as strong as the encryption keys used. Since RFID communication is wireless, critical messages such as key exchange messages are vulnerable to attacks. Therefore, we present a mutual authentication protocol that relies on independent generation and dynamic updates of encryption keys thereby removing the need for key exchange, which is based on the concept of gene mutation and transfer. We also present an enhanced version of this protocol, which improves the security offered by the first protocol. The novelty of the proposed protocols is in the independent generation, dynamic and continuous updates of encryption keys and the use of the concept of gene mutation / transfer to offer mutual authentication of the communicating entities. The proposed protocols are validated by simulation studies and security analysis

    Characteristics of outdoor falls among older people: A qualitative study

    Get PDF
    Background Falls are a major threat to older people’s health and wellbeing. Approximately half of falls occur in outdoor environments but little is known about the circumstances in which they occur. We conducted a qualitative study to explore older people’s experiences of outdoor falls to develop understanding of how they may be prevented. Methods We conducted nine focus groups across the UK (England, Wales, and Scotland). Our sample was from urban and rural settings and different environmental landscapes. Participants were aged 65+ and had at least one outdoor fall in the past year. We analysed the data using framework and content analyses. Results Forty-four adults aged 65 – 92 took part and reported their experience of 88 outdoor falls. Outdoor falls occurred in a variety of contexts, though reports suggested the following scenarios may have been more frequent: when crossing a road, in a familiar area, when bystanders were around, and with an unreported or unknown attribution. Most frequently, falls resulted in either minor or moderate injury, feeling embarrassed at the time of the fall, and anxiety about falling again. Ten falls resulted in fracture, but no strong pattern emerged in regard to the contexts of these falls. Anxiety about falling again appeared more prevalent among those that fell in urban settings and who made more visits into their neighbourhood in a typical week. Conclusions This exploratory study has highlighted several aspects of the outdoor environment that may represent risk factors for outdoor falls and associated fear of falling. Health professionals are recommended to consider outdoor environments as well as the home setting when working to prevent falls and increase mobility among older people

    Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila.

    Get PDF
    To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions, and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila
    corecore